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Abstract In this paper, we consider a generic inexact subgradient algorithm to solve a

nondifferentiable quasi-convex constrained optimization problem. The inexactness stems from

computation errors and noise, which come from practical considerations and applications.

Assuming that the computational errors and noise are deterministic and bounded, we study

the effect of the inexactness on the subgradient method when the constraint set is compact

or the objective function has a set of generalized weak sharp minima. In both cases, using

the constant and diminishing stepsize rules, we describe convergence results in both objective

values and iterates, and finite convergence to approximate optimality. We also investigate

efficiency estimates of iterates and apply the inexact subgradient algorithm to solve the Cobb-

Douglas production efficiency problem. The numerical results verify our theoretical analysis

and show the high efficiency of our proposed algorithm, especially for the large-scale problems.

Keywords subgradient method, quasi-convex optimization, noise, weak sharp minima.

1 Introduction

Subgradient methods are popular and practical techniques used to minimize a nondifferen-

tiable convex function. Subgradient methods originated with the works of Polyak [29] and

Ermoliev [12] and were further developed by Shor [33] in the 1970s. In the last 40 years, many

properties of subgradient methods have been discovered, generalizations and extensions have

been proposed, and various applications have been found (see [1, 4, 16, 21, 23, 26, 28, 33]

and references therein). Nowadays, the subgradient method still remains an important tool

for nonsmooth and stochastic optimization problems, special for large-scale problems, due to

its simple formulation and low storage requirement.

Motivated by practical reasons, approximate subgradient methods (also called ϵ-subgradient

methods) are widely studied in [1, 10, 19, 22, 33]. Kiwiel [19] proposed a unified convergence

framework for approximate subgradient methods. The author presented convergence in ob-

jective values and convergence to a neighborhood of the optimal solution set, using both the
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diminishing and nonvanishing stepsize rules. Larsson et al. [22] proposed and analyzed con-

ditional ϵ-subgradient methods to solve convex optimization problems and convex-concave

saddle-point problems. Improving conditional subgradient methods, D’Antonios and Fran-

gioni [10] combined the deflection and the conditional subgradient technique into one iterative

process, and investigated the unified convergence analysis for the deflected conditional ap-

proximate subgradient methods, using both the Polyak-type and diminishing stepsize rules.

Furthermore, Auslender and Teboulle [1] proposed and developed an interior ϵ-subgradient

method for convex constrained optimization problems over polyhedral sets, in particular Rn
+,

via replacing the Euclidean distance function by a logarithmic-quadratic distance-like func-

tion.

Recently, Nedić and Bertsekas [24] investigated the effect of noise on subgradient methods

for convex optimization problems. Their work was motivated by the distributed optimization

in networks where the data is quantized before being transmitted between nodes (see [17, 30]

and references therein). When the constraint set is compact or the objective function has a

set of weak sharp minima, the authors established convergence properties to the optimal value

within some tolerance, which is expressed in terms of errors and noise, under the bounded

subgradient assumption.

Quasi-convex optimization problems can be found in important applications in various

areas, such as economics, engineering, management science and various applied sciences (see

[3, 9, 15] and references therein). The study of using subgradient methods to solve quasi-

convex optimization problems has been limited. Using the diminishing stepsize rule, Kiwiel

[18] studied convergence properties and efficiency estimates of the exact subgradient method

for solving a quasi-convex optimization problem under the assumption that the objective

function is upper semi-continuous. On the other hand, modified dual subgradient algorithms

were investigated in Gasimov [13] and Burachik et al. [7] for solving a general nonconvex

optimization problem with equality constraints by virtue of a sharp augmented Lagrangian.

Motivated by practical and theoretical reasons, in this paper, we focus on an inexact

subgradient algorithm for solving the following quasi-convex optimization problem:

min f(x)

s.t. x ∈ X,
(1.1)

where f : Rn → R is a quasi-convex function and the constraint set X is nonempty, closed

and convex. We denote the optimal solution set and the optimal value respectively by X∗

and f∗, and we assume that X∗ is nonempty and compact.

Inspired by the idea in [24] and references therein, we investigate the influence of inexact

terms, including both computation errors and noise, on the inexact subgradient algorithm.

The computation errors, which give rise to the ϵ-subgradient, is inevitable in computing pro-

cess. On the other hand, the noise may come from practical considerations and applications,

and is manifested in inexact computation of subgradients. Considering a generic inexact

subgradient algorithm for the quasi-convex optimization problem (1.1) and assuming that

the computational errors and noise are deterministic and bounded, we establish convergence
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properties in both objective values and iterates within some tolerance given explicitly in

terms of errors and noise. We also describe the finite convergence behavior to approximate

optimality and efficiency estimates of iterates.

The quasi-convex function is more difficult to deal with, as the epigraph of a convex func-

tion is convex; while only the sublevel set of a quasi-convex function is convex. Lacking the

convexity assumed in [24], the main technical challenges are defining a suitable subdifferen-

tial of a quasi-convex function, establishing the proper basic inequality, which is a key tool

needed in this area of study, and applying the convexity of the sublevel set instead of that of

the epigraph of a convex function, when analyzing the inexact subgradient method algorithm

for the quasi-convex optimization problem. To meet these challenges, we adopt the closure of

Greenberg-Pierskalla subdifferential as the quasi-convex subdifferential, introduce the Hölder

condition to relate the quasi-convex subgradient with objective function values and establish

the basic inequality, which is only a local property though, and then obtain the convergence

property in objective values and finite convergence under the Hölder condition, instead of

the upper semi-continuity of the objective function used in [18]. Another contribution is to

describe the convergence property in iterates, which are absent in [24], by virtue of convexity

of a sublevel set. When X is noncompact, we need to assume an additional generalized weak

sharp minima condition. This condition extends the concept of weak sharp minima in [24]

and is presented by using dist(x,X∗), the distance of the decision variable x to X∗.

We also investigate the quantification of the influence of errors and noise by using both the

constant and diminishing stepsize rules, while only the diminishing stepsize rule is considered

in studying convergence properties and efficiency estimates of an exact subgradient method

in Kiwiel [18].

We further consider the fractional programming as an application of the quasi-convex

model, describe the Cobb-Douglas production efficiency problem as an example, and perform

some numerical experiments on this problem via applying the inexact subgradient method.

The numerical results verify our theoretical analysis and show that the quasi-subgradient

type method is highly efficient for the production efficiency problem, even when the problem

is large-scale.

This paper is organized as follows. In Section 2, we present the notations used in this

paper, the quasi-subdifferential theory and the inexact subgradient algorithm. In Section 3,

we establish convergence properties in both objective values and iterates, and finite conver-

gence behavior of our algorithm when the constraint set X is compact. Section 4 presents the

convergence behavior when f has a set of generalized weak sharp minima over noncompact

X, and Section 5 gives the efficiency estimates. Finally in Section 6, we apply our algorithm

to the Cobb-Douglas production efficiency problem, and demonstrate the numerical results.
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2 Preliminaries

2.1 Notation and terminology

We consider the n-dimensional Euclidean space Rn. We view vector as a column vector,

and denote by ⟨x, y⟩ the inner product of two vectors x, y ∈ Rn. We use ∥x∥ to denote the

standard Euclidean norm, ∥x∥ =
√

⟨x, x⟩. For x ∈ Rn and δ ∈ R+, B(x, δ) denotes the closed

ball of radius δ centered at x and specially B denotes the unit closed ball at the origin. For

a set Z ⊆ Rn, we denote the closure of Z by clZ. We also write dist(x,Z) to denote the

Euclidean distance of a vector x from the set Z, i.e.,

dist(x, Z) = inf
z∈Z

∥x− z∥.

A function f : Rn → R is said to be quasi-convex if for all x, y ∈ Rn and α ∈ [0, 1], the

following inequality holds

f((1− α)x+ αy) ≤ max{f(x), f(y)}.

f is said to be upper semi-continuous (usc) on Rn if f(x) = lim sup
y→x

f(y) for all x ∈ Rn. For

each α ∈ R, we denote the (strict) sublevel sets of f by

Sf,α = {x ∈ Rn : f(x) < α}, Sf (x) = Sf,f(x),

S̄f,α = {x ∈ Rn : f(x) ≤ α}, S̄f (x) = S̄f,f(x).

It is well-known that f is quasi-convex if and only if Sf,α

(
S̄f,α

)
is convex for all α ∈ R, and

that f is usc on Rn if and only if Sf,α is open for all α ∈ R.

2.2 Quasi-subdifferential theory

There are many different types of subdifferential, such as Clarke-Rockafellar subdifferential,

Dini subdifferential, Fréchet subdifferential (see [2] and references therein) and so on. They

are the same for convex functions, but different for nonconvex functions. Here we introduce

the Greenberg-Pierskalla subdifferential, defined by Greenberg and Pierskalla [14], as follows.

Definition 2.1 (see [14]). The z-quasi-conjugate of f is a function f∗
z : Rn → R ∪ {+∞},

defined by

f∗
z (x) = z − inf{f(y) : ⟨x, y⟩ ≥ z}.

It is recalled in [14, Theorem 1] that the z-quasi-conjugate function provides a lower

bound for the corresponding convex conjugate function, and indeed, the convex conjugate

function is the supremum of the z-quasi-conjugate over z.

Definition 2.2 (see [14]). A Greenberg-Pierskalla subgradient of f at x is a vector g ∈ Rn

such that

f(x) + f∗
⟨g,x⟩(g) = ⟨g, x⟩. (2.1)

The set of Greenberg-Pierskalla subgradients of f at x is called the Greenberg-Pierskalla

subdifferential of f at x and is denoted by ∂∗f(x).
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The following proposition gives an equivalent formula and some important properties of

the Greenberg-Pierskalla subdifferential.

Proposition 2.1 ([14, Theorem 6]). The following statements are true:

(i) ∂∗f(x) = {g : ⟨g, y − x⟩ < 0, ∀y ∈ Sf (x)},

(ii) ∂∗f(x) is a convex cone,

(iii) 0 ∈ ∂∗f(x) if and only if x ∈ argminf .

Unfortunately, different from traditional subdifferentials, the Greenberg-Pierskalla subd-

ifferential of f is not a closed set. In order to overcome this shortcoming, in this paper, we

define the following closed set, which contains the closure of ∂∗f(x), instead as the quasi-

subdifferential, and use it in the inexact subgradient method.

Definition 2.3. Let f : Rn → R be a quasi-convex function. The quasi-subdifferential of f

at x is defined by

∂̄∗f(x) = {g : ⟨g, y − x⟩ ≤ 0, ∀y ∈ Sf (x)}. (2.2)

When f is convex, the quasi-subdifferential coincides with the convex cone hull of the

convex subdifferential (i.e., ∂̄∗f(x) = cone(∂f(x)), see [16, Chapter VI, Theorem 1.3.5]),

and the inexact subgradient method (2.4) is reduced to a normalized version of inexact

subgradient method in [24]. When f is quasi-convex, the existence and relationship between

the Greenberg-Pierskalla subdifferential and the quasi-subdifferential are described in the

following lemma.

Lemma 2.1. If f is quasi-convex on Rn, then ∂̄∗f(x)\{0} ̸= ∅. In addition, if f is usc on Rn,

then ∂∗f(x) ̸= ∅, and ∂̄∗f(x) coincides with the closure of ∂∗f(x), i.e., ∂̄∗f(x) = ∂∗f(x)∪{0}.

Proof. If Sf (x) = ∅, then ∂̄∗f(x) = Rn and the conclusions hold automatically. Now suppose

Sf (x) ̸= ∅, since the convex sets {x} and Sf (x) are disjoint, it follows from [4, Proposition

2.4.5] that there exists a proper hyperplane separation, i.e., there exists a vector g ̸= 0 such

that

sup
y∈Sf (x)

⟨g, y⟩ ≤ ⟨g, x⟩ and inf
y∈Sf (x)

⟨g, y⟩ < ⟨g, x⟩.

Thus, the vector g is a nonzero vector in ∂̄∗f(x). For the second conclusion, see [18, Lemma

3].

The above lemma shows that the existence of nonzero quasi-subgradient only requires the

quasi-convexity. Therefore, throughout this paper, we assume that the objective function

is quasi-convex. In particular, we do not assume the upper semi-continuity of the objective

function as in [18], unless otherwise specified.

Motivated by practical reasons, relaxing (2.2) by f(x) + f∗
⟨g,x⟩(g) ≤ ⟨g, x⟩ + ϵ, we define

the ϵ-quasi-subdifferential as follows.
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Definition 2.4. Let f : Rn → R be a quasi-convex function. The ϵ-quasi-subdifferential of f

at x is defined by

∂̄∗
ϵ f(x) = {g : ⟨g, y − x⟩ ≤ 0, ∀y ∈ Sf,f(x)−ϵ}. (2.3)

2.3 Inexact subgradient method

In this paper, we introduce a generic inexact subgradient method, which we also call the

approximate quasi-subgradient method, to solve the quasi-convex optimization problem (1.1)

as follows.

Approximate quasi-subgradient method

Select a stepsize sequence {vk}, an error sequence {ϵk} and a noise sequence {rk}. Start with
an initial point x0 ∈ X, and generate a sequence {xk} ⊆ X via the iteration

xk+1 = PX(xk − vkg̃k), (2.4)

where PX(·) denotes the Euclidean projection operator onto X and the iterative direction g̃k
is an approximate quasi-subgradient of the following form

g̃k := gk/∥gk∥+ rk, (2.5)

where rk is a noise vector and gk ∈ ∂̄∗
ϵk
f(xk) is an arbitrary nonzero ϵk-quasi-subgradient of

f at xk.

Let us first consider the following example, which says that ϵ-quasi-subdifferential does

not coincide with quasi-subdifferential with noise.

Example 2.1. Consider the quasi-convex function

f(x, y) :=

{
x2 + y2, x ≥ 0,

y2, x < 0.

Its strict sublevel set Sf (0, 1) = Sf,1 is illustrated in Figure 1, thus it is easy to see ∂̄∗f(0, 1) =

cone{(0, 1)}. Let the noise vector r = (−δ, 0) with δ > 0. Then its quasi-subdifferential with

noise and ϵ-quasi-subdifferential are respectively given by

∂̄∗f(0, 1) + r = {(−δ, λ) : λ ∈ R+},

and

∂̄∗
ϵ f(0, 1) =

{
cone{(0, 1), (

√
ϵ,
√
1− ϵ)}, ϵ < 1,

R2, ϵ ≥ 1.

It is obvious that (−δ, 1) /∈ ∂̄∗
ϵ f(0, 1) for all δ > 0 when ϵ < 1. Thus, from this example, we see

that the quasi-subdifferential with noise cannot be represented by the ϵ-quasi-subdifferential.

It is well-known that the stepsize rule is critical in subgradient methods. In this paper,

we investigate convergence properties of the approximate quasi-subgradient method using the

following stepsize rules.
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Sf,1−ǫ

(0,1)

(−δ,1)
∂̄∗

ǫ f(0, 1)

Sf,1

(
√

ǫ,
√

1 − ǫ)

Figure 1: Illustration of Example 2.1.

(a) Constant stepsize rule. The stepsize vk is fixed to be a positive scalar v.

(b) Diminishing stepsize rule. The stepsize vk satisfies

vk > 0, lim
k→∞

vk = 0,

∞∑
k=0

vk = +∞. (2.6)

3 Convergence properties for a compact X

In this section, we investigate convergence properties of the approximate quasi-subgradient

method when the constraint set X is compact. Throughout this section, the following three

assumptions are made.

Assumption 1. The constraint set X is compact.

Assumption 2. f satisfies the Hölder condition of order p > 0 with modulus µ > 0 on Rn,

that is,

f(x)− f∗ ≤ µ
(
dist(x,X∗)

)p
, ∀x ∈ Rn. (3.1)

Assumption 3. The noise and errors are bounded, i.e., there exist some R, ϵ ≥ 0 such that

∥rk∥ ≤ R, ∀k ≥ 0 and lim sup
k→∞

ϵk = ϵ.

7



Since the constraint set X is compact, all iterates are bounded. Therefore, there exists

some d > 0 (such as the diameter of X) such that ∥xk − x∥ ≤ d for all x ∈ X and k ≥ 0.

Moreover, under the bounded noise assumption, it follows from (2.5) that approximate quasi-

subgradients are uniformly bounded, i.e., ∥g̃k∥ ≤ 1 +R for all k ≥ 0.

The Hölder condition of order p is used to describe some properties of quasi-subgradients

in [20]. Here, we use this condition to investigate convergence properties of the approximate

quasi-subgradient method. It is worth noting that the Hölder condition of order 1 is equivalent

to the bounded subgradient assumption, assumed in [24], whenever f is convex.

3.1 Convergence in objective values

We now give the basic inequality and the convergence property in objective values using both

the constant and diminishing stepsize rules. We start with the basic inequality, which shows

a significant property of a subgradient iteration.

Lemma 3.1. Let Assumptions 1 and 3 hold and the sequence {xk} be generated by the

approximate quasi-subgradient method. Then for all x ∈ X, we have

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2vk

(
⟨gk/∥gk∥, xk − x⟩ −Rd− 1

2
vk(1 +R)2

)
, ∀k. (3.2)

Proof. By (2.4)-(2.5) and the nonexpansive property of projection operator, for all x ∈ X,

we have the following basic inequality

∥xk+1 − x∥2 ≤ ∥xk − vkg̃k − x∥2

= ∥xk − x∥2 − 2vk⟨gk/∥gk∥+ rk, xk − x⟩+ v2k∥gk/∥gk∥+ rk∥2 (3.3)

≤ ∥xk − x∥2 − 2vk

(
⟨gk/∥gk∥, xk − x⟩ −Rd− 1

2
vk(1 +R)2

)
,

where the last inequality follows from the compactness of X and boundedness of noise and

errors.

The main difficulty in the study of the approximate quasi-subgradient method comes from

the difference between the basic inequality (3.2) for our proposed quasi-convex subgradient

method and that of convex subgradient method (cf. [24]). This difference originates from

definitions and properties of subgradients: the convex subgradient directly connects with

objective values and shares a global property of the objective function, while the quasi-

convex subgradient is a normal direction to its sublevel set and is not directly associated

with the objective function. Here, we utilize the Hölder condition to relate the quasi-convex

subgradient with objective function values, which is only a local property.

Lemma 3.2 ([18, Lemma 6]). If B(x̄, r̄) ⊂ clSf,f(xk)−ϵk for some x̄ ∈ Rn and r̄ ≥ 0, then

⟨gk/∥gk∥, xk − x̄⟩ ≥ r̄.

Lemma 3.3. If Assumption 2 holds and f(xk) > f∗ + µr̄p + ϵk holds for some r̄ ≥ 0, then

⟨gk/∥gk∥, xk − x∗⟩ ≥ r̄ for all x∗ ∈ X∗.
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Proof. Given x∗ ∈ X∗, by the Hölder condition of order p and the hypotheses of this lemma,

for all x ∈ B(x∗, r̄), we have

f(x)− f∗ ≤ µ
(
dist(x,X∗)

)p ≤ µr̄p < f(xk)− f∗ − ϵk,

which implies B(x∗, r̄) ⊂ Sf,f(xk)−ϵk . Hence, the conclusion follows from Lemma 3.2.

Theorem 3.1. Let Assumptions 1-3 hold. Then, for a sequence {xk} generated by the ap-

proximate quasi-subgradient method with the constant stepsize rule, we have

lim inf
k→∞

f(xk) ≤ f∗ + µ(Rd+
v

2
(1 +R)2)p + ϵ.

Proof. We prove by contradiction, assuming that

lim inf
k→∞

f(xk) > f∗ + µ(Rd+
v

2
(1 +R)2)p + ϵ,

that is, there exists some δ > 0 and positive integer k0 such that

f(xk) > f∗ + µ(Rd+
v

2
(1 +R)2 + δ)p + ϵk, ∀k ≥ k0. (3.4)

It follows from Lemma 3.3 that for all x∗ ∈ X∗ and k ≥ k0 there holds

⟨gk/∥gk∥, xk − x∗⟩ ≥ Rd+
v

2
(1 +R)2 + δ.

Therefore, by using the basic inequality (3.2) with vk ≡ v and x = x∗, we obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2v
(
Rd+ v

2 (1 +R)2 + δ −Rd− v
2 (1 +R)2

)
= ∥xk − x∗∥2 − 2vδ

≤ · · · ≤ ∥xk0 − x∗∥2 − 2(k − k0 + 1)vδ,

which yields a contradiction for sufficiently large k. The proof is complete.

In Assumption 2, we assume that f satisfies the Hölder condition on the whole space Rn.

Actually, this assumption is essential for the convergence result in Theorem 3.1. Relaxing

it by the assumption that f satisfies the Hölder condition on the constraint set X cannot

ensure the validity of Theorem 3.1 even if f is continuous on Rn, as shown by the following

example.

Example 3.1. Consider the objective function

f(u, v) :=

{
M |v|, u ≤ 0,

u+M |v|, u > 0,

with M = 100 and the constraint set X = {(u, v) : −1 ≤ u ≤ 1, v = 0}. Obviously, the optimal

value of (1.1) is f∗ = 0 and the optimal solution set is X∗ = {(u, v) : −1 ≤ u ≤ 0, v = 0}. It
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is easy to check that f is continuous and quasi-convex on R2 and satisfies the Hölder condition

(cf. (3.1)) on X with µ = p = 1.

Starting from x0 = (1, 0), we use the approximate quasi-subgradient method (cf. (2.4)-(2.5)) to

solve this problem. Specially, we choose the quasi-subgradient g = (1/
√
1 +M2,M/

√
1 +M2) ∈

∂̄∗f(x0), the noise vector r = (−1/
√
1 +M2, 0) and the constant stepsize rule v = 1/2, then

we have

x1 = PX

(
x0 − v(g + r)

)
= PX

(
(1, 0)− v(0,M/

√
1 +M2)

)
= (1, 0) = x0.

Hence, a fixed sequence is generated and lim
k→∞

f(xk) = f(x0) = 1. However, R = 0.01, ϵ = 0,

d = 2, v = 1/2 and then the total error µ(Rd+ v
2 (1 + R)2)p + ϵ < 1/2. Therefore, Theorem

3.1 fails for this problem.

Using the diminishing stepsize rule, the error term involving the stepsize v in Theorem

3.1 vanishes and the following theorem is obtained.

Theorem 3.2. Let Assumptions 1-3 hold. Then, for a sequence {xk} generated by the ap-

proximate quasi-subgradient method with the diminishing stepsize rule, we have

lim inf
k→∞

f(xk) ≤ f∗ + µ(Rd)p + ϵ.

Proof. The proof uses properties of the diminishing stepsize rule (cf. (2.6)) and a line of

analysis similar to that of Theorem 3.1. We omit the details.

Theorems 3.1-3.2 show convergence to the optimal value within some tolerance given in

terms of errors and noise by using the constant and diminishing stepsize rules, respectively.

In Theorem 3.2, the total error c := µ(Rd)p + ϵ, which is a similar formula as in [24], has an

additive form, including the noise level R and the error level ϵ. By contrast, in Theorem 3.1,

the total error additionally includes a term related to the constant stepsize v.

When the noise vanishes (R = 0), the approximate quasi-subgradient method is reduced

to the ϵ-quasi-subgradient method. In such a situation, the term ⟨rk, xk − x⟩ vanishes in the

corresponding basic inequality, and Lemma 3.1 holds (where R = 0) without the compactness

hypothesis of X. Therefore, when the noise vanishes, the convergence result holds regardless

of the compactness hypothesis of X. Furthermore, when the error level is precise (ϵ = 0),

we obtain the convergence result of the exact quasi-subgradient method, which is the main

result in [18], where upper semi-continuity of f is assumed. Here, we have obtained the result

as in [18] without the usc assumption, but using the Hölder condition of order p instead.

The following two examples show that the Hölder condition and upper semi-continuity are

independent of each other.

Example 3.2 (The function satisfies the Hölder condition but is not usc). Consider

the objective function

f(x) :=


0, x ≤ 0,

x2, 0 < x ≤ 1,

2, x > 1,
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with the constraint set X = {x ∈ R : 0 ≤ x ≤ 10}. Obviously, the optimal value of problem

(1.1) is f∗ = 0 and the optimal solution set is X∗ = {0}. It is easy to verify that f is quasi-

convex and satisfies the Hölder condition of order 2 with modulus 1 on R. However, f is

not usc at x = 1. Thus, this example shows that the Hölder condition does not imply upper

semi-continuity.

Thus, from [18], we cannot obtain convergence of the exact quasi-subgradient method (cf.

(14)-(15) in [18]) for this example. However, the sequence generated by the exact quasi-

subgradient method converges to X∗. Indeed, for any x ∈ X \X∗, the strict sublevel set Sf (x)

is the line segment [0,min{1, x}) and the quasi-subdifferential ∂̄∗f(x) = R+. Thus,

xk+1 = PX(xk − vkgk/∥gk∥) = max{xk − vk, 0},

and the sequence {xk} converges to the origin, the optimal solution, by properties of the

diminishing stepsize rule. This iterative result coincides with the result in Theorem 3.2 (by

setting R = 0 and ϵ = 0).

Example 3.3 (The function is usc but does not satisfy the Hölder condition).

Consider the objective function

f(x) = ex,

and the constraint set R+. Obviously, the optimal value of problem (1.1) is f∗ = 1 and

the optimal solution set is X∗ = {0}. It is easy to check that f is continuous and quasi-

convex (since it is monotone) on R. However, by the Taylor expansion ex =
∞∑
n=0

xn

n! , we claim

that f does not satisfy the Hölder condition on R for any positive scalars p and µ. Indeed,

given positive scalars p and µ, when x ≥ exp( log(µ⌈p+1⌉!)
⌈p+1⌉−p ), where exp(·) and ⌈p⌉ denote the

exponential function and the largest integer not greater than p respectively, we have

f(x)− f∗ = ex − 1 >
x⌈p+1⌉

⌈p+ 1⌉!
+

x0

0!
− 1 =

x⌈p+1⌉

⌈p+ 1⌉!
≥ µxp,

which contradicts with (3.1). Thus, this example shows that upper semi-continuity does not

imply the Hölder condition.

Although, from [18], we obtain the convergence property of the exact quasi-subgradient

method for this example. However, the convergence result of the approximate quasi-subgradient

method (see Theorem 3.2) fails for this example. Indeed, given positive scalars p and µ, we

consider the constraint set X = {x ∈ R : 0 ≤ x ≤ exp( log(µ⌈p+1⌉!)
⌈p+1⌉−p )}, noise rk ≡ −1 and

errors ϵk ≡ 0. For any x ∈ X \X∗, the strict sublevel set Sf (x) is the line segment [0, x) and

the quasi-subdifferential ∂̄∗f(x) = R+. Thus, starting from x0 = exp( log(µ⌈p+1⌉!)
⌈p+1⌉−p ), we have

x1 = PX

(
x0 − v0(g0/∥g0∥+ r0)

)
= x0.

Hence, the approximate quasi-subgradient method (cf. (2.4)-(2.5)) generates a fixed sequence

and lim
k→∞

f(xk) = f(x0) = ex0. However, when R = 1, ϵ = 0 and d = exp( log(µ⌈p+1⌉!)
⌈p+1⌉−p ), the

total error, given in Theorem 3.2, µ(Rd)p + ϵ = µdp = d⌈p+1⌉/⌈p+ 1⌉! < ed = ex0, where the

inequality follows from the Taylor expansion. Therefore, Theorem 3.2 fails for this example.
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From the above two examples, we observe that the Hölder condition of order p describes

some property of the objective function, which is essentially different from the upper semi-

continuity, and it can be used to investigate convergence properties of the approximate quasi-

subgradient method. Hence, using the mild assumptions, we have established convergence

properties of the approximate quasi-subgradient method from a new perspective, which is

different from that in [18].

3.2 Finite convergence

The optimal solution set X∗ has a nonempty interior in many interesting applications, such

as surrogate relaxation of discrete programming problems (see [11]). Here, we demonstrate

finite convergence behavior to the approximate optimal solution set of problem (1.1) under

the assumption that the optimal solution set X∗ has a nonempty interior.

Theorem 3.3. Let Assumptions 1-3 hold, intX∗ ̸= ∅ and the diminishing stepsize rule be

chosen. Then f(xk) ≤ f∗ + µ(Rd)p + ϵ for some k.

Proof. By contradiction, we assume that f(xk) > f∗ + µ(Rd)p + ϵ for all k ∈ N. Since

intX∗ ̸= ∅, we set B(x̄, δ̄) ⊂ X∗ for some δ̄ > 0. Then for all x ∈ B(x̄, Rd+ 2
3 δ̄), we have

f(x)− f∗ ≤ µ
(
dist(x,X∗)

)p ≤ µ(Rd− 1

3
δ̄)p = µ(Rd)p − δ′ < f(xk)− f∗ − ϵ− δ′, (3.5)

where δ′ is a scalar in [13µpδ̄(Rd− 1
3 δ̄)

p−1, 13µpδ̄(Rd)p−1] satisfying the mean value theorem.

Furthermore, since lim sup
k→∞

ϵk = ϵ, there exists some positive integer k0 such that ϵk ≤ ϵ+ δ′

for all k ≥ k0. Therefore, (3.5) implies f(x) < f(xk)−ϵk and then B(x̄, Rd+ 2
3 δ̄) ⊂ Sf,f(xk)−ϵk

for all k ≥ k0. Hence, it follows from Lemma 3.2 that

⟨gk/∥gk∥, xk − x̄⟩ ≥ Rd+
2

3
δ̄. (3.6)

However, summing the basic inequalities (3.2) with x = x̄ for i = k0, · · · , k, we obtain

min
i=k0,...,k

⟨ gi
∥gi∥

, xi − x̄⟩ ≤
∑k

ko
vi⟨ gi

∥gi∥ , xi − x̄⟩∑k
ko
vi

≤ ∥xk0 − x̄∥2

2
∑k

k0
vi

+Rd+

∑k
k0
v2i

2
∑k

k0
vi
(1 +R)2. (3.7)

By the property of the diminishing stepsize rule (cf.(2.6)), it follows from [19, Lemma 2.1]

that lim
k→∞

(
∑k

i=k0
v2i /

∑k
i=k0

vi) = 0, and thus the right hand side of (3.7) tends to Rd as k

tends to infinity. Hence we arrive at a contradiction with (3.6). The proof is complete.

Under the same assumption of Theorem 3.3, we now describe a related result for the

nonvanishing stepsize rule.

Theorem 3.4. Let Assumptions 1-3 hold. If B(x̄, δ̄) ⊂ X∗ for some δ̄ > 0 and there

exists some 0 < κ < 1 and k0 ∈ N such that vk ∈ [ κ2δ̄
(1+R)2

, κδ̄
(1+R)2

] for all k ≥ k0, then

f(xk) ≤ f∗ + µ(Rd)p + ϵ for some k.
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Proof. By contradiction, suppose f(xk) > f∗ + µ(Rd)p + ϵ for all k ∈ N. As in the proof of

Theorem 3.3 and (3.7), we have

Rd+ 2
3 δ̄ ≤ min

i=k0,...,k
⟨gi/∥gi∥, xi − x̄⟩

≤ ∥xk0
−x̄∥2

2
∑k

k0
vi

+Rd+

∑k
k0

v2i

2
∑k

k0
vi
(1 +R)2

≤ ∥xk0
−x̄∥2

2κ2δ̄(k−k0+1)
(1 +R)2 +Rd+ δ̄/2,

whose last right hand side tends to Rd + δ̄/2 as k tends to infinity. The contradiction

happens.

3.3 Convergence in iterates

We have shown the convergence property in objective values in Section 3.1, and in this sub-

section we consider the convergence property in iterates. In [24], where noise in subgradient

methods for convex optimization was considered, Nedić and Bertsekas did not give conver-

gence property in iterates. In fact, convergence of {xk} is quite difficult to obtain. Kiwiel [19]

described the convergence of {xk} generated by ϵ-subgradient method for convex optimiza-

tion. Although Kiwiel did not consider the effect of noise, his work is really helpful for our

research. Following the framework of [19], we give the convergence of {xk} generated by the

approximate quasi-subgradient method using the diminishing stepsize rule. Besides the ex-

tension to the approximate quasi-subgradient method, another improvement of our work is to

maintain the convergence property without the lower semi-continuous and coercive condition

assumptions used in [19], instead we use the usc assumption.

First, let us show a useful property of a convergent sequence, which converges in objective

values as well. This result requires the additional usc assumption.

Lemma 3.4. Suppose f is usc on Rn, α > 0, and the sequence {xk} converges to x̄ with

lim
k→∞

f(xk) ≤ f∗ + α. Then dist(x̄, S̄f,f∗+α) = 0.

Proof. Observe that Sf,f∗+β is open and convex (as f is usc and quasi-convex) for all β >

f∗ + α and that
∩

β>f∗+α Sf,β ⊃ Sf,f∗+α, which is nonempty (as α is positive and f is usc).

Since further {Sf,β} is decreasing as β ↓ f∗ + α, by [32, Exercise 4.3(b)], we have

lim
β↓f∗+α

Sf,β =
∩

β>f∗+α

clSf,β = cl
∩

β>f∗+α

Sf,β = clS̄f,f∗+α, (3.8)

where the second equality follows from [31, Theorem 6.5]. Finally, by [32, Corollary 4.7] and

(3.8), we arrive at that

dist(x̄, S̄f,f∗+α) = dist(x̄, cl(S̄f,f∗+α)) = lim
β↓f∗+α

dist(x̄, Sf,β) = 0,

where dist(x̄, Sf,β) = 0 for all β > f∗+α, since lim
k→∞

xk = x̄ and lim
k→∞

f(xk) ≤ f∗+α < β.
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Next, we describe the convergence of {xk} to some approximate optimal solution set by

using the diminishing stepsize rule.

Theorem 3.5. Let Assumptions 1-3 hold, the total error c := µ(Rd)p + ϵ > 0, f be usc on

Rn and the diminishing stepsize rule be chosen. Then the following statements are true:

(i) lim inf
k→∞

dist(xk, S̄f,f∗+c ∩X) = 0.

(ii) lim
k→∞

dist(xk, X
∗ + ρ(c)B) = 0, where ρ(c) is defined by

ρ(c) := max{dist(x,X∗) : x ∈ S̄f,f∗+c ∩X}.

Proof. First, observe that X∗ ⊂ S̄f,f∗+c ∩X ⊂ X∗ + ρ(c)B. Furthermore, the nonemptiness

of X∗ and the compactness of X imply that S̄f,f∗+c ∩X is nonempty and bounded.

(i) Theorem 3.2 gives that lim inf
k→∞

f(xk) ≤ f∗ + c. The compactness of X then implies that

there exists some subsequence {xki} that converges to some x̄ ∈ X with lim
i→∞

f(xki) ≤
f∗ + c. Thus, the conclusion follows from Lemma 3.4.

(ii) Given σ > 0, define

V2σ := X∗ + ρ(c)B + 2σB,

and

eσ := inf{f(x) : x ∈ X, dist(x, S̄f,f∗+c ∩X) ≥ σ} − (f∗ + c). (3.9)

We first claim that eσ > 0. Indeed, if eσ = 0, then there exists sequence {zi}, in

{x : x ∈ X, dist(x, S̄f,f∗+c ∩X) ≥ σ}, converges to some z̄ ∈ X with lim
i→∞

f(zi) =

f∗ + c. It follows from Lemma 3.4 that dist(z̄, S̄f,f∗+c) = 0. Moreover, since z̄ ∈ X,

dist(z̄, S̄f,f∗+c ∩X) = 0, which is impossible as σ > 0.

For such positive eσ, there exists some δ > 0 such that

µ(Rd+ δ)p ≤ µ(Rd)p + eσ/2. (3.10)

Since the stepsize vk diminishes,, there exists kδ ∈ N such that

vk ≤ δ/(1 +R)2, ∀k ≥ kδ. (3.11)

Since lim sup
k→∞

ϵk = ϵ and lim
k→∞

∥xk+1 − xk∥ = 0 (since vk diminishes), there exists some

kσ ≥ kδ such that

ϵk < ϵ+ eσ/2, (3.12)

and

∥xk+1 − xk∥ ≤ σ, (3.13)

14



for all k ≥ kσ. Since lim inf
k→∞

dist(xk, S̄f,f∗+c ∩ X) = 0 (cf. (i)), there exists some

k′σ ≥ kσ ≥ kδ such that

xk′σ ∈ (S̄f,f∗+c ∩X) + σB ⊂ X∗ + ρ(c)B + σB ⊂ V2σ,

that is, xk′σ ∈ V2σ.

Next, we claim that xk ∈ V2σ for all k ≥ k′σ. Proving by induction, we assume that

xk ∈ V2σ for some k ≥ k′σ and consider the following two cases.

Case 1. If dist(xk, S̄f,f∗+c ∩X) ≤ σ, from (3.13), we have

xk+1 ∈ {xk}+ σB ⊂ (S̄f,f∗+c ∩X + σB) + σB ⊂ X∗ + ρ(c)B + 2σB = V2σ.

Case 2. Suppose dist(xk, S̄f,f∗+c ∩X) > σ, from (3.9), we have

f(xk) ≥ eσ + f∗ + c

= f∗ + (µ(Rd)p + eσ/2) + (ϵ+ eσ/2)

> f∗ + µ(Rd+ δ)p + ϵk, ∀k ≥ k′σ,

where the second inequality follows from (3.10) and (3.12). Hence, from Lemmas 3.1

and 3.3, we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk(δ −
vk
2
(1 +R)2) ≤ ∥xk − x∗∥2,

where the second inequality follows from (3.11). Thus, xk ∈ V2σ implies xk+1 ∈ V2σ.

Therefore, by induction, xk ∈ V2σ, and hence, dist(xk, X
∗ + ρ(c)B) ≤ 2σ for all k ≥ k′σ.

Since σ > 0 is arbitrary, then dist(xk, X
∗ + ρ(c)B) vanishes as k tends to infinity.

4 Convergence properties for f with generalized weak sharp

minima

In this section, we consider the other case when X is noncompact. Considering the similar

case, Nedić and Bertsekas [24] assumed that the objective function f has a set of weak sharp

minima and the ϵ-subgradients are uniformly bounded on X (see [24, Assumptions 3.1-3.2]).

The function f is said to have a set of weak sharp minima over X (see [8]) if for some scalar

η > 0 there holds

f(x)− f∗ ≥ η dist(x,X∗), ∀x ∈ X.

A natural extension to generalize the weak sharp minima is the weak sharp minima of

order q (see [5, 35]), that is, there exist some scalars η, q > 0 such that

f(x)− f∗ ≥ η
(
dist(x,X∗)

)q
, ∀x ∈ X. (4.1)
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However, if p > q, contradiction between (3.1) and (4.1) arises as dist(x,X∗) tends to zero.

Also, if p < q, contradiction arises again as dist(x,X∗) tends to infinity. In order to avoid

the contradiction, we weaken the assumption (4.1) as the generalized weak sharp minima, in

which the constant q is replaced by a positive function g(t).

Furthermore, in what follows we consider a noise sequence {rk} whose norm bound R is

lower than (η/µ)1/p, which we refer to as a low level noise sequence (see [24]). In particular,

we introduce the following assumptions.

Assumption 4. The function f satisfies the generalized weak sharp minima condition over

X, that is, there exist some scalars η > 0, q ≥ p and a function g : R+ → R+, satisfying

g(·) ≥ p, sup
t≥0

g(t) = q and lim
t→∞

g(t) = p, such that

f(x)− f∗ ≥ η
(
dist(x,X∗)

)g(dist(x,X∗))
, ∀x ∈ X, (4.2)

where p is the order of Hölder condition used in Assumption 2.

Assumption 5. {rk} is a low level noise sequence (i.e., R < (η/µ)1/p).

When g(t) ≡ p, Assumption 4 is reduced to weak sharp minima of order p, whose sufficient

and necessary conditions have been described by Studniarski and Ward [35] and Bonnans

and Ioffe [5] for specified p = 2. Furthermore, if p = 1, it is reduced to the well-known weak

sharp minima introduced by Burke and Ferris [8]. Note that, to arrive at the corresponding

convergence results, Assumptions 2-5 with specified p = q = 1 were used in [24].

When

g(t) :=

{
g(0), 0 ≤ t ≤ 1,

p, t > 1,

where g(0) > p, Assumption 4 is reduced to

f(x)− f∗ ≥ min{η
(
dist(x,X∗)

)g(0)
, η
(
dist(x,X∗)

)p},
which is equivalent to that f has Höldrian level sets over X (see [27]). Another interesting

example of Assumption 4 is g(t) = p+ 1/t.

Before we go on, we introduce an auxiliary function Hx
v,θ and investigate some properties

of the maximum solution of Hx
v,θ(z) ≥ 0 over X, which are useful in the study of convergence

properties in objective values and iterates when X is noncompact in next two subsections.

Definition 4.1. Let µ and p be scalars given in Assumption 2, R and ϵ be scalars given in

Assumption 3, and the function g be described in Assumption 4. For each v ≥ 0, θ ≥ 0 and

x ∈ X, we define an auxiliary function Hx
v,θ : R+ → R by

Hx
v,θ(z) := µ

(v
2
(1 +R)2 +R(

z

η
)1/g(dist(x,X

∗))
)p

+ ϵ+ θ − z, (4.3)

We denote by z∗v,θ to be the maximum solution of the inequality Hx
v,θ(z) ≥ 0 for some x ∈ X,

defined by

z∗v,θ := sup{z : Hx
v,θ(z) ≥ 0 for some x ∈ X}. (4.4)
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Assumption 4 says that p ≤ g(dist(x,X∗)) ≤ q for all x ∈ X. Hence, by (4.3), we have

Hx
v,θ(z) ≤ max{Gp

v,θ(z), G
q
v,θ(z)}, ∀z ≥ 0, x ∈ X,

where Gt
v,θ(z), where t = p, q, is defined by

Gt
v,θ(z) := µ

(v
2
(1 +R)2 +R(

z

η
)1/t

)t
+ ϵ+ θ − z.

Thus, applying (4.4) and Assumption 4, z∗v,θ can be rewritten as

z∗v,θ = max{sup{z : Gp
v,θ(z) ≥ 0}, sup{z : Gq

v,θ(z) ≥ 0}}.

For the sake of simplicity, denote

ztv,θ = sup{z : Gt
v,θ(z) ≥ 0}, for t = p, q. (4.5)

and hence,

z∗v,θ = max{zqv,θ, z
p
v,θ}. (4.6)

Since Hx
v,θ(0) > 0 and Hx

v,θ(z) is continuous on variable z for all x ∈ X, then z∗v,θ is

positive. However, it might be +∞. The following lemma shows that z∗v,θ is finite and

continuous on parameters v and θ under Assumptions 4-5.

Lemma 4.1. Let Assumptions 4-5 hold. Then the following statements hold:

(i) z∗v,θ is finite for all v ≥ 0 and θ ≥ 0.

(ii) lim
θ→0+

z∗v,θ = z∗v,0 for all v ≥ 0.

(iii) lim
v→0+

z∗v,θ = z∗0,θ for all θ ≥ 0.

Proof. (i) By the assumptions that R < (η/µ)1/p and q ≥ p, we have

lim
z→∞

µ
( R

η1/q
z1/q−1/p

)p
< 1,

which is equivalent to

lim
z→∞

[µ
z

(v
2
(1 +R)2 +R(

z

η
)1/q

)p
+

ϵ+ θ

z

]
< 1, ∀v ≥ 0, θ ≥ 0.

This implies lim
z→∞

Gq
v,θ(z) < 0. Hence, zqv,θ < +∞ for all v ≥ 0 and θ ≥ 0, since Gq

v,θ(·)
is continuous. Similarly, we can prove that zpv,θ < +∞ for all v ≥ 0 and θ ≥ 0. Thus,

by using (4.6), we arrive at that z∗v,θ is finite for all v ≥ 0 and θ ≥ 0.
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(ii) Since Gq
v1,θ1

(·) ≤ Gq
v2,θ2

(·) for all v1 ≤ v2 and θ1 ≤ θ2, then zqv1,θ1 ≤ zqv2,θ2 . This

monotonicity immediately implies lim
θ→0+

zqv,θ ≥ zqv,0.

Next, we prove the reverse inequality. By the definition of zqv,θ, for given v ≥ 0 and each

positive integer n, there exists some zn satisfying zn > zqv,1/n − 1/n and Gq
v,1/n(zn) ≥ 0.

Together with the monotonicity of zqv,θ, we have −1 < zn ≤ zqv,1/n ≤ zqv,1, where the last

term is finite by (i). So the sequence {zn} is bounded and has cluster points. Thus, for

each of its cluster points z̄, taking a subsequence of {zn} if necessary, we have

lim
n→∞

Gq
v,1/n(zn) = lim

n→∞
µ
(
v
2 (1 +R)2 +R( znη )1/q

)p
+ ϵ+ 1

n − zn

= µ
(
v
2 (1 +R)2 +R( z̄η )

1/q
)p

+ ϵ− z̄

= Gq
v,0(z̄),

which is nonnegative, since {Gq
v,1/n(zn)} are all nonnegative. Then, by the definition

of zqv,θ, we have zqv,0 ≥ z̄ ≥ lim
θ→0+

zqv,θ, where the second inequality holds due to zn >

zqv,1/n − 1/n. Therefore, we arrive at lim
θ→0+

zqv,θ = zqv,0.

Similarly, we can prove that lim
θ→0+

zpv,θ = zpv,0. Thus, from (4.6), we arrive at lim
θ→0+

z∗v,θ =

z∗v,0 for all v ≥ 0.

(iii) The proof is similar to that of (ii).

4.1 Convergence in objective values

Similar to Section 3.1, we obtain the following basic inequality.

Lemma 4.2. Let {xk} be the sequence generated by the approximate quasi-subgradient method.

Then for all x ∈ X, we have

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 2vk

(
⟨gk/∥gk∥, xk − x⟩ −R∥xk − x∥ − 1

2
vk(1 +R)2

)
, ∀k.

Before we discuss the convergence in objective values which is the main result of this

subsection, we consider the following two lemmas which show the boundedness of {xk},
generated by the approximated quasi-subgradient method using both types of stepsize rules.

This interesting property is new in the literature.

Lemma 4.3. Let Assumptions 2-5 hold and {xk} be generated by the approximate quasi-

subgradient method with the constant stepsize rule. Then {xk} is bounded.

Proof. Since lim sup
k→∞

ϵk = ϵ, for any θ > 0, there exists some positive integer k0 such that

ϵk < ϵ+ θ, ∀k ≥ k0. (4.7)
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Define the maximum solution of tg(t) ≤ z∗v,θ/η by

T := sup{t ∈ R+ : tg(t) ≤ z∗v,θ/η}, (4.8)

which is finite, since z∗v,θ is finite (cf. Lemma 4.1(i)) and lim
t→∞

tg(t) = +∞ (cf. Assumption 4).

Next, we claim that the following inequality holds for all i ≥ k0:

dist(xi, X
∗) ≤ max{dist(xk0 , X∗), T + v(1 +R)}. (4.9)

It is obvious that (4.9) holds if i = k0. Proving by induction, we assume that (4.9) holds for

some i = k (≥ k0). We consider the following two cases.

Case 1. If f(xk) ≤ f∗ + µ
(
v
2 (1 +R)2 +R(f(xk)−f∗

η )1/g(dist(xk,X
∗))

)p
+ ϵk, by (4.7), we have

µ
(v
2
(1 +R)2 +R(

f(xk)− f∗
η

)1/g(dist(xk,X
∗))

)p
+ ϵ+ θ − (f(xk)− f∗) ≥ 0,

that is, Hxk
v,θ(f(xk)− f∗) ≥ 0. Hence, by (4.4), we obtain f(xk)− f∗ ≤ z∗v,θ and then

dist(xk, X
∗)g(dist(xk,X

∗)) ≤ z∗v,θ/η,

which follows from (4.2). Thus, from (4.8), we arrive at dist(xk, X
∗) ≤ T , and thus relations

(2.4)-(2.5) imply

dist(xk+1, X
∗) ≤ dist(xk, X

∗) + vk∥gk/∥gk∥+ rk∥ < T + v(1 +R).

That is (4.9) holds for i = k + 1.

Case 2. Suppose f(xk) > f∗+µ
(
v
2 (1+R)2+R(f(xk)−f∗

η )1/g(dist(xk,X
∗))

)p
+ ϵk, then it follows

from Lemma 3.3 that

⟨gk/∥gk∥, xk − x∗⟩ ≥ v

2
(1 +R)2 +R(

f(xk)− f∗
η

)1/g(dist(xk,X
∗)) ≥ v

2
(1 +R)2 +R dist(xk, X

∗),

where the second inequality follows from (4.2). Hence, applying Lemma 4.2 with vk = v and

x∗ = PX∗(xk), we obtain(
dist(xk+1, X

∗)
)2 ≤ ∥xk+1 − x∗∥2

≤ ∥xk − x∗∥2 − 2v
(
v
2 (1 +R)2 +R dist(xk, X

∗)−R∥xk − x∗∥ − v
2 (1 +R)2

)
=

(
dist(xk, X

∗)
)2
.

Hence, (4.9) holds for i = k + 1.

Therefore, by induction, (4.9) holds for all i ≥ k0. Since the right hand side of (4.9) is finite

and X∗ is compact, then {xk} is bounded.

When using the diminishing stepsize rule, we can also achieve the boundedness of the

generated sequence as follows. The proof is omitted.
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Lemma 4.4. Let Assumptions 2-5 hold and {xk} be generated by the approximate quasi-

subgradient method with the diminishing stepsize rule. Then {xk} is bounded.

From Lemmas 4.3-4.4, one can see that {xk} is bounded, and hence, {f(xk)} is bounded

from above due to the Hölder condition (cf. (3.1)), by using both types of stepsize rules.

We denote by M the upper bound of {f(xk)} in what follows. Next, we first present the

convergence property of the approximate quasi-subgradient method by using the constant

stepsize rule.

Theorem 4.1. Let Assumptions 2-5 hold and {xk} be generated by the approximate quasi-

subgradient method with the constant stepsize rule. Then, z∗v,0 is finite and

lim inf
k→∞

f(xk) ≤ f∗ + z∗v,0.

Proof. The finiteness of z∗v,0 has been proved in Lemma 4.1(i). To prove the convergence

property, we first show that

lim inf
k→∞

f(xk) < f∗ + z∗v,θ

for all θ > 0 by contradiction, that is, assume the following inequality holds for some θ > 0,

lim inf
k→∞

f(xk) ≥ f∗ + z∗v,θ.

Thus, there exists some δ ∈ (0,min{θ/2, z∗v,θ}) and positive integer k0 such that

f(xk) > f∗ + z∗v,θ − δ, (4.10)

and

ϵk < ϵ+ θ/2, (4.11)

for all k ≥ k0, where (4.11) holds due to lim sup
k→∞

ϵk = ϵ.

By (4.4) and (4.10), we obtain f(xk)− f∗ + δ > sup{z : Hxk
v,θ(z) ≥ 0} and then Hxk

v,θ(f(xk)−
f∗ + δ) < 0, that is,

f(xk) > f∗ + µ
(
v
2 (1 +R)2 +R(f(xk)−f∗+δ

η )1/g(dist(xk,X
∗))

)p
+ ϵ+ θ − δ

> f∗ + µ
(
v
2 (1 +R)2 +R(f(xk)−f∗+δ

η )1/g(dist(xk,X
∗))

)p
+ ϵk

≥ f∗ + µ
(
v
2 (1 +R)2 +R(f(xk)−f∗

η )1/g(dist(xk,X
∗)) + δ′

)p
+ ϵk, ∀k ≥ k0,

where the second inequality follows from (4.11) and 0 < δ < θ/2, and the third inequality

follows from the Taylor expansion with δ′ = min{ δ
ηq (

z∗v,θ
η )1/q−1, δ

ηp(
M−f∗

η )1/p−1} > 0 (recall

that M is the upper bound of {f(xk)}). Therefore, by Lemmas 3.3 and 4.2, we obtain

⟨gk/∥gk∥, xk − x∗⟩ ≥ v

2
(1 +R)2 +R dist(xk, X

∗) + δ′, ∀k ≥ k0,
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and thus, (
dist(xk+1, X

∗)
)2 ≤

(
dist(xk, X

∗)
)2 − 2vδ′

≤ · · · ≤
(
dist(x0, X

∗)
)2 − 2(k − k0 + 1)vδ′,

which yields a contradiction for sufficiently large k. Thus, we have

lim inf
k→∞

f(xk) ≤ f∗ + z∗v,θ, ∀θ > 0.

Taking the limit as θ → 0, by Lemma 4.1, we arrive at the conclusion.

We now give some explicit expressions for the total error in approaching f∗ in Theorem

4.1 for specific cases of p and g(t). By solving (4.5)-(4.6), we have the following corollaries

where the total errors are given in explicit expressions.

Corollary 4.1. Let Assumptions 2-5 hold with g(t) ≡ p and p = 1. Then, for a sequence

{xk} generated by the approximate quasi-subgradient method with the constant stepsize rule,

we have

lim inf
k→∞

f(xk) ≤ f∗ +
(1
2
µv(1 +R)2 + ϵ

) η

η −Rµ
.

Proof. By assumptions, g(t) ≡ p and p = q = 1, we have

Gp
v,0(z) = Gq

v,0(z) = µ
(v
2
(1 +R)2 +R

z

η

)
+ ϵ− z and zpv,0 = zqv,0.

It is clear that Gp
v,0(z) is linear and decreasing due to R < η/µ. Thus, by (4.5), zpv,0 is just

the solution of Gp
v,0(z) = 0. Then, by (4.6), we have z∗v,0 = zpv,0 =

(
1
2µv(1 + R)2 + ϵ

)
η

η−Rµ .

Hence, by Theorem 4.1, we arrive at the conclusion.

Similar to Corollary 4.1, we obtain explicit expressions for the total error when g(t) ≡ p

and p = 2. The proof is straightforward, and thus, omitted.

Corollary 4.2. Let Assumptions 2-5 hold with g(t) ≡ p and p = 2. Then, for a sequence

{xk} generated by the approximate quasi-subgradient method with the constant stepsize rule,

we have

lim inf
k→∞

f(xk) ≤ f∗ + η
(µvR(1 +R)2 +

√
ηµv2(1 +R)4 + 4ϵ(η − µR2)

2(η − µR2)

)2
.

Using the diminishing stepsize rule, the total error tends to z∗0,0 as vk diminishes and the

following theorem is obtained.

Theorem 4.2. Let Assumptions 2-5 hold and {xk} be generated by the approximate quasi-

subgradient method with the diminishing stepsize rule. Then z∗0,0 is finite and

lim inf
k→∞

f(xk) ≤ f∗ + z∗0,0.
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So far, we have established the convergence property in objective values for approximate

quasi-subgradient method and extended the corresponding results in [24] in Theorem 4.1 and

4.2 in the presence of generalized weak sharp minima. Specifying g(t) ≡ p and p = 1, the

generalized weak sharp minima is reduced to the weak sharp minima used in [24], and the

obtained total errors (cf. Corollary 4.1) have similar formulae to that of [24, Propositions 3.1

and 3.2].

4.2 Finite convergence and convergence in iterates

In this subsection, by the virtual of the auxiliary function Hx
v,θ and its maximum solution

z∗v,θ, we describe the finite convergence behavior and convergence of {xk} of the approximate

quasi-subgradient method when the constraint set is noncompact. The line of analysis is

similar to preceding sections, and thus, we omit the details.

Theorem 4.3. Let Assumptions 2-5 hold, intX∗ ̸= ∅ and the diminishing stepsize rule be

chosen. Then f(xk) ≤ f∗ + z∗0,0 for some k.

Theorem 4.4. Let Assumptions 2-5 hold. If B(x̄, δ̄) ⊂ X∗ with δ̄ > 0 and there exists some

0 < κ < 1 and k0 ∈ N such that vk ∈ [ κ2δ̄
(1+R)2

, κδ̄
(1+R)2

] for all k ≥ k0, then f(xk) ≤ f∗ + z∗0,0
for some k.

Theorem 4.5. Let Assumptions 2-5 hold with z∗0,0 > 0 (cf. (4.4)), f be usc on Rn and the

diminishing stepsize rule be chosen. Then the following statements are true:

(i) lim inf
k→∞

dist(xk, S̄f,f∗+z∗0,0
∩X) = 0.

(ii) lim
k→∞

dist(xk, X
∗ + ρ(z∗0,0)B) = 0, where ρ(z∗0,0) is defined by

ρ(z∗0,0) := max{dist(x,X∗) : x ∈ S̄f,f∗+z∗0,0
∩X}.

5 Efficiency

In this section, under the bounded assumption (see Assumptions 1 and 3), we discuss the

efficiency estimates of the approximate quasi-subgradient method. In order to quantify the

efficiency, we introduce some concepts as in [18].

The inradius of a set Z denotes the radius of the largest ball contained in Z, defined by

ṙ(Z) := sup{r > 0 : B(x, r) ⊂ Z for some x ∈ Z}. (5.1)

For any γ ∈ (0, 1), the γ-solution set of problem (1.1) is defined by

X∗
γ := {x ∈ X : ṙ(Sf (x)) < γṙ(X)}. (5.2)

It follows from (5.2) that x is an γ-solution of problem (1.1) if x ∈ X and Sf (x) does

not contain a ball with radius γṙ(X). Thus, the significance of inradius is to estimate the

22



efficiency of algorithms, inasmuch as x is an γ-solution if ṙ(Sf (x)) < γṙ(X). The criterion is

that the quality of iterate improves if the inradius of its strict sublevel set decreases.

At iteration k ≥ 1, the record value f rec
ϵ,k denotes the best approximate value found so far,

and is defined by

f rec
ϵ,k := min

j=1,...,k

{
f(xj)− ϵj

}
. (5.3)

Let ṙk denote the inradius of the record strict sublevel set, defined by

ṙk := ṙ(Sf,frec
ϵ,k

),

which is nonincreasing in k.

In view of application considerations, we would like our algorithm to reach the γ-solution

set as fast as possible. Since the quality of the record value/point improves if the inradius

ṙk decreases (cf. [18, Lemma 13]), we would like ṙk to decrease as fast as possible. For this

purpose, we now give an upper bound of ṙk that depends on the stepsize rule.

Lemma 5.1. Let Assumptions 1 and 3 hold. For a sequence {xk} generated by the approxi-

mate quasi-subgradient method, we have

ṙk ≤ Rd+
d2 + (1 +R)2

∑k
j=i v

2
j

2
∑k

j=i vj
, for i = 1, · · · , k. (5.4)

Proof. Suppose ṙk > 0. For any δ < ṙk, it follows from (5.1) that there exists some x̄ such

that B(x̄, δ) ⊂ Sf,frec
ϵ,k

. Then for each j = 1, · · · , k, from (5.3), we have B(x̄, δ) ⊂ Sf,f(xj)−ϵj .

Hence, it follows from Lemma 3.2 that

⟨gj/∥gj∥, xj − x̄⟩ ≥ δ, for j = 1, · · · , k.

Therefore, from Lemma 3.1, we have

∥xj+1 − x̄∥2 ≤ ∥xj − x̄∥2 − 2vjδ + 2vjRd+ v2j (1 +R)2.

Summing these inequalities over j = i, · · · , k, we arrive at

δ ≤ Rd+
d2 + (1 +R)2

∑k
j=i v

2
j

2
∑k

j=i vj
, for i = 1, · · · , k.

Since δ < ṙk is arbitrary, we arrive at the conclusion.

In the sense of guaranteeing that the record values/points become γ-solutions as fast as

possible, the best stepsize may be found by minimizing the upper bound of ṙk in (5.4). In

the following, we offer the best choice on the constant stepsize rule and estimate the rate of

efficiency by using the diminishing stepsize rule.

Theorem 5.1. Let Assumptions 1 and 3 hold. For a sequence {xk} generated by the approx-

imate quasi-subgradient method, the following statements hold:
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(i) If a constant stepsize v is chosen, then ṙk ≤ d2

2kv +Rd+ v
2 (1 +R)2.

(ii) The best constant stepsize is vi =
d

(1+R)
√
k
and ṙk ≤ d(1+R)√

k
+Rd.

(iii) If the diminishing stepsize is chosen as vi = a/
√
i, then

ṙk ≤ Rd+ ck−1/2 with c =
d2 + a2(1 + ln 2)(1 +R)2

a(4− 2
√
2)

.

More general, if vk is chosen as the diminishing stepsize rule, then lim
k→∞

ṙk ≤ Rd.

Proof. (i) It is (5.4) specifying i = 1 and vi ≡ v.

(ii) Minimizing the upper bound of ṙk in (i) with respect to v, we obtain the best constant

stepsize v = d
(1+R)

√
k
and the corresponding upper bound on the inradius.

(iii) It follows from [25, p.157] that

k∑
j=i

j−1 ≤ 1 + ln 2 and
k∑

j=i

j−1/2 ≥ (2−
√
2)k1/2, for i = ⌈k

2
⌉.

Using (5.4), we obtain

ṙk ≤ Rd+
d2 + a2(1 + ln 2)(1 +R)2

a(4− 2
√
2)k1/2

= Rd+ ck−1/2.

Furthermore, the property of the diminishing stepsize rule implies lim
k→∞

(
∑k

j=i v
2
j /

∑k
j=i vj) =

0 (cf. [19, Lemma 2.1]), and thus (5.4) implies lim
k→∞

ṙk ≤ Rd.

6 Numerical Experiments

Fractional programming is widely used in the modeling of practical problems arising in various

areas, such as economics, information theory, management science and applied physics. In

fractional programming problems, the objective is to optimize certain indicator (efficiency),

characterized by a ratio of technical and economical terms, subject to the constraint imposed

on the availability of goods. Examples of such situations are financial and corporate planning

(debt/equity ratio), production planning (inventory/sales, output/emplyee), health care and

hospital planning (cost/patient, nurse/patient ratio) etc. For details, one can refer to [3, 9,

15, 34] and references therein.

We consider the Cobb-Douglas production efficiency problem introduced by Bradley and

Frey [6]. The problem is briefly described as follows. Consider a set of projects i = 1, . . . ,m
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and a collection of production factors j = 1, . . . , n, the total profit value assigned to these

projects is given by the following Cobb-Douglas production function

Profit = a0

n∏
j=1

x
aj
j , where

n∑
j=1

aj = 1,

where the variables xj designate the production factors. The Cobb-Douglas production func-

tion represents the relationship between the input variable specifying the production factors

and the output variables specifying the results of the production activities. The total cost is

a linear function of the levels of investment in these projects, denoted by

Cost =

n∑
j=1

cjxj + c0.

The production efficiency problem is to maximize the profit/cost ratio, which is an efficiency

indicator, i.e., the ratio between what is obtained and the expenditure, subject to a variety of

constraints on funding levels. Hence, the Cobb-Douglas production efficiency model is stated

as

max f(x) :=
a0

∏n
j=1 x

aj
j∑n

j=1 cjxj+c0

s.t.
∑n

j=1 bijxj ≥ pi, i = 1, . . . ,m,

x ≥ 0,

(6.1)

where pi represents the profit that must be obtained at project i and bij represents the

contribution of the production factor j to project i to realize the profit pi. According to the

circumstance of the Cobb-Douglas production efficiency problem, all parameters on profit

(aj) and cost (cj) are all positive. From [34, Theorems 2.3.3 and 2.5.1], it is clear that (6.1)

is a quasi-concave maximization problem.

We conduct all numerical experiments in a personal laptop (Intel Core i7, 2.00 GHz, 8.00

GB of RAM) using MATLAB R2009a. In the numerical experiments, the parameters of the

problem (6.1) are randomly chosen from different intervals,

aj , bij ∈ [0, 1], a0, c0, cj ∈ [0, 10], and pi ∈ [0, n/2].

The diminishing stepsize rule is chosen as

vk = v/(1 + 0.1k),

where v is always chosen between [2, 5], while the constant stepsize is selected between

[0.2, 0.5]. The larger the problem size, the larger the stepsize.

We first show the performance (in both optimal value and CPU time) of the approximate

quasi-subgradient algorithm using the diminishing stepsize rule for different dimensions. The

computation results are displayed in Table 1. In this table, QSM (resp. AQSM-R, AQSM-

ϵ) denotes the exact quasi-subgradient method (resp. the approximate quasi-subgradient

method with noise only, the approximate quasi-subgradient method with error only), the
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columns of Projects and Factors represent the numbers of projects and production factors of

the problem (6.1) respectively, fopt and CPU time denote the obtained optimal value and the

CPU time (seconds) cost to reach fopt by each algorithm, respectively.

From the results in Table 1, we can see that the quasi-subgradient type methods are highly

efficient for the Cobb-Douglas production efficiency problem, even when the problem is large-

scale. In the presence of persistent noise (R = 1) or error (ϵ = 1), there are some tolerances

from the optimal value of the QSM, which is consistent with the theoretical analysis in the

preceding section. We can also note that the AQSM-ϵ achieves the better optimal value than

the AQSM-R.

Table 1: Computation results for maximizing the Cobb-Douglas production efficiency.
QSM AQSM-R (R = 1) AQSM-ϵ (ϵ = 1)

Projects Factors fopt CPU time fopt CPU time fopt CPU time

10 10 0.2266 0.17 0.2280 0.16 0.2271 0.17

50 50 0.0548 0.20 0.0532 0.20 0.0537 0.22

100 100 0.0349 0.26 0.0309 0.28 0.0333 0.27

500 500 0.0059 1.13 0.0047 0.81 0.0056 0.70

1000 1000 0.0027 1.68 0.0022 1.86 0.0025 1.62

2000 2000 0.0013 6.88 0.0011 6.00 0.0013 5.88

The second experiment is performed to study the sensitivity analysis on noise and error, by

using both the constant and diminishing stepsize rules. In this experiment, we fix the problem

size 100 × 100, generate the noise and error series on [0, 10], respectively. We characterize

the performance by the relative error of optima value (f∗− fopt)/f
∗, where f∗ is the optimal

value obtained by the QSM.
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Figure 2: Sensitivity analysis on noise and error, respectively.

The numerical results, plotted in Figure 2, are consistent with the theoretical analysis in

26



Section 3. Although the constraint set of the problem (6.1) may be noncompact, the optimal

solution and the iterates are always placed in some bounded area. Recall that Theorem 3.1

and 3.2 provide tolerances away from the optimal value of the forms

µ(Rd+
v

2
(1 +R)2)p + ϵ and µ(Rd)p + ϵ,

respectively by using the constant and diminishing stepsize rules, where p < 1 as aj < 1 in

the problem (6.1). In absence of the error ϵ, the curves (plotted by ◦) of AQSM-R basically

fit the exponential form of tolerance. When the noise R vanishes, the curves (plotted by �)

of AQSM-ϵ verify the linear dependence of tolerance on ϵ.

We further analyze the sensitivity behavior on noise and error simultaneously. The results

are plotted in Figure 3, where the left one is for the diminishing stepsize rule and the right

one is for the constant stepsize rule. These results are also consistent with the theoretical

analysis in Theorem 3.1 and 3.2.

0

5

10

0

5

10
0

0.1

0.2

0.3

0.4

Error ε

The diminishing stepsize rule.

Noise R

R
el

at
iv

e 
E

rr
or

0

5

10

0

5

10
0

0.1

0.2

0.3

0.4

Error ε

The constant stepsize rule.

Noise R

R
el

at
iv

e 
E

rr
or

Figure 3: Sensitivity analysis on noise and error simultaneously.

We also test the global convergence property of the QSM by randomly selecting initial

starting points. We adopt the same diminishing stepsize rule as the one used in Table 1, that

is vk = 3/(1+0.1k), and start from several different initial points, either feasible or infeasible.

As long as the iteration number is taken large enough, the sequence of the function values

always converges to the same value. Also, the QSM starting from feasible points significantly

outperforms when starting from infeasible points.
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[16] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Al-

gorithms, Springer-Verlag, Berlin, 1996.

[17] A. Kashyap, T. Basar, and R. Srikant, Quantized consensus, Automatica, 43

(2007), pp. 1192–1203.

[18] K. C. Kiwiel, Convergence and efficiency of subgradient methods for quasiconvex min-

imization, Mathematical Programming, 90 (2001), pp. 1–25.

[19] K. C. Kiwiel, Convergence of approximate and incremental subgradient methods for

convex optimization, SIAM Journal on Optimization, 14 (2004), pp. 807–840.

[20] I. V. Konnov, On properties of supporting and quasi-supporting vectors, Journal of

Mathematical Sciences, 71 (1994), pp. 2760–2763.

[21] T. Larsson, M. Patriksson, and A.-B. Strömberg, Conditional subgradien-
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