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Background: Functional genomics employs dozens of OMICs technologies to explore the functions of DNA, RNA
and protein regulators in gene regulation processes. Despite each of these technologies being powerful tools on their
own, like the parable of blind men and an elephant, any one single technology has a limited ability to depict the
complex regulatory system. Integrative OMICS approaches have emerged and become an important area in biology
and medicine. It provides a precise and effective way to study gene regulations.
Results: This article reviews current popular OMICs technologies, OMICs data integration strategies, and
bioinformatics tools used for multi-dimensional data integration. We highlight the advantages of these methods,
particularly in elucidating molecular basis of biological regulatory mechanisms.
Conclusions: To better understand the complexity of biological processes, we need powerful bioinformatics tools to
integrate these OMICs data. Integrating multi-dimensional OMICs data will generate novel insights into system-level
gene regulations and serves as a foundation for further hypothesis-driven research.
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INTRODUCTION

Precise control of gene expression is critical for develop-
ment of organs and progression of diseases. Human cells
employ a multi-level regulatory system to ensure their
genes express at the right place and right time. In this
system, various factors regulate gene expression at
transcriptional, post-transcriptional, translational, post-
translational and epigenetic layers. Alteration of a single
or a small amount of regulatory components could disrupt
the gene expression profiles, which may lead to the
changes of cell phenotypes, convert cell fates or even
result in diseases. Identification of the altered regulators
and their downstream effects are important to uncover the
molecular mechanisms in developmental processes, and
to discover potential targets for treatments of diseases. To

achieve this goal, OMICs technologies have been
developed to measure the changes of diverse large and
small molecules in a system-wide manner, including
genome, transcriptome, epigenome, proteome, metabo-
lome, interactome, etc. Despite each of these technologies
being powerful tools on their own, like the parable of
blind men and an elephant, any one single technology has
a limited ability to depict the complex regulatory system.
Thus, current strategies aim to integrate multiple types of
OMICs data to investigate biological and medical issues.
However, the gap between the data generation and in-
depth analysis is still large. It is important to develop
bioinformatics methodologies for combining multi-
dimensional OMICs data, modeling diverse regulatory
components systematically, and translating digital signals
into biological and medical meaning.
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VARIOUS OMICs TECHNOLOGIES DISSECT
FUNCTIONS OF REGULATORS

The gene regulatory system, which controls genetic
information flow from DNA to RNA then to proteins,
performs at five major levels: signaling pathways/net-
works passing extracellular signals into nucleus, tran-
scription apparatus activating or suppressing gene
transcriptions, splicing factors controlling the formation
of RNA isoforms, microRNAs (miRNAs) regulating
mRNA and protein abundance post-transcriptionally,
and long non-coding RNAs (lncRNAs) and circular
RNAs (circRNAs) functioning diversely in different gene
regulatory steps. Functional genomics employ dozens of
OMICs technologies to explore the functions of DNA,
RNA and protein regulators in the gene regulation
processes. This section introduces the popular OMICs
technologies applied to dissect the functions of these
regulatory components in each level.

Signaling pathway/network

As shown in Figure 1, when a cell senses an extracellular
signal, it passes the signal into nucleus and trigger
transcription of genes in a dose-dependent manner via a
chain of reactions called signaling pathway [1]. Signaling
pathways involves various reactions including protein-
protein interaction (PPI), phosphorylation, ubiquitination,
ligand-receptor interaction, metal binding, and reactions
of other small molecules. These reactions in canonical
signaling pathways have been well described in data-
bases, such as Kyoto Encyclopedia of Genes and
Genomes (KEGG) and BioCarta.
However, when researchers study deeper and wider

with OMICs technologies in recent years, more and more
new pathways are discovered [13]. These methods mainly
target two types of signaling components: proteins and
small molecules (Table 1). For example, functional
protein array screens direct phosphorylation activities of
kinases on substrate proteins [2]. Tandem affinity
purification (TAP) and immunoprecipitation (IP) pull
down protein partners that interact with proteins of
interests in vivo. When coupled with mass spectrometry
(MS), TAP-MS and IP-MS identify the sequences of
interacted protein partners [3,14]. Besides, MS is also
applied to profile small molecule abundance [16].
Through small molecule profiling, new signaling path-
ways incorporating small molecules were discovered and
stored in Small Molecule Pathway Database (SMPDB)
[43].
These studies systematically analyze signaling trans-

duction events mediated by proteins/phosphoproteins and
small molecules, and indicate that signaling pathways are
highly interconnected as signaling networks [2,44].

Discovery of new components and their interactions
from OMICs data aids in extending signaling pathways
and networks.

Transcription

Signaling networks may activate/deactivate transcription
factors (TFs) and chromatin modifiers, which control
gene transcription. TFs bound on cis-regulatory elements
activate or repress transcription process. Chromatin
modifiers control the accessibility of the DNA for TF
binding, including those regulating epigenetic marks of
histone modifications, DNA methylations and nucleo-
some positions [5]. Each of them can be measured by
several omics technologies (Table 1). For instance,
chromatin immunoprecipitation coupled with sequencing
(ChIP-seq) or microarray (ChIP-chip) reveals the reper-
toire of in vivo protein (TF, chromatin modifier or histone)
positions on the genome [17]. Bisulfite sequencing (BS-
seq) is one of the most popular technologies to map DNA
methylation patterns at single-base resolution [45].
Sequencing signals from these technologies mark the
functional regions in a large part of non-coding genomic
sequences, which were previously regarded as junk DNA.
These technologies not only help to explore functional
DNA elements, but also provide new insights into
functional organizations of the genome and mechanisms
of gene transcription [46,47].
In addition to TFs and epigenetic factors, chromatin

three-dimensional structures are also critical for transcrip-
tional activities. Distal regulatory elements, such as
enhancer and silencer, can bend the DNA and connect
to their targets by long-range DNA interactions. Tech-
nologies detecting long-range DNA interaction include
chromatin interaction analysis by paired-end tag sequen-
cing (ChIA-PET), circularized chromosome conforma-
tion capture (4C), carbon copy chromosome
conformation capture (5C) or Hi-C [6] (Table 1). These
methods not only identify the targets of distal regulatory
elements, but also discover co-transcribed gene clusters
that are physically connected. Together with TFs and
epigenetic factors, all these DNA regulatory elements
form the transcription apparatus precisely controlling
gene transcriptions.

RNA editing and splicing

The products of transcription are RNA transcripts.
Produced precursor RNA (pre-RNA) of protein coding
genes are then edited and spliced into mature mRNAs.
RNA editing is one of the mechanisms to increase the
diversity of mRNAs. Enzymes change the pre-RNA
sequences by insertion, deletion or deamination. RNA
editing sites can be called from comparison between
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Figure 1. High-throughput OMICs data describing the complex gene regulatory system. Five parts of the gene regulatory
system: (i)When a cell senses an extracellular signal through receptors, it passes the signal into cytoplasm via a chain of reactions,

which is called signaling pathways/networks. Activated signaling effectors get into nucleus and change gene expression by binding
at different subsets of targets in a dose-dependent response to the signal [1]. To identify the signaling pathways/networks, regulatory
connections including protein-protein interactions (PPIs) and kinase-substrate interactions are commonly detected by several high-

throughput technologies, such as yeast two-hybrid screening (Y2H), TAP, functional protein array and MS-based methods [2–4]. (ii)
Downstream of signaling pathways/networks are the transcription networks regulated by TFs and chromatin modifiers. TFs bound
on cis-regulatory elements can activate or repress gene transcriptions, while chromatin modifiers, including those regulate
epigenetic marks of histone modifications, DNA methylations and nucleosome positions, control the accessibility of the DNA for TF

binding [5]. Detecting genomic positions of TFs, chromatin modifiers and epigenetic marks is essential to infer their functions on
downstream target genes. OMICs technologies for this purpose include ChIP-seq, DNase-seq, BS-seq, etc. In addition to the
transcriptional and epigenetic factors, chromatin three-dimensional structures are also critical for transcription activities. Distal

regulatory elements, such as enhancer and silencer, can bend the DNA and connect to their targets by long-range interactions,
which can be detected by ChIA-PET, 4C, 5C or Hi-C [6]. Transcription products include mRNAs, lncRNAs, miRNAs, circRNAs, etc.,
whose abundance can be measured by various RNA-seq technologies. (iii) After transcription, pre-RNAs are edited and spliced in

different ways to produce diverse mature mRNA isoforms. The profiles of different mRNA isoforms can be derived from splice-
junction microarrays or RNA-seq. To understand the genome-wide principle of splicing mechanisms, CLIP-seq have been applied to
map the binding sites of splicing regulators on pre-RNAs [7]. (iv) Mature mRNAs are subsequently exported from nucleus to
cytoplasm and further translated into protein by ribosomes. As a regulator in this step, miRNAs form RISCs to regulate translation or

mRNA degradation. CLIP-seq, Degradome-seq and CLASH are used to uncover the direct targets of miRNAs, while Ribo-seq that
measures the ribosome occupancy along mRNAs can evaluate their effects on translation efficiency [8]. (v) Other important
categories of regulators, such as lncRNAs and circRNAs have been found to play important roles during transcription, mRNA

processing and post-transcriptional processes [9,10]. OMICs technologies detecting RNA-RNA interactions, protein-RNA
interactions and DNA-RNA interactions have been utilized to discover their functions [10–12].
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Table 1. Popular OMICs technologies.
Technology Data type Description

Protein array Kinase-substrate interactome Protein array tracks the interactions and activities of proteins [2]

IP-MS Protein-protein interactome Immunoprecipitation followed by mass spectrometry identifies interacting partners

of a protein of interests [14]

Y2H Protein-protein interactome Yeast two-hybrid screening discovers protein-protein interactions [44,15]

TAP-MS Protein-protein interactome Tandem affinity purification combined with mass spectrometry identifies compo-

nents of protein complexes [3]

MS Metabolome Mass spectrometry measures the consumption and release metabolites [16]

ChIP-seq/chip Protein-DNA interactome Chromatin immunoprecipitation coupled with sequencing or microarray reveals the

repertoire of in vivo protein (TF, chromatin modifier, etc.) binding sites on the

genome [17]

ChIP-exo Protein-DNA interactome Chromatin immunoprecipitation combines with the use of exonucleases to achieve a

high resolution of protein binding sites [18]

BS-seq DNA methylome Bisulfite sequencing uses bisulfite treatment of DNA to determine its pattern of

methylation [19]

MSCC DNA methylome Methyl sensitive cut counting, a whole genome methylation profiling method based

on the sensitivity of CCGG sites to the restriction enzymes [20]

MeDIP DNA methylome Methylated DNA immunoprecipitation coupled with microarray or sequencing

enriches methylated DNA sequences which then detected by microarray or

sequencing [21]

BSPP DNA methylome Bisulfite padlock probes, a targeted method that isolates selected locations for

methylation profiling [20]

RRBS DNA methylome Reduced representation bisulfite sequencing combines restriction enzymes and

bisulfite sequencing to enrich high CpG sequence and measure their methylation

levels [22]

Methyl-MAPS DNA methylome Methylation mapping analysis by paired-end sequencing [23]

DNase-seq Open chromatin region DNase I hypersensitive sites sequencing identifies the location of regulatory

regions, based on the genome-wide sequencing of regions super sensitive to

cleavage by DNase I [24]

Sono-seq Open chromatin region Method for isolating protein-free genomic regions by sonication of chromatin

combined with a size-selection step and massively parallel short-read sequencing

[25]

ATAC-seq Open chromatin region Assay for detecting transposase-accessible chromatin using sequencing [26]

FAIRE-Seq Open chromatin region Formaldehyde-assisted isolation of regulatory elements determines the sequences of

regulatory region [27]

NOMe-seq Nucleosome occupancy and

methylome

A high-resolution single-molecule mapping approach to simultaneously investigate

endogenous DNA methylation and nucleosome occupancies [28]

MNase-seq Nucleosome occupancy Paired-end sequencing of micrococcal nuclease-digested chromatin determines

genome-wide nucleosome occupancy [29]

Hi-C/4C/5C Long-range DNA interactome Techniques to detect chromatin interactions based on chromosome conformation

capture [6]

ChIA-PET Long-range DNA interactome Chromatin interaction analysis by paired-end tag sequencing determines long-range

interactions [6]

RNA-seq Transcriptome RNA sequencing measures the abundance of RNA transcripts [30]

Microarray Transcriptome Microarray contains probes designed for RNA transcripts, on which hybridization

signals indicate the abundance of RNA transcripts [31]

GRO-seq Transcriptome Global run-on sequencing identifies the genes that are being transcribed [32]

CLIP-seq Protein-RNA interactome Sequencing of RNA isolated by crosslinking immunoprecipitation maps protein-

RNA binding sites in vivo [33]

Degradome-seq Protein-RNA interactome Degradome sequencing, also known as parallel analysis of RNA ends (PARE)

sequencing, detects cDNA ends, which implies mRNAs that are degraded under

miRNA regulations [34]
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paired genomic DNA sequences and RNA transcripts of
one sample or from RNA transcripts of multiple samples
[48,49].
Then pre-RNAs are spliced in different ways and

produce diverse mature mRNA isoforms. RNA splicing
profiles can be derived from splice-junction microarray or
RNA sequencing (RNA-seq). Splicing processes are
regulated by splicing factors. They bind to pre-RNAs
and regulate the selection of exons [50]. This process can
be controlled by signaling pathways through post-
transcriptional modification of specific splicing factors
[50]. To investigate the splicing mechanism, sequencing
of RNA isolated by crosslinking immunoprecipitation
(CLIP-seq) uncovers the genome-wide splicing principle
by mapping the binding sites of splicing factors on pre-
RNAs [7].

Non-coding RNAs

A variety of RNA library preparation methods have been
developed to discover functions of new RNA transcripts,
such as miRNAs, lncRNAs and circRNAs, classified
according to their lengths, polyadenylated/non-polyade-
nylated status or shapes [51,52]. These non-coding RNAs
(ncRNA) are also important components in the gene
regulatory system. miRNAs and argonaute (Ago) proteins
form RNA-induced silencing complexes (RISCs) to
regulate translation or mRNA degradation through
miRNA-mRNA interactions. To identify the targets of
miRNAs, CLIP-seq [33] and Degradome sequencing

(Degradome-seq, also known as PARE-seq, sequencing
of parallel analysis of RNA ends [34]) were developed to
detect Ago-bound mRNA fragments and miRNA directed
cleavage sites at targeted mRNAs, respectively (Table 1).
With the targeted mRNA sequences identified by CLIP-
seq or Degradome-seq, miRNA-mRNA interactions can
be predicted by computationally scanning miRNA
binding sites [53]. A more powerful method, CLASH
(crosslinking, ligation, and sequencing of hybrids),
directly maps miRNA-mRNA interactions through an
extra step that ligates miRNA and mRNAwithin the same
RISC [35].
Another important category of non-coding RNAs,

lncRNAs, have attracted great attention recently. The
functions of lncRNAs were well described in other
reviews [9,54]. They could be modulators of transcrip-
tion, RNA processing, protein function and post-tran-
scription process when interacting with DNA, mRNA,
protein and miRNA, respectively. Technologies are
applied to investigate lncRNA functions by identifying
protein-RNA interactions using RNA Immunoprecipita-
tion (RIP), or detecting RNA-RNA, RNA-DNA and
protein-RNA interactions simultaneously using domain-
specific chromatin isolation by RNA purification
(dChIRP) coupled with sequencing (RIP-seq and
dChIRP-seq) [11,12]. These technologies can discover
not only the functional lncRNAs but also their targets.
circRNA is also hot research area in the recent years.

Since circRNAs are circular single-stranded transcripts
without poly(A) tail, circRNAs are usually enriched by

(Continued)

Technology Data type Description

RIP-seq Protein-RNA interactome RNA-immunoprecipitation sequencing captures the protein-bound RNAs [12]

CLASH miRNA-RNA interactome Crosslinking, ligation, and sequencing of hybrids directly map miRNA-RNA

interactions [35]

dChIRP-seq RNA-RNA, RNA-DNA and

Protein-RNA interactome

Domain-specific chromatin isolation by RNA purification followed by sequencing

dissects pairwise RNA-RNA, RNA-protein and RNA-chromatin interactions that

reveal lncRNA architecture and function [11]

Structure-seq RNA structure A high-throughput and quantitative method detects genome-wide information on

RNA structure at single-nucleotide resolution [36]

CGH Genome Comparative genomic hybridization surveys copy number variations [37]

DNA-seq Genome DNA sequencing for genome assembly or resequencing for detection of variations

[38]

Exome-seq Genome DNA sequencing of exomes for detection of variations [39]

SILAC Proteome Stable isotope labeling with amino acids in cell culture quantitatively detects

differences in protein abundance among samples using non-radioactive isotopic

labeling [40]

PRISM Proteome Proteomic investigation strategy for mammals [41]

DEEP SEQ MS Proteome Deep efficient peptide sequencing and quantification mass spectrometry [42]

Ribo-seq Proteome Ribosome profiling determines the mRNAs that are being actively translated and

measures the translation efficiency [8]
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eliminating linear RNAs with RNase R and non-
polyadenylated selection before RNA-seq [55]. For
RNA-seq data generated without an enrichment step,
circRNAs can be identified computationally by searching
junction reads from back spliced exons and intron lariats
[56,57]. Although the functions of most circRNAs are still
unknown, a handful of circRNAs have been found to
function as miRNA sponges, enhancing transcriptions or
regulating RNA splicing [10]. Thus, methods detecting
RNA-RNA interactions, protein-RNA interactions and
DNA-RNA interactions may be also helpful in investigat-
ing circRNA functions.

CHALLENGES TO DEPICT COMPLEX
GENE REGULATORY SYSTEM WITH
OMICs TECHNOLOGIES

Although each OMICs technology investigates a certain
type of regulators in the gene regulatory system as
illustrated in the above section and Figure 1, one single
method is difficult to systematically dissect the regulatory
complexities. First, OMICs technologies usually experi-
ence high false positives due to their high-throughput
capability. Even though many bioinformatics tools have
been introduced to analyze each kind of OMICs data and
apply statistical methods to rank the signals [58], they are
often unable to distinguish false positives from those true
ones effectively due to the inherent problems of the
technology as described previously [24,59–62].
Second, results from OMICs data targeting one single

type of regulators are usually obscure without considering
effects of other factors. Because these regulators are not
independent but work in concert to maintain biological
functions, it is hard to discover complex interplays among
the regulators in different layers using a single type of
OMICs data. For example, the balance between transcrip-
tional activation by a given TF and post-transcriptional
suppression by miRNA forms feed forward loop or
feedback loop to flexibly and precisely control target
mRNA abundance [63]. Thus, mRNA abundance is
dependent to not only the expression of its upstream TFs
but also the concentration of miRNAs in the cytoplasm.
Researchers may be unable to understand mRNA
abundance changes when only either TF or miRNA
data is available.
Third, multiple functions of regulators also complicate

the associations between regulators and their targets
observed from OMICs data. For instance, even though
mRNA abundance is expected to be dependent on the
expression of its upstream TFs, with some TFs that target
both DNA and RNA (DNA- and RNA-binding proteins,
DRBPs). Certain lncRNAs mimicking genomic DNA can
compete with genomic promoter sequences and reduce
the regulatory effect of TFs on transcription [64].

Similarly, miRNAs bind not only target mRNAs but
also competing endogenous RNAs (ceRNAs) or cir-
cRNAs, which may compete for miRNA binding and
modulate the regulatory effect of miRNAs on their
genuine targets [65,66]. In these cases, unexpected
weak association will be shown between the expression
of regulators and their targets. Hence, the omission of
these extraneous types of regulators may lead to
misunderstanding of the results derived from a single
OMICs analysis.
To tackle these problems, current strategies are to

generate multiple types of OMICs data in a single study.
Multiple types of OMICs data in a single study could
cross-validate each other and reduce their false signals.
Also, cross-talks between different regulatory layers
could be investigated through integration of multi-level
OMICs data. Thus, in the past decade, accumulated
studies are incorporating multi-dimensional OMICs data.
In particular, in a genome-wide scale effort to annotate the
functional elements in human and mouse genomes, the
ENCyclopedia Of DNA Elements (ENCODE) project
detects genome-wide signals of hundreds of TFs,
epigenetic markers, mRNA, ncRNA and proteins in
more than one hundred cell lines or tissues [47]. Likewise,
model organism ENCODE (modENCODE) contains
various OMICs data of fruit fly and worm [67–69].
More specifically, the NIH Roadmap epigenomics project
focusing on the function of epigenetic marks on gene
transcription covers dozens of epigenetic markers in
different human tissues and development stages [70].
On the other hand, to explore human genetic variations

and their influence on phenotypes, the 1000 Genomes
Project provides a comprehensive catalog of human
genetic variations detected by sequencing of a thousand
individual genomes, while RNA-seq and small RNA-seq
(sRNA-seq) are also performed on the same set of
individuals (http://www.1000genomes.org/). In the field
of cancer biology, The Cancer Genome Atlas (TCGA)
projects catalogue data from genome, transcriptome,
epigenome, proteome, etc. of cancer patients [71,72].
Besides, several publicly available databases collect
diverse OMICs data from different sources for a certain
species or tissue/cell type [73–78]. All these resources
provide an excellent opportunity to uncover the mystery
of complex gene regulatory system. In the following
section, we will discuss the current strategies and
corresponding bioinformatics methods of OMICs data
integration.

OMICs INTEGRATION STRATEGIES AND
BIOINFORMATICS TOOLS

Along with the cost reduction of the OMICs technologies,
rapid growth rates occur on not only the generation of
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each kind of data but also the number of studies involving
data integration. As shown in Figure 2, the number of
studies depositing genome, transcriptome, methylation,
ChIP-seq/chip, ncRNA data in Gene Expression Omnibus
(GEO) and proteome data in proteomeXchange has been
continuously increased since 2005. Integrative
approaches have emerged almost at the same time, and
have become a trend in biology and medicine. It provides
a precise and effective way to elucidate the regulatory
mechanisms because integrative methods highlight the
interdependence of regulatory layers represented by
various OMICs data and their influence over the global
networks. Corresponding bioinformatics tools were also
developed to meet the demands for various integrative
analyses as listed in Table 2. This section will introduce
current popular integration strategies and bioinformatics
tools for assembling OMICs data, as well as for inferring
hierarchy of gene regulatory system.

Signaling pathway/network analysis

As the most important part of signaling network, PPI and
phosphorylation networks are usually detected by OMICs
technologies in vitro. However, the detected networks
usually have great amount of noise [62]. Combining
transcriptome data with PPI or phosphorylation networks
is the most commonly used method to reduce false
positives [80]. Further, it is also an efficient approach to
detect truly active signaling network by taking transcrip-
tional regulation of downstream targets into considera-
tion. Tools like bioPIXIE, SPINE, MINDy and
ReponseNet (Table 2) use this strategy to predict active
signaling and downstream transcriptional networks

simultaneously from known PPIs, genetic interactions
and transcription interactions, as well as transcriptome
data [81–85].
Alternatively, to detect signaling events in vivo,

proteomics technologies are increasingly used to uncover
the system-wide signaling networks. For example, large-
scale perturbations of signal molecules were coupled with
proteomes or phosphoproteomes [110,111]. However,
these studies could not provide evidence to support the
direct connections between the kinases and substrates.
Integrative approach overcomes this problem by combin-
ing functional protein microarrays, phosphoproteome
with bioinformatics analysis. It is able to detect the direct
connections of phosphorylation network with kinase-
substrate reaction activities and subsequent substrate
phosphorylation status [2].
In addition to proteins, small molecules also play

important roles in signaling transduction. Metabolomics
targeting small molecules have also illustrated their great
potential in dissecting signaling network when combined
with transcriptomics [112]. However, there are only a
handful of studies that have considered the regulatory
effect of small molecules [113,114]. Bioinformatics
methods applied to regulatory networks responded to
drug treatments may also be applicable to the identifica-
tion of networks downstream signaling molecules [87].

TF-gene regulation

Since RNA-seq and microarray technologies became the
main approaches to measure transcriptomes, co-expres-
sion of TFs and their targets has been widely used to infer
the genome-wide TF-gene regulations. The underlying

Figure 2. Statistics of OMICs studies. (A) Rapid increase of number of studies implemented with OMICs integration.
(B) Numbers of studies employing different OMICs technologies.
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Table 2. Current bioinformatics tools for integrative analysis of OMICs data.

Tool Reference Description
Signaling pathway/network analysis

iPEAP [79] Integrative Pathway Enrichment Analysis Platform aggregates transcriptome,

proteome, metabolome and GWAS data to detect enriched signaling pathways

PathFinder [80] With known PPI network, PathFinder utilizes transcriptome data, protein subcellular

localization and sequence information to filter the false positives, and incorporates

protein families to fix false negative pairs

bioPIXIE [81] An integrative system combines PPI network and gene expression data to find

pathways

SPINE [82] Signaling-regulatory Pathway INferencE constructs PPI and protein-DNA interaction

networks, and uses an integer programming solver to get final pathways from

knockout expression data

ReponseNet [83,84] ReponseNet uses a network-optimization approach to detect both signaling and

regulatory networks from the integration of genetic screen, transcriptome data and PPI

networks

MINDy [85] Modulator inference by network dynamics (MINDy) facilitates genome-wide

identification of cell-specific post-translational modulators of TF activity, which

dissect the cross-talk between signaling pathways and transcriptional regulations

Zhu and Guan [86] A Markov chain theory is applied to detect signaling networks using a known

phosphorylation networks

CEASAR [2] A comprehensive integrative approach incorporating functional protein microarrays,

mass spectrometry and bioinformatics to detect cell-specific genome-wide phosphor-

ylation network

SNPLS [87] Sparse Network-regularized Partial Least Square identifies gene-drug modules from

large-scale pairwise gene-expression and drug-response data

TF-gene regulation

ChIP-Array [88] A web server that integrates ChIP-seq/chip and expression data to detect direct and

indirect target genes of a TF of interest

ChIP-Array 2 [89] An enhanced version of ChIP-Array integrates long-range chromatin interaction, open

chromatin region and histone modification data to dissect more comprehensive GRNs

involving diverse regulatory components

BETA [90] Binding and Expression Target Analysis ranks the direct targets of a TF based on two

probability ranking derived from ChIP-seq/chip and transcriptome data

LpRGNI [91] Inferring gene regulatory networks by integrating ChIP- seq/chip and transcriptome

via LASSO-type regularization methods

EMBER [92] Expectation Maximization of Binding and Expression pRofiles, a unsupervised

machine learning algorithm to search enriched gene expression pattern around TFBSs

ChIPXpress [93] An R package that rank TF targets by integrating ChIP-seq/chip data with large

amounts of Publicly available gene Expression Data

Tang et al. [94] Bayesian statistical modeling and modularity analysis integrates time-series ChIP-seq

and gene expression data to construct dynamic regulatory network for any given TF

Yan et al. [95] A bioinformatics method to uncover interactive relationships between TFs or

microRNAs and genes based on matrix decomposition modeling under the joint

constraints of sparseness and regulator-target connectivity

Pique-Regi et al. [96] A probabilistic framework that integrates epigenetic data with genomic information to

draw a genome-wide map of tissue specific TFBS

miRNA-gene regulation

GenMiR++ [97] GenMir++ uses a Bayesian model to predict miRNA targets based on both mRNA 3′

UTR region sequence features and the correlation between expressions of miRNA and

its targets

mirAct [98] A tool designed to investigate miRNA activity based on gene-expression data by using

the negative regulation relationship between miRNAs and their target genes
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assumption is that the expressions of a TF and its target
are correlated. However, even though mRNA abundance
represents the expression of a TF, it may not reflect its
activity in the regulatory processes, which is determined
by the dynamic binding of TF proteins on the regulatory
elements of targets. Several factors, such as miRNAs at
post-transcriptional regulation level, post-translational
modification (PTM), accessibility of the DNA regulatory
element and affinity of the TF-DNA interaction, may
affect the functional activity of the TF. Conversely, a high
correlation of two genes could be due to other co-
regulatory relationship or even random association rather
than TF regulation. Therefore, the accuracy of TF-gene
regulation inferred from transcriptome data alone is
unsatisfactory, although various statistical and mathema-
tical methods have been introduced to reduce false
positives [115].
In ChIP-seq/chip analysis, in vivo TF activities in

binding to the targeted DNA sequence are measured. A
proximal gene of each binding site is usually considered
to be the target of a TF. However, ChIP-seq/chip alone

does not provide the response of target genes to TF
binding. The expression changes of potential target genes
of a TF could be identified by comparing the transcrip-
tome before and after a perturbation (knockdown or
overexpression) of the TF. By comparing the results from
the transcriptomes and ChIP-seq/chip in the same
condition, it has been reported that, only 3% of targets
identified by ChIP-seq/chip have expression changes after
TF perturbation, and only 3% of genes with expression
changes after TF perturbation are adjacent to ChIP-seq/
chip peaks in yeast [116]. In mammalians, the proportion
of genes is about 6%–17% [88]. This phenomenon of
unaffected targets may be explained by several reasons:
TFs may bind on distal enhancers, thus the proximal
genes are not the targets; TF binding on targets initiates
the transcription, but elongation may be regulated by
other TFs; and expression of most targets without TF
binding on their promoters may be indirectly affected by
TF perturbation. Thus, ChIP-seq/chip data together with
transcriptome data under TF perturbation are necessary to
identify the true targets of a TF.

(Continued)

Tool Reference Description
MMIA [99] MiRNA and MRNA Integrated Analysis is a web server that integrates miRNA and

mRNA expression data with predicted miRNA target information for analyzing

miRNA-associated phenotypes and biological functions

MAGIA [100] MiRNA and Genes Integrated Analysis is a web tool for the integrative analysis of

miRNA target predictions

ProteoMirExpress [101] Aweb server that combines proteome and transcriptome data to infer miRNA-centered

regulatory networks

Epigenetic regulation

EpiRegNet [102] A web server that detects important histone modifications affecting the expression of

genes

CMGRN [103] Constructing Multilevel Gene Regulatory Networks uses the Bayesian network

modeling to infer causal interrelationships among transcription factors and epigenetic

modifications

Multi-dimensional integration

mirConnX [104] Condition-specific mRNA-miRNA network integrator uses TF binding in the

promoter regions of miRNAs and mRNA, as well as predicted miRNA targets, to

construct TF-miRNA-gene regulatory network

SNMNMF [105] A Sparse Network-Regularized Multiple Non-negative Matrix Factorization frame-

work integrates miRNA and mRNA profiles, as well as miRNA-mRNA, TF-gene and

PPI networks, for achieving modular patterns

jNMF [106] Joint Non-negative Matrix Factorization framework identifies multi-dimensional

modules

sMBPLS [107] Sparse Multi-Block Partial Least Squares regression method identifies regulatory

modules from multiple OMICs data

PTHGRN [108] Post-translational hierarchical GRN constructs multi-layer network by virtue of a

graphical Gaussian model with partial least squares regression-based methodology

LRAcluster [109] A method using low-rank approximation based integrative probabilistic model to

perform fast dimension reduction and unsupervised clustering of large-scale multi-

OMICs data
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With two types of data, a direct target of a TF is usually
determined as a gene that contains active TF binding sites
on its promoter and is differentially expressed following
the perturbation. However, given thousands of TFs in a
species, it would be an arduous task to search all active
targeted sites of all TFs using ChIP-seq. Technologies that
detect open chromatin regions or nucleosome positions,
such as DNase I hypersensitive sites sequencing (DNase-
seq), may discover all active TF binding elements in a
certain condition [117,118]. It provides an opportunity to
assay genome-wide binding of many TFs in a single
experiment [96]. Compared to ChIP-seq, paired DNase-
seq with transcriptome data has great advantages in
constructing more comprehensive gene regulatory net-
work (GRN) [119].
Furthermore, both TF binding and open chromatin sites

indicate not only proximal but also distal regulatory
elements. The distal regulatory elements connect to their
target genes through long-range DNA interactions.
Combinatory analysis of genome-wide long-range chro-
matin interaction and ChIP-seq data elucidate the function
of distal regulatory elements and the impact on gene
regulations [120]. Incorporation of long-range DNA
interactome improves the TF-GRN inference by adding
direct evidence for the TFs that bind on distal elements of
their true targets [89].

miRNA-gene regulatory modules

Under post-transcriptional level, a typical function of
miRNA is to regulate the abundance of mRNAs, protein
or both of its target gene products through translational
repression and/or RNA degradation. In miRNA studies,
genome-wide expression profiles of miRNA and mRNA
are generated by sRNA-seq and RNA-seq, respectively.
With this data, bioinformatics tools can infer miRNA
targets by using the negative correlation between mRNA
and miRNA expression (Table 2). To distinguish the
direct and indirect targets of miRNAs, most of these tools
incorporate predicted miRNA binding site information.
However, miRNA-mRNA binding prediction programs

are usually biased. They favor canonical binding sites,
which contain exact match seed region and are located in
3′ untranslated region (3′ UTR). Even though CLIP-seq
and Degradome-seq can detect targeted mRNAs in vivo,
the miRNA-mRNA interactions are also biased because
the exact identification of miRNA binding sites still rely
on predictions. With unbiased method, CLASH, non-
canonical miRNA binding sites with mismatch or located
in other regions of mRNAs were also found to associate
with mRNA down-regulation [35]. Thus, bioinformatics
tool considering transcriptomes coupled with miRNA
binding sites information detected by CLASH may
improve the sensitivity of miRNA target identification.

Furthermore, these approaches do not consider the
miRNA effects on the target protein abundance, even
though these proteins are the final effectors of miRNA
actions. Measuring mRNA abundance may not be an
ideal method for identifying miRNA targets as mRNA
levels do not necessarily correlate with protein expression
[121–123]. Thus, using quantitative proteomics strategies
has emerged as a key technique for the identification of
miRNA targets. Recent development of proteomics
technology makes it reach a much higher protein
sequencing coverage comparable to RNA-seq [42].
Despite this obvious advantage in use of proteome data,
to date, only a few computational methods have
incorporated proteome data into miRNA analysis [101].
Besides repression on translation, similar to TFs,

miRNAs are also found to switch from down-regulation
to up-regulation of translation in different conditions
[124,125]. Thus, current bioinformatics tools considering
only the negative regulatory relationships between
miRNA and their targets might loss many up-regulated
targets. Ribosomal profiling (Ribo-Seq) is a highly
promising technique to assess the effect of miRNAs on
translational regulation [8]. It represents an even more
direct and accurate measurement for translation efficiency
than proteomics technologies, since protein abundance is
affected by turnover rate. Combining ribosomal profiles
and miRNA profiles, as well as miRNA binding
information from CLASH, could be a good strategy to
comprehend the complexity of miRNA functions. How-
ever, corresponding bioinformatics tool has not been
available yet. Moreover, more bioinformatics analyses are
necessary to assess different combinations of these data
types for achieving an optimal integrative strategy for
miRNA studies.

Integration of epigenetic data

Combining the genome-wide profiles of multiple histone
modifications, researchers are able to develop mathema-
tical models to predict gene expression level, enhancer-
templated ncRNA abundance and enhancer-promoter
interactions [126–131]. Thus, epigenome adds one more
regulatory layer to describe the GRN. With the histone
modification profiles and transcriptome data, bioinfor-
matics tools can build an epigenetic regulatory network,
unraveling collaborations among TFs and epigenetic
modifications on transcriptional regulation [102,103]. In
addition to TFs, lncRNAs are also interacted with
epigenetic factor and play important functions in
epigenetic regulatory network. Integration of RIP-chip,
epigenome and transcriptome were applied to investigate
the lncRNAs-epigenetic network [132]. However, it still
lacks bioinformatics tool for such integrative analysis
currently.
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Methods for multi-dimensional integration

Although above partial integrations of OMICs data show
the advantages in improving accuracy of regulatory
function identification, they usually focus on single
regulatory layer. Recently, an increasing number of
studies integrate multi-dimensional OMICs to investigate
complex gene regulatory hierarchies. When multiple
types of OMICs data are involved, the gene regulatory
system is usually modeled as multi-layered GRNs.
Numerous bioinformatics tools and methods have been
developed to cater for the demands of multi-dimensional
data integration.
The most studied networks are transcriptional-post-

transcriptional regulatory networks. For example, the
condition-specific mRNA-miRNA network integrator
(mirConnX) uses TF binding in the promoter regions of
miRNAs and mRNAs, as well as predicted miRNA
targets, to construct TF-miRNA-gene regulatory networks
through statistical association measure [104]. Employing
a similar approach to cancer biology, Knouf et al.,
combined TF binding and the transcriptome data for both
mRNA and miRNA to search new regulatory interactions
between TFs and miRNAs that are aberrant in cancer
samples [133]. Besides statistical methods, mathematical
modeling is also used to solve this problem [105].
To add more regulatory layers onto the GRNs, studies

incorporate genome and epigenome data [134,135]. Then,
multi-dimensional data are often formulated in machine-
learning frameworks for regulatory network analysis
[136]. In particular, Zhang et al. in 2012 applied the
joint matrix factorization technique to integrate DNA
methylation, mRNA and miRNA expression data of
ovarian cancer samples from TCGA project and to
identify regulatory modules active in ovarian cancer
[106]. Similar analysis could also be performed using a
sparse Multi-Block Partial Least Squares (sMBPLS)
regression method [107]. On the other hand, by
considering the regulatory relationships between different
types of regulators and their targets, Sintupisut et al. used
pair-wise association studies to screen associated regula-
tory module for each molecular aberration in glioblastoma
multiforme [137]. Followed by module merging, identi-
fied molecular characteristics showed strong prognostic
power [137]. These studies indicate that OMICs integra-
tion can find cancer regulatory modules that would be
overlooked with only a single type of data.
Furthermore, linking the signaling network to TF/

epigenetic modification-gene network is able to discovery
the cross-talks among PTMs, TFs and epigenetic
modifications in transcription regulation. A web server,
post-translational hierarchical GRN (PTHGRN) con-
structs this multi-layer network by virtue of a graphical
Gaussian model with partial least squares regression-

based methodology [108]. The development of these
bioinformatics tools for the multi-dimensional OMICs
analysis provides unprecedented opportunities to dissect
the cross-layer regulatory interplay in various biological
and medical studies.

INTEGRATING MULTIPLE OMICs TO
ADVANCED BIOLOGY AND MEDICINE

Understanding the gene regulatory system from integra-
tion of OMICs data has profoundly changed the strategy
on basic biological research and is playing significant
roles in medical fields (Figure 3). Before OMICs
technologies are developed, results from traditional
experiments usually did not realize the expectation due
to the interactions of a large number of unknown factors,
so the initial hypothesis needed to be continually modified
and validated which may cost a lot of time and efforts. In
the beginning of OMICs development, limited by the
budget, only single OMICs experiment was designed for
an original hypothesis. Then, major efforts were con-
tributed to data generation and analysis. Due to the high
false positive, results from the OMICs data required
further validation using traditional experiments. In post-
OMICs era, data generation is no longer a problem
because the costs of high-throughput technologies have
been continually reduced. Mass of public OMICs data
could be first integrated and give rise to a biological/
medical hypothesis. Then more OMICs data could be
generated to test the hypothesis. However, major efforts
are required to combine multi-dimensional OMICs data,
model diverse regulatory components systematically, and
interpret digital results into biological and medical
contexts [138].

Integrative OMICs approaches help comprehensive
understanding of transcriptional and epigenetic
dynamics in stem cell research

OMICs technologies have been extensively used in the
stem cell research area. Since 2005, by combining
genomic occupancy identification and transcriptome
profiling, Young et al. have identified core regulatory
circuits in embryonic stem cells (ESCs), which cover key
TFs [139], miRNAs [140] and epigenetic regulators [141]
that are all crucial for ESC maintenance. Some of these
key factors have been successfully applied to reprogram
mature somatic cells into ESC-like induced pluripotent
stem cells (iPSCs) later [142,143].
This technology has led to the revolution of regenera-

tion medicine. Patient-specific iPSCs with the potential to
differentiate into any type of cells potentiate various
clinical applications for many diseases, including drug
screening and cell-replacement therapy without immune
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rejection issues [144]. However, clinical applications of
the iPSCs are still restricted by the limited purity and
yield, and the potential hazard of tumor development.
Further basic research is required to understand the
transcriptional and epigenetic key events in the processes
of reprogramming through diverse integration of OMICs
data [145]. This basic research helps to improve the
reprogramming protocols and moving this technology
closer to clinical application. Similarly, to refine the cell
differentiation strategies that are also necessary for iPSC-
based clinical applications, researchers have combined
BS-seq, ChlP-seq and RNA-seq to investigate the
transcriptional and epigenetic dynamics during the
differentiations of various cell lineages [146–149].
These studies identified diverse signatures to guide the
differentiation protocols.
Furthermore, in addition to iPSC-based cell engineer-

ing, direct cell fate conversion between differentiated
cells (transdifferentiation) is an alternative technique with
higher conversion efficiency, lower risk of tumorigenecity
and a generally shorter reprogramming phase [150]. The
major challenge facing transdifferentiation is how to

determine the TF combination for converting one cell
type into another. Shmulevich and colleagues used
expression rank difference to identify TFs that may
control cell lineage specifications [151]. Though some of
these TFs show potential applications for cell fate
conversion, without considering their regulatory func-
tions on lineage-specific genes, many identified cell-
specific TFs may not be the determining factors for their
target cell identity. Integrative OMICs approaches con-
tributed to solving this problem by connecting TFs to
lineage-specific genes through network-based methods
that incorporate transcriptomes and genome-wide infor-
mation of TF-DNA interactions [152] or PPIs [153].
Comprehensive computational predictions of key TFs for
cell fate conversions of over hundreds of cell types could
open the door for experimental biologists to create any
type of cells they need through transdifferentiation.

Integrative OMICs methods identify gene regula-
tory disorders in complex diseases

Genetic variants may influence complex traits by altering

Figure 3. Integrative OMICs have profoundly changed the strategy on basic biological research and is playing significant
roles in medical fields. (A) Before OMICs technologies are developed, results from traditional experiments usually did not realize

the expectation, so the initial hypothesis needed to be continually modified and validated. In the beginning of OMICs development,
only single OMICs experiment was performed, and major efforts were contributed to data generation and analysis. In post-OMICs
era, data generation is no longer a problem, but major efforts are required to combine multi-dimensional OMICs data. (B) Integration

of multidimensional OMICs profiles provides a more precise and effective methodology to comprehend the gene regulatory
mechanisms and identify key factors/modules underlying the biological or medical processes of interests.
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amino acid sequences of protein coding genes or other
functional elements that modulate gene expression.
Genome-wide association studies (GWASs) map genetic
variations associated with various complex diseases, like
cancers, diabetes and obesity [154]. Although disease-
associated genetic variants within coding regions have
been well studied, the functions of most genetic variants
located in non-coding regions are still unclear. Integrative
OMICs methods can be used to identify regulatory
genetic variants causing erroneous gene regulation in
complex diseases, where single OMICs analysis fails.
For example, due to the indirect linkage through a

complex multi-layer gene regulatory system, the statis-
tical significance of associations between regulatory
genetic variants and complex traits or diseases is usually
weaker than those of nonsynonymous genetic variants
that directly affect protein functions [155]. To tackle this
problem, a combination of genomics, transcriptomics and
functional genomics, maps genetic variants associated
with regulatory quantitative traits, such as gene expres-
sion (expression quantitative trait locus, eQTL), DNA
methylation (methylation quantitative trait locus, mQTL),
alternative splicing (splicing quantitative trait locus,
sQTL) [156]. These methods dissect regulatory complex-
ities between genetic variants and disease phenotypes that
describe the functional linkages among genetic variants,
regulators, gene expression and disease phenotypes,
which in turn, help to uncover regulatory genetic variants
leading to regulatory disorders and key factors causing
disease phenotypes.
In addition to QTL mapping methods, researchers

combine comprehensive OMICs data sets to explore the
underlying effects of disease-associated variations on
erroneous gene regulation. For instance, onco-proteoge-
nomics investigates the effects of protein-coding varia-
tions on gene regulatory system with patient genomes,
transcriptomes and proteomes [157]. Onco-proteoge-
nomics built customized databases of peptides deduced
from patient genomes and transcriptomes to improve the
proteomic detection of cancer-specific peptides. Identified
variations in genomes, transcriptomes and proteomes
describe the altered information flow from DNA to
proteins. Since proteins are central to cell function,
incorporating proteome facilitate identification of changes
in signaling pathways and PTMs, which improve under-
standing of how gene networks are dysregulated.
Integration of OMICs data can also improve clinical

applications, such as classification of disease subtypes
and prediction of disease phenotypes. It has been found in
several studies that new cancer subtypes can be identified
by molecular characterization of cancer patients with
comprehensive OMICs data types [72,158,159]. To assess
the application of OMICs data to survival prediction,
Yuan et al. compares the prognostic power of diverse

OMICs data (somatic copy-number alteration, DNA
methylation and mRNA, microRNA and protein expres-
sion) alone and in combination with clinical data of four
cancer types [160]. Incorporating OMICs data with
clinical variables have shown more efficient predictions
of patient survival in three cancers when using two
different prediction models.
However, applications of integrative OMICs in com-

plex diseases are always limited by the small effective
sample sizes. It leads to high-dimensional analysis
problems, where the dimension of the data vectors is
much larger than the sample size. To deal with such high-
dimensional analysis problems, dimension reduction is a
promising strategy to improve the analysis [109]. On the
other hand, increasing the effective sample size is the
other way to ensure the accuracy of integrative OMICs
analysis. But integrative OMICs analysis requires com-
plete set of data matrix for all patient samples, which are
usually hampered by specimen availability and cost.
Fortunately, computational imputations for missing data
can be applied to complete the data matrix so that it
increases the effective sample size. Basically, imputation
methods can use available information to approximate the
unknown missing values when those valuables are
correlated. For example, Ernst and Kellis imputed 25
types of OMICs signals (histone marks, DNA accessi-
bility, DNA methylation, RNA-seq, etc.) for 127 human
tissues/cell types where only 26% of signals have been
profiled by OMICs experiments [161]. By comparing
imputed and experimentally derived epigenomes of the
same sample, Ernst and Kellis reported that imputation
methods were able to recover more than 90% signal peaks
for most epigenetic marks (Figure 2 in [161]). Thus, when
a full set of multi-dimensional OMICs data have been
measured for a small set of reference individuals, we
might be able to impute the missing OMICs data for a
larger set of individuals, for whom only a subset of
OMICs data or reduced data points are available. This
method has been applied to impute the genotypes missing
in SNP arrays with a reference set of whole genome
sequencing data [162]. To integrate association between
genomic, transcriptomic variations and disease pheno-
types, Gusev et al. imputed gene expression values from
genome data of patients whose transcriptomes were not
profiled [163]. With computational imputation, effective
sample size can reach up to tens of thousands of
individuals, which dramatically improve the performance
of statistical tests.
Another challenge of integrative OMICs analysis is

how to merge and normalized signals from diverse
platforms and data sources. Most of the current normal-
ization methods were developed for signals from the same
platform [164–167]. Methods that eliminate batch effects
of data from different studies or research groups were also
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designed for one single platform [168,169]. In integrative
analysis, signals from different platforms may have
different technical bias. Normalization between platforms
is critical for downstream analysis. To tackle this problem,
rank based approaches and matrix normalization have
been adopted for cross-platform analyses [170–172].
These methods match different identifiers of different
platforms, merge datasets using different scales of
measurements, and correct data bias.

CONCLUSION

With increasing attention focusing on OMICs integration
approaches, even though many challenges related to in-
depth analysis remain, researchers continue to work
towards the ultimate goals of employing these approaches
for disclosing the mystery of complex GRNs and further
advancing basic studies and translational medicine. This
review summarizes current experimental and bioinfor-
matics methods and demonstrates that an integrative data
analysis goes beyond the output we can achieve from a
single data analysis. Currently, most of bioinformatics
tools are designed for only a few data types. Many OMICs
data listed in Table 1 have not been considered. In the
future, with the development of new and different
combinations of OMICs data becoming available, more
powerful mathematical/statistical models are required to
quantitatively describe each component in the system and
the interactions among them based on the measurements
of the OMICs technologies. Bioinformatics analysis
should also assess and compare different combinations
of OMICs data, which would feedback to the OMICs
experiment design. Advancements of OMICs technolo-
gies and bioinformatics analyses promote and benefit
each other. Integrative OMICs data interpretation will
generate new insights into system-wide gene regulation
and serve as a foundation for further hypothesis-driven
investigations.
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