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Abstract. In the present paper, we investigate a linearized proximal algorithm (LPA) for solving a convex composite

optimization problem. Each iteration of the LPA is a proximal minimization of the convex composite function with the inner

function being linearized at the current iterate. The LPA has the attractive computational advantage that the solution of

each subproblem is a singleton, which avoids the difficulty as in the Gauss-Newton method (GNM) of finding a solution with

minimum norm among the set of minima of its subproblem, while it still maintains the same local convergence rate as that

of the GNM. Under the assumptions of local weak sharp minima of order p (p ∈ [1, 2]) and a quasi-regularity condition, we

establish a local superlinear convergence rate for the LPA. We also propose a globalization strategy for the LPA based on a

backtracking line-search and an inexact version of the LPA. We further apply the LPA to solve a (possibly nonconvex) feasibility

problem, as well as a sensor network localization problem. Our numerical results illustrate that the LPA meets the demand for

an efficient and robust algorithm for the sensor network localization problem.
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1. Introduction. We consider the following convex composite optimization problem

min
x∈Rn

f(x) := h(F (x)), (1.1)

where the outer function h : Rm → R is convex, and the inner function F : Rn → Rm is continuously

differentiable. We denote by hmin and C the minimum value and the set of minima for the function h

respectively, that is,

hmin := min
y∈Rm

h(y) and C := arg min
y∈Rm

h(y). (1.2)

The convex composite optimization framework (1.1) provides a unified framework of a wide variety of im-

portant optimization problems, such as convex inclusions, nonsmooth and nonconvex optimization, penalty

methods for nonlinear programming and regularized minimization problems; see [8, 13, 18, 31, 36] and ref-

erences therein. Moreover, this model provides a unified framework for the development and analysis of

optimization algorithms.

The development of optimization algorithms for solving problem (1.1) has attracted a great amount of
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attention. The famous Gauss-Newton method (GNM) has been extensively applied to solve problem (1.1)

and is stated as follows.

Algorithm 1.1. Given ρ ≥ 1, ∆ ∈ (0,+∞] and x0 ∈ Rn. Having xk, the next iterate xk+1 is

generated as follows. If h(F (xk)) = min{h(F (xk) + F ′(xk)d) : ∥d∥ ≤ ∆}, then stop; otherwise, choose

dk ∈ D∆(xk) := argmin∥d∥≤∆{h(F (xk) + F ′(xk)d)} such that ∥dk∥ ≤ ρdist(0, D∆(xk)) is satisfied, and set

xk+1 = xk + dk.

Many articles have been devoted to establish a local quadratic convergence rate of the GNM; see [9,

10, 21, 39] and references therein. In particular, Burke and Ferris [10] made a great contribution in the

development of the GNM, whose work extended that of Womersley [39] without the assumption of the

set of minima for h being a singleton, and also proposed a globalization strategy based on a backtracking

line-search. Their work is based on the following two assumptions:

(A1) C is the set of weak sharp minima for h, and

(A2) a regularity condition of the inclusion F (x) ∈ C holds

(see Definitions 2.2 and 2.5 for the details). Under assumptions (A1) and (A2), Burke and Ferris [10] proved

the local quadratic convergence rate, as well as a global quadratic convergence rate of Algorithm 1.1 when

a globalization strategy is included. Without assumption (A1), Li and Wang [21] established the same local

quadratic convergence rate as that of Burke and Ferris [10] and they also proposed an inexact version of

Algorithm 1.1 and established its local superlinear convergence.

However, from the practical point of view, it is inefficient to implement Algorithm 1.1, because the

search direction dk is found among the set D∆(xk) possibly with minimum norm, and it is difficult to find

dk for many applications, especially for large scale problems. Hence, numerical algorithms with low cost

and high efficiency are required for solving the convex composite optimization problem. The proximal point

algorithm was originally presented by Martinet [23] and developed by Rockafellar [30] for finding a zero of a

maximal monotone operator. Nowadays, the idea of proximal point algorithm is very popular and extensively

applied in designing algorithms for structured optimization problems, and several variants of proximal point

algorithms were proposed, such as the accelerated proximal point algorithm [25, 37], the proximal gradient

algorithm [2, 40] and the alternating direction method of multipliers [7, 14]. In 2008, Lewis and Wright

[18] used this idea to propose a linearized proximal algorithm, named ProxDescent, for solving the convex

composite optimization problem (1.1) (or a more general problem where the outer function h is assumed

to be extended-value and prox-regular, not necessarily convex). Each subproblem of the ProxDescent is

a proximal minimization of the composite function with the inner function being linearized at the current

iterate and the stepsize being updated to maintain a descent property. Thus their algorithm is a descent

one. Their work is of high theoretical significance in investigating the properties of local solutions of the

subproblem. They also proved a global convergence result of the ProxDescent, that is the cluster points of

the sequence produced by ProxDescent are stationary points of (1.1). Recently, Sagastizábal [32] proposed

a composite proximal bundle algorithm for solving (1.1) with a positively homogeneous convex function h,

by employing a bundle of subgradient information of the outer function and gradient of the inner function

at the current iterate, and established that the sequence produced by the algorithm either stops finitely or

has a cluster point being a stationary point of (1.1).

In the present paper, we study the linearized proximal algorithm, named LPA, proposed in [18] but using

general stepsizes for solving (1.1) and investigate its local convergence rates. As general stepsizes are used,

the resulting algorithm is generally not a descent one. Hence our algorithm is significantly different from
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the ProxDescent. In fact, the introduction of the LPA was motivated by both the GNM and the proximal

point algorithm. The LPA shares many of their advantages, as well as overcomes their disadvantages. The

subproblem of the LPA is an unconstrained strongly convex optimization problem, which is easier to solve

than that of the GNM. Consequently, the LPA has the attractive computational advantage that the solution

of each subproblem is a singleton, which avoids the difficulty of finding a solution with minimum norm among

the set of minima of its subproblem as in the GNM, while it still maintains the same local convergence rate

as that of the GNM. Under the assumptions of local weak sharp minima of order p (p ∈ [1, 2]) and a

quasi-regularity condition, we establish the local superlinear convergence rate for the LPA. This is the main

contribution of the present paper. Based on a backtracking line-search, we also propose a globalization

strategy for the LPA and obtain the global superlinear convergence result. Furthermore, we extend the LPA

to the inexact setting and provide the superlinear convergence results of the inexact LPA similar to that of

(exact) LPA. In particular, as a consequence of our main result, [18, Theorem 7.4] can be partially improved

in the sense that any sequence generated by the ProxDescent for solving the convex composite optimization

problem (1.1) is shown to converge to a global solution of (1.1) at a superlinear rate under the weak sharp

minima and the regular condition; while [18, Theorem 7.4] only presented the convergence to a stationary

point; see Remark 3.4 for details. Moreover, to the best of our knowledge, our results of the convergence

rate on the LPA type algorithms (e.g., Theorems 3.2, 3.4 and 3.5) seem new in the literature.

The motivation of our work also stems from various applications. In particular, we consider the (possibly

nonconvex) feasibility problem as an application of the convex composite optimization, which is at the core

of the modeling of many problems in various areas of mathematics and physical sciences. For example, there

has been an increasing use of ad hoc wireless sensor networks for monitoring the environmental information

across an entire physical space. Typical networks of this type consist of a large number of inexpensive

wireless sensors deployed in a geographical area with the ability to communicate with their neighbors within

a limited radio range. The sensor network localization problem is to determine the positions of the sensors

in a network by using the given incomplete pairwise distance measurements. However, the use of the GPS

system is very an expensive solution to this requirement as a huge number of sensors are required. Therefore,

there is a great demand for developing efficient and robust algorithms that can estimate or localize sensor

positions in a network by using only the mutual distance measures that the wireless sensors receive from

their neighbors. The sensor network localization problem can be cast into a nonconvex feasibility problem.

We further reformulate the feasibility problem as framework (1.1) and then apply the LPA to solve the

feasibility problem, as well as the sensor network localization problem. In particular, when applied to the

sensor network localization problem, the numerical results illustrate that the LPA achieves the more precise

solution, costs less CPUtime and requires less information (the small radio range and the few anchors) than

that of the semidefinite relaxation technique; see the explanations on page 24 for details.

The paper is organized as follows. In section 2, we present the notation and preliminary results used

in the present paper. In section 3, we investigate the local convergence property of the LPA under the

assumptions of local weak sharp minima of order p and the quasi-regularity condition, and propose the

globalized LPA and inexact LPA, as well as their convergence behavior. Applications to the feasibility

problem and numerical experiments on the sensor network localization problem are demonstrated in section

4.

2. Notation and Preliminary Results. We consider the n-dimensional Euclidean space Rn. We

view a vector as a column one, and denote by ⟨x, y⟩ the inner product of two vectors x, y ∈ Rn. We use

∥x∥ to denote the standard Euclidean norm of x, that is, ∥x∥ =
√
⟨x, x⟩. For x ∈ Rn and δ ∈ R+, B(x, δ)
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denotes the open ball of radius δ centered at x. For a closed convex subset Z ⊆ Rn, the negative polar of Z,

denoted by Z⊖, is defined by

Z⊖ := {y : ⟨y, z⟩ ≤ 0, for each z ∈ Z}. (2.1)

For a point x and a set Z, the Euclidean distance of x from Z, denoted by dist(x,Z), is defined by

dist(x, Z) := inf
z∈Z

∥x− z∥.

We adopt the convention that dist(x, ∅) = +∞ for the whole paper. For f : Rn → R, ϵ ≥ 0 and X ⊆ Rn,

the ϵ-optimal solution set of f over X is defined by

ϵ-arg min
x∈X

f(x) := {x ∈ X : f(x) ≤ inf
y∈X

f(y) + ϵ}.

For a convex function f : Rn → R, the subdifferential of f at x ∈ Rn is defined by

∂f(x) := {g : f(y) ≥ f(x) + ⟨g, y − x⟩, for each y ∈ Rn}.

For F : Rn → Rm and X ⊆ Rn, we say that F is a C1,1 function on X, denoted by F ∈ C1,1
L (X), if F is

continuously differentiable with a Lipschitz continuous gradient F ′ on X, i.e., there exists L > 0 such that

∥F ′(x)− F ′(y)∥ ≤ L∥x− y∥ for each x, y ∈ X.

A well-known property of the C1,1 function is presented as follows; see [3, Proposition A.24].

Lemma 2.1. Let F : Rn → Rm and X ⊆ Rn. If F ∈ C1,1
L (X), then for all x, y ∈ X, it holds that

∥F (y)− F (x)− F ′(x)(y − x)∥ ≤ L

2
∥y − x∥2.

The concepts of weak sharp minima were introduced by Burke and Ferris [12], and have been extensively

studied and widely used to analyze the convergence properties of many algorithms; see [10, 21, 43, 44] and

references therein. We recall in the following definition the concepts of weak sharp minima: items (b) and

(c) were taken from Burke and Ferris [12] and Burke and Deng [11], respectively. Let h : Rm → R, and let

hmin and C be given in (1.2).

Definition 2.2. Let S ⊆ Rm and η > 0. C is said to be

(a) the set of weak sharp minima for h on S with modulus η if

h(y)− hmin ≥ η dist(y, C) for each y ∈ S;

(b) the set of (global) weak sharp minima for h with modulus η if C is the set of weak sharp minima for h

on Rn with modulus η;

(c) the set of local weak sharp minima for h at ȳ ∈ C if there exist ϵ > 0 and ηϵ > 0 such that C is the set

of weak sharp minima for h on B(ȳ, ϵ) with modulus ηϵ.

One natural extension of these concepts is that of (global and local) weak sharp minima of order p

(p ≥ 1); see [6, 16, 27, 35] and references therein. Item (b) in the following definition was introduced by

Studniarski and Ward [35].

Definition 2.3. Let S ⊆ Rm, η > 0 and p ≥ 1. C is said to be
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(a) the set of weak sharp minima of order p for h on S with modulus η if

h(y)− hmin ≥ η distp(y, C) for each y ∈ S; (2.2)

(b) the set of local weak sharp minima of order p for h at ȳ ∈ C if there exist ϵ > 0 and ηϵ > 0 such that C

is the set of weak sharp minima of order p for h on B(ȳ, ϵ) with modulus ηϵ.

Remark 2.1. We define the weak sharp minima constant of order p for h on S by

ηp(h;S) := inf
y∈S\C

h(y)− hmin

distp(y, C)
,

and the local weak sharp minima constant of order p for h at ȳ ∈ C by

ηp(h; ȳ) := sup
ϵ>0

inf
y∈B(ȳ,ϵ)\C

h(y)− hmin

distp(y, C)
. (2.3)

Clearly, C is the set of weak sharp minima of order p for h on S (resp. the set of local weak sharp minima

of order p for h at ȳ) if and only if ηp(h;S) > 0 (resp. ηp(h; ȳ) > 0).

The following lemma provides a useful property of the composition of a function, satisfying the weak

sharp minima of order p, and a C1,1 function, which will repeatedly be used in the study of the convergence

behavior of the LPA.

Lemma 2.4. Let S ⊆ Rm, η > 0 and p ≥ 1. Let C be the set of weak sharp minima of order p for h on

S with modulus η. Suppose that F ∈ C1,1
L (X). Then, for all x, y ∈ X satisfying F (x) + F ′(x)(y − x) ∈ S, it

holds that

dist(F (y), C) ≤ 1

2
L∥y − x∥2 + η−

1
p (h(F (x) + F ′(x)(y − x))− hmin)

1
p . (2.4)

Proof. By Lemma 2.1 and (2.2), it follows that

dist(F (y), C) ≤ ∥F (y)− F (x)− F ′(x)(y − x)∥+ dist(F (x) + F ′(x)(y − x), C)

≤ 1
2L∥y − x∥2 + η−

1
p (h(F (x) + F ′(x)(y − x))− hmin)

1
p .

The proof is complete.

Associated to problem (1.1), we consider the inclusion

F (x) ∈ C, (2.5)

where F : Rn → Rm is continuously differentiable, and C ⊆ Rm is defined by (1.2). For x ∈ Rn, let D(x) be

defined by

D(x) := {d ∈ Rn : F (x) + F ′(x)d ∈ C}. (2.6)

The quasi-regularity condition in the following definition provides a local bound on the set D(x).

Definition 2.5. Let S ⊆ Rm and β > 0. We say that

(a) a point x̄ ∈ Rn is a regular point of inclusion (2.5) if

ker(F ′(x̄)T ) ∩ (C − F (x̄))⊖ = {0};
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(b) inclusion (2.5) is said to satisfy the quasi-regularity condition on S with constant β if

dist(0, D(x)) ≤ β dist(F (x), C) for each x ∈ S (2.7)

(and so D(x) ̸= ∅ for each x ∈ S);

(c) a point x̄ ∈ Rn is a quasi-regular point of inclusion (2.5) if there exist r > 0 and βr > 0 such that

inclusion (2.5) satisfies the quasi-regularity condition on B(x̄, r) with constant βr.

Remark 2.2.

(a) The notion of a regular point was introduced and applied to establish the local convergence rate of the

GNM for problem (1.1) in Burke and Ferris [10]. By [10, Proposition 3.3], one sees that any regular

point of inclusion (2.5) is a quasi-regular point.

(b) The notion of the quasi-regular point was originally introduced by Li and Ng [20]. Recall from [20]

that a point x̄ ∈ Rn is a quasi-regular point of inclusion (2.5) if there exist r > 0 and an increasing

positive-valued function κ(·) on [0, r) such that

dist(0, D(x)) ≤ κ(∥x− x̄∥) dist(F (x), C) for each x ∈ B(x̄, r). (2.8)

One can check directly by definition that this is equivalent to the concept of the quasi-regular point

given in Definition 2.5.

(c) We define the quasi-regularity constant β(x̄) as the infimum over all positive constants βr for which

inclusion (2.5) satisfies the quasi-regularity condition on B(x̄, r) for some positive radius r, that is,

β(x̄) := inf
r>0

{β : (2.7) holds on B(x̄, r)}. (2.9)

Then x̄ ∈ Rn is a quasi-regular point of inclusion (2.5) if and only if β(x̄) < +∞.

3. Linearized Proximal Algorithms and Convergence Analysis. Throughout the whole section,

we always assume that p ∈ [1, 2], unless otherwise specified. In this section, we shall investigate a linearized

proximal algorithm (LPA) to solve problem (1.1), and establish the local convergence behavior of the LPA

under the assumptions of the local weak sharp minima of order p and the quasi-regularity condition. We

also provide a globalization strategy for the LPA by virtue of the backtracking line-search, and an inexact

version of the LPA, together with their convergence analysis.

We proceed with the (inexact) linearized proximal mapping and some basic properties. Let v > 0 and

ϵ ≥ 0. The linearized proximal mapping LPv,ϵ : Rn ⇒ Rn is defined as, for each x ∈ Rn, the ϵ-optimal

solution set of the following optimization problem:

min
d∈Rn

f(x; d) := h(F (x) + F ′(x)d) +
1

2v
∥d∥2, (3.1)

that is,

LPv,ϵ(x) := ϵ-arg min
d∈Rn

{
h(F (x) + F ′(x)d) +

1

2v
∥d∥2

}
. (3.2)

In the special case when ϵ = 0, we write LPv(x) for LPv,0(x) for simplicity; note that, LPv(x) is a singleton

for each x ∈ Rn. The following lemma presents some useful properties of the linearized proximal mapping.

Lemma 3.1. Let v > 0 and ϵ > 0, and let x ∈ Rn satisfying D(x) ̸= ∅ and d ∈ LPv,ϵ(x). Then the

following statements hold:
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(i) ∥d∥2 ≤ dist2(0, D(x)) + 2vϵ,

(ii) h(F (x) + F ′(x)d) ≤ hmin + 1
2vdist

2(0, D(x)) + ϵ.

Proof. Note by (2.6) that h(F (x) + F ′(x)d̃) = hmin for each d̃ ∈ D(x). Then one has by definition (cf.

(3.2)) that

h(F (x) + F ′(x)d) +
1

2v
∥d∥2 ≤ h(F (x) + F ′(x)d̃) +

1

2v
∥d̃∥2 + ϵ = hmin +

1

2v
∥d̃∥2 + ϵ.

Taking the infimum over D(x) on the right-hand side of the above inequality, we obtain

h(F (x) + F ′(x)d) +
1

2v
∥d∥2 ≤ hmin +

1

2v
dist2(0, D(x)) + ϵ. (3.3)

Thus, (i) and (ii) follow.

3.1. Linearized Proximal Algorithm. This subsection is devoted to the study of the LPA. Note

that the outer function h in convex composite optimization problem (1.1) is convex. The ProxDescent [18]

for solving (1.1) is a special case of the following LPA (as the stepsize in ProxDescent is selected such that

a descent property is satisfied: h(F (xk)) − h(F (xk + dk)) ≥ σ (h(F (xk))− h(F (xk) + F ′(xk)dk)) for some

σ ∈ (0, 1)).

Algorithm 3.1. Given an initial point x0 ∈ Rn and a sequence of stepsizes {vk} ⊆ (0,+∞). Having

xk, we calculate the search direction dk := LPvk
(xk) by solving the optimization problem (3.1) (with xk in

place of x). If dk = 0, then it stops; otherwise, we set xk+1 = xk + dk.

Remark 3.1. In the special case when h := 1
2∥ · ∥2, Algorithm 3.1 is reduced to the well-known

Levenberg-Marquardt method [24] for solving the following nonlinear least squares problem:

min
x∈Rn

1

2
∥F (x)∥2.

Indeed, applying Algorithm 3.1 to this problem, the first order optimality condition of (3.1) (with xk in

place of x) implies that

0 = F ′(xk)
⊤(F (xk) + F ′(xk)dk) +

dk
v
.

Thus, the closed formula of the iteration of Algorithm 3.1 is given by

xk+1 = xk + dk = xk − v
(
I + vF ′(xk)

⊤F ′(xk)
)−1

F ′(xk)
⊤F (xk) for each k = 0, 1, . . . ,

which is the Levenberg-Marquardt method (also the trust region method for the nonlinear least squares

problem [42]).

The main theorem of this subsection is as follows. It provides some sufficient conditions around initial

points ensuring the convergence of Algorithm 3.1. For the convergence results in the remainder of the

present paper (i.e., Theorems 3.2, 3.4 and 3.5 and Corollaries 3.3 and 3.6), our analysis is, without loss of

generality, only focused on the special case when the stepsizes are chosen to be a constant, that is, vk ≡ v,

unless otherwise specified, as the corresponding convergence results for the general case can be established

similarly; see the explanation in Remark 3.2(a) for more details.

Theorem 3.2. Let η > 0, β > 0 and δ̄ > 0. Let x̄ ∈ Rn, and let C be the set of weak sharp minima

of order p for h on B(F (x̄), δ̄) with modulus η. Suppose that F ∈ C1,1
L (B(x̄, δ̄)), and that inclusion (2.5)
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satisfies the quasi-regularity condition on B(x̄, δ̄) with constant β. Suppose further that there exists δ > 0

such that

(a) δ ≤ min
{

δ̄
2 ,

2δ̄
5L0

}
,

(b) dist(F (x̄), C) < δ
2β ,

(c) β

(
Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)
≤ 1,

where L0 is the Lipschitz constant for F on B(x̄, δ̄). Then, there exists a neighborhood N(x̄) of x̄ such that,

for any x0 ∈ N(x̄), the sequence {xk} generated by Algorithm 3.1 with initial point x0 converges at a rate of
2
p to a solution x∗ satisfying F (x∗) ∈ C.

Proof. Set

β̄ :=
δ − 2βdist(F (x̄), C)

2βL0
and r0 := min{δ, β̄}. (3.4)

Then r0 > 0 due to assumption (b). Let x0 ∈ N(x̄) := B(x̄, r0). Then one has that ∥x0 − x̄∥ ≤ r0 ≤ δ < δ̄

(by assumption (a)). Thus, by the choice of L0, we have that

∥F (x0)− F (x̄)∥ ≤ L0r0 ≤ L0β̄,

and it follows that

dist(F (x0), C) ≤ ∥F (x0)− F (x̄)∥+ dist(F (x̄), C) ≤ L0β̄ + dist(F (x̄), C) =
δ

2β
, (3.5)

where the last inequality follows from the definition of β̄ in (3.4). We shall show by induction that the

following estimates hold for all i = 0, 1, 2, . . . :

∥xi − x̄∥ < 2δ(≤ δ̄) and dist(F (xi), C) ≤ δ

β

(
1

2

)( 2
p )

i
+i

. (3.6)

Note that (3.6) holds for i = 0 (thanks to the choice of x0 and (3.5)). Now assume that (3.6) holds for each

i ≤ k−1. Then, by the assumed quasi-regularity condition, D(xi) ̸= ∅. Thus, Lemma 3.1 is applicable (with

xi, di, 0 in place of x, d, ϵ), and we conclude that

∥di∥ ≤ dist(0, D(xi)) ≤ βdist(F (xi), C) ≤ δ

(
1

2

)( 2
p )

i
+i

for each i = 0, . . . , k − 1. (3.7)

Hence

∥xk − x̄∥ ≤
k−1∑
i=0

∥di∥+ ∥x0 − x̄∥ < δ

k−1∑
i=0

(
1

2

)( 2
p )

i
+i

+ r0.

Since p ≤ 2 and r0 ≤ δ (see (3.4)), it follows that

∥xk − x̄∥ < δ + r0 ≤ 2δ. (3.8)

Since xk−1 ∈ B(x̄, 2δ) and by the choice of L0 (δ̄ ≥ 2δ), one has that ∥F (xk−1) − F (x̄)∥ ≤ 2L0δ and

∥F ′(xk−1)∥ ≤ L0. Thus, by (3.7), it follows that

∥F (xk−1) + F ′(xk−1)dk−1 − F (x̄)∥ ≤ ∥F (xk−1)− F (x̄)∥+ ∥F ′(xk−1)∥∥dk−1∥ ≤ 5

2
L0δ ≤ δ̄
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(due to assumption (a)). Hence Lemma 2.4 is applicable (with xk−1, xk, B(F (x̄), δ̄), B(x̄, δ̄) in place of x,

y, S, X), and we obtain that

dist(F (xk), C) ≤ L

2
∥dk−1∥2 +

(
1

η

) 1
p

(h(F (xk−1) + F ′(xk−1)dk−1)− hmin)
1
p .

By Lemma 3.1, it follows that

dist(F (xk), C) ≤ L
2 dist

2(0, D(xk−1)) +
(

1
2ηv

) 1
p

dist
2
p (0, D(xk−1))

≤ L
2 δ

2
(
1
2

)2(( 2
p )

k−1
+k−1

)
+
(

1
2ηv

) 1
p

δ
2
p
(
1
2

) 2
p

(
( 2

p )
k−1

+k−1
) (3.9)

(due to (3.7)). Since

2

((
2

p

)k−1

+ k − 1

)
≥ 2

p

((
2

p

)k−1

+ k − 1

)
≥
(
2

p

)k

+ k − 1

(noting that p ∈ [1, 2] and k ≥ 1), it follows from (3.9) that

dist(F (xk), C) ≤ δ

(
Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)(
1

2

)( 2
p )

k
+k

≤ δ

β

(
1

2

)( 2
p )

k
+k

, (3.10)

where the last inequality holds by assumption (c). Combining (3.8) and (3.10), one sees that (3.6) holds for

i = k and so for each i = 0, 1, 2, . . . . This, together with Lemma 3.1(i) and (2.7), implies that

∥di∥ ≤ dist(0, D(xi)) ≤ βdist(F (xi), C) ≤ δ

(
1

2

)( 2
p )

i
+i

for each i = 0, 1, 2, . . . .

Thus, {xk} is a Cauchy sequence, and then converges to a point x∗. Clearly, F (x∗) ∈ C by (3.10), and

∥xk − x∗∥ ≤
+∞∑
i=k

∥di∥ ≤ 2δ

(
1

2

)( 2
p )

k
+k

.

This means that {xk} converges to x∗ at a rate of 2
p , and the proof is complete.

In Theorem 3.2, we have established the local convergence theorem of Algorithm 3.1 under the assump-

tions of local weak sharp minima of order p and the quasi-regularity condition. For different order p, we

make a remark on the assumptions and the local convergence rate as follows.

Remark 3.2.

(a) Theorem 3.2 is also true for Algorithm 3.1 when using the general stepsize sequence {vk}, if the assump-

tion (c) of Theorem 3.2 is changed as

(c) β

(
Lδ + 2

(
1

2η inf vk

) 1
p

δ
2−p
p

)
≤ 1.

This remark is also valid for Theorems 3.4 and 3.5.

(b) When p ∈ [1, 2), Theorem 3.2 indicates the local superlinear convergence rate of Algorithm 3.1. In the

special case when p = 1, Theorem 3.2 shows the local quadratic convergence rate of Algorithm 3.1,

which shares the same convergence rate as that of the GNM; see [10, 21]. The main difference between
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convergence analysis of Algorithm 3.1 and that of the GNM stems from their different subproblems.

In particular, Li and Wang [21] directly used the minimal property of GNM subproblem to derive the

quadratic convergence property of ∥dk∥; while our convergence analysis of Algorithm 3.1 utilized Lemma

3.1 and the assumption of weak sharp minima to estimate the convergence rate of dist(F (xk), C).

(c) When p = 2, Theorem 3.2 exhibits the local linear convergence rate of Algorithm 3.1. Furthermore, the

assumption (c) of Theorem 3.2 is reduced to

(c) β

(
Lδ +

(
2
ηv

)1/2)
≤ 1.

This assumption (c) not only requires δ to be small, but also needs v to be large, which coincides with

the property given by Rockafellar [30] that the proximal point algorithm reaches the linear convergence

rate if the stepsize stays large enough.

Note that in Theorem 3.2, we do not assume F (x̄) ∈ C; actually, we even do not need to assume the

feasibility of inclusion (2.5). In the case when F (x̄) ∈ C, the assumption (b) of Theorem 3.2 automatically

holds. Thus, we present the local convergence property of Algorithm 3.1 as follows.

Corollary 3.3. Let x̄ ∈ Rn satisfying the inclusion (2.5), and let C be the set of local weak sharp

minima of order p for h at F (x̄) with the local weak sharp minima constant ηp(h;F (x̄)). Suppose that

F ∈ C1,1
L (B(x̄, r)) for some r > 0, and that x̄ is a quasi-regular point of inclusion (2.5) with the quasi-

regularity constant β(x̄). Suppose further that p ∈ [1, 2) or the stepsize v > 2β(x̄)2

ηp(h;F (x̄)) (if p = 2). Then, there

exists a neighborhood N(x̄) of x̄ such that, for any x0 ∈ N(x̄), the sequence {xk} generated by Algorithm 3.1

with initial point x0 converges at a rate of 2
p to a solution x∗ satisfying F (x∗) ∈ C.

Proof. Let ϵ̄ ∈ (0, ηp(h;F (x̄))) be such that

v >
2(β(x̄) + ϵ̄)2

ηp(h;F (x̄))− ϵ̄
if p = 2. (3.11)

Recall from the definition of ηp(h;F (x̄)) in (2.3) and the definition of β(x̄) in (2.9), there exists δ̄ ∈ (0, r),

such that C is the set of weak sharp minima of order p for h on B(F (x̄), δ̄) with modulus η := ηp(h;F (x̄))− ϵ̄

and that inclusion (2.5) satisfies the quasi-regularity condition on B(x̄, δ̄) with constant β := β(x̄) + ϵ̄. We

denote by L0 the Lipschitz constant for F on B(x̄, δ̄). Set

δ :=


min

{
δ̄
2 ,

2δ̄
5L0

, 1
2Lβ ,

(
2ηv
(4β)p

) 1
2−p

}
, p ∈ [1, 2),

min

{
δ̄
2 ,

2δ̄
5L0

, 1
Lβ

(
1−

(
2β2

ηv

) 1
2

)}
, p = 2.

(3.12)

Then, one can directly check that δ > 0 and satisfies the assumptions (a), (b) and (c) of Theorem 3.2. Thus,

Theorem 3.2 is applicable and the conclusion follows.

By the proof of Corollary 3.3 (and that of Theorem 3.2), we further have the following remark, which

will be useful in the proof of Theorem 3.4.

Remark 3.3. Suppose that the assumptions of Corollary 3.3 are satisfied. Then, for any δ > 0, there

exists rδ ∈ (0, δ) such that any sequence {x̃k} generated by Algorithm 3.1 with initial point x̃0 ∈ B(x̄, rδ)

satisfies the following property:

∥x̃k − x̄∥ < δ for any k = 0, 1, 2, . . . . (3.13)



YAOHUA HU, CHONG LI, AND XIAOQI YANG 11

Remark 3.4. As a consequence of Corollary 3.3, we can prove that any sequence {xk} generated by

the ProxDescent [18] for solving the convex composite optimization problem (1.1) converges to a global

solution of (1.1) at a rate of 2
p , if there exists a cluster point x̄ of {xk} such that C is the set of local weak

sharp minima of order p (1 ≤ p < 2) for h at F (x̄) and x̄ is a regular point of inclusion (2.5). Indeed, by

[18, Theorem 7.4], one sees that x̄ is a stationary point of problem (1.1), that is, 0 ∈ F ′(x̄)⊤ ◦ ∂h(F (x̄)).

This implies that ∂h(F (x̄)) ∩ kerF ′(x̄)⊤ ̸= ∅. Note by definition that ∂h(F (x̄)) ⊆ (C − F (x̄))⊖. Thus,

∅ ̸= ∂h(F (x̄)) ∩ kerF ′(x̄)⊤ ⊆ (C − F (x̄))⊖ ∩ kerF ′(x̄)⊤ = {0}; hence, 0 ∈ ∂h(F (x̄)) and F (x̄) ∈ C. Then

Corollary 3.3 is applicable to concluding that {xk} converges to a global solution of (1.1) at a rate of 2
p .

3.2. Globalized LPA. By virtue of the backtracking line-search, this subsection is to propose a glob-

alization strategy for the LPA and establish its global convergence theorem. The globalized LPA presented

in the following paragraph is in the spirit of the ideas used in [8, 10].

Algorithm 3.2. Given constants c ∈ (0, 1) and γ ∈ (0, 1), an initial point x0 ∈ Rn and a sequence

of stepsizes {vk} ⊆ (0,+∞). Having xk, we calculate the search direction dk := LPvk(xk) by solving the

optimization problem (3.1). If dk = 0, then it stops; otherwise, we set xk+1 = xk + tkdk, where tk is the

maximum value of γs for s = 0, 1, . . . , such that

h(F (xk + γsdk))− h(F (xk)) ≤ cγs

(
h(F (xk) + F ′(xk)dk) +

1

2vk
∥dk∥2 − h(F (xk))

)
. (3.14)

The idea of adopting the backtracking line-search strategy for solving the convex composite optimization

problem originated from the works of Burke [8] and Burke and Ferris [10]. The backtracking line-search

strategy preserves the descent property of the objective function (cf. (3.14)), which is critical in establishing

the global convergence property of Algorithm 3.2 (cf. [8]). Li and Wang [21] also provided the similar

globalization strategy for the GNM and proved the global quadratic convergence rate of the globalized

GNM.

We now establish in the following theorem a global superlinear convergence result for Algorithm 3.2

under the assumptions of local weak sharp minima of order p and the regularity condition. In particular, if

the local weak sharp minima is satisfied, then it indicates the global quadratic convergence rate of Algorithm

3.2, which shares the same convergence rate as that of the globalized GNM, under the same assumptions as

in [10].

Theorem 3.4. Let {xk} be a sequence generated by Algorithm 3.2 and assume that {xk} has a cluster

point x̄. Suppose that 1 ≤ p < 2 and that C is the set of local weak sharp minima of order p for h at

F (x̄). Suppose further that F is of class C1,1 near x̄, and that x̄ is a regular point of inclusion (2.5). Then

F (x̄) ∈ C, and {xk} converges to x̄ at a rate of 2
p .

Proof. We first claim that F (x̄) ∈ C. Indeed, the sequence {xk} is also one generated by the descent

methods studied in [8] (see (2.1) in [8], with {dk}, h(F (xk) + F ′(xk)dk) +
1
2v∥dk∥

2 − h(F (xk)) in place of

Dk, ∆k, which satisfy conditions (2.2) in [8]). Thus, [8, Theorems 2.4 and 5.3] can be applied to conclude

that x̄ is a stationary point of problem (1.1): 0 ∈ F ′(x̄)⊤ ◦ ∂h(F (x̄)). Similar to the idea in Remark 3.4, we

obtain F (x̄) ∈ C, as desired to show.

Next, we show that there exists δ > 0 such that the following implication holds for any k:

∥xk − x̄∥ < δ =⇒ tk = 1. (3.15)
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Suppose on the contrary that, there exist a sequence {δi} ⊆ (0, 1) with δi ↓ 0 and a subsequence {ki} ⊆ N
such that xki ∈ B(x̄, δi) and tki ̸= 1. Then, xki → x̄ and, for each ki,

h(F (xki + dki))− h(F (xki)) > c

(
h (F (xki) + F ′(xki)dki) +

1

2v
∥dki∥2 − h(F (xki))

)
. (3.16)

Hence, by the continuity of F and the assumption that xki
→ x̄, it follows that

F (xki) → F (x̄) and dist(F (xki), C) → 0 (3.17)

(as F (x̄) ∈ C as we showed before). By the assumptions, there exist δ̄ > 0, η > 0 and β > 0 such that

h(z)− hmin ≥ η distp(z, C) for each z ∈ B(F (x̄), δ̄), (3.18)

dist(0, D(x)) ≤ β dist(F (x), C) for each x ∈ B(x̄, δ̄), (3.19)

and

∥F ′(x)− F ′(y)∥ ≤ L∥x− y∥ for each x, y ∈ B(x̄, δ̄).

Combining (3.17) and (3.19), we apply Lemma 3.1(i) to obtain that

dist(0, D(xki)) → 0 and ∥dki∥ → 0. (3.20)

Thus, there exists an integer i0 such that, for all i ≥ i0, the following inequalities hold:

∥xki
− x̄∥ <

δ̄

2
, ∥dki

∥ <
δ̄

2
, (3.21)

and

∥F (xki + dki)− F (x̄)∥ < δ̄, ∥F (xki) + F ′(xki)dki − F (x̄)∥ < δ̄. (3.22)

Then, it follows from Lemmas 3.1 that

h(F (xki + dki))− hmin ≤ h(F (xki + dki))− h (F (xki) + F ′(xki)dki) +
1

2v
dist2(0, D(xki)). (3.23)

Without loss of generality, we assume that h is Lipschitz continuous on B(F (x̄), δ̄) with Lipschitz constant

K (using a smaller δ̄ if necessary). Now let i ≥ i0. Then, by (3.22) and (3.21), we conclude from Lemma

2.1 that

h(F (xki + dki))− h (F (xki) + F ′(xki)dki) ≤ K∥F (xki + dki)− F (xki)− F ′(xki)dki∥ ≤ KL

2
dist2(0, D(xki)),

and it follows from (3.23) that

h(F (xki + dki))− hmin ≤ τdist2(0, D(xki)), (3.24)

where τ := KL
2 + 1

2v < +∞. This, together with (3.16), implies that

hmin − h(F (xki)) + τdist2(0, D(xki)) ≥ h(F (xki + dki))− h(F (xki))

> c
(
h(F (xki) + F ′(xki)dki) +

1
2v∥dki∥2 − h(F (xki))

)
≥ c

(
hmin + 1

2v∥dki∥2 − h(F (xki))
)
.
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Hence

(1− c) (hmin − h(F (xki))) + τdist2(0, D(xki)) ≥
c

2v
∥dki∥2 > 0, (3.25)

(noting that dki ̸= 0 by (3.16)). On the other hand, applying (3.18) and (3.19), we conclude that

(1− c) (hmin − h(F (xki))) ≤ (c− 1)ηβ−pdistp(0, D(xki)).

Hence it follows from (3.25) that

0 < (c− 1)ηβ−p + τdist2−p(0, D(xki)).

Since dist(0, D(xki)) → 0 (see (3.20)) and that p < 2, we arrive by taking the limit at 0 < (c − 1)ηβ−p,

which is clearly a contradiction. Thus, we establish the implication (3.15) for some δ > 0.

Finally, we show that {xk} converges to x̄ at a rate of 2
p . Let δ > 0 be such that the implication (3.15)

holds for any k. Then, by Remark 3.3, there exists rδ ∈ (0, δ) such that any sequence {x̃k} generated by

Algorithm 3.1 with initial point x̃0 ∈ B(x̄, rδ) satisfies (3.13). Since x̄ is a cluster point of {xk}, there exists

integer j0 such that ∥xj0 − x̄∥ < rδ. Let x̃0 := xj0 ∈ B(x̄, rδ), and let {x̃k} be generated by Algorithm 3.1

with x̃0 being the initial point. Then we have that ∥x̃k − x̄∥ < δ for any k = 0, 1, 2, . . . . By Corollary 3.3,

we may assume that {x̃k} is convergent (using a smaller positive number rδ if necessary). Moreover, since

∥xj0 − x̄∥ < rδ ≤ δ, it follows from (3.15) that tj0 = 1. This means that x̃1 and xj0+1 are the same. Hence

∥xj0+1 − x̄∥ < δ, and we further have that tj0+1 = 1. Inductively, we conclude that tk = 1 for all k ≥ j0.

Thus {xk}k≥j0 coincides with {x̃k} and so is convergent (to x̄) at a rate of 2
p (as so is {x̃k} as noted earlier).

Therefore the proof is complete.

3.3. Inexact LPA. In practical terms, it could be computationally very expensive to exactly solve

the subproblem (3.1) in each iteration. In this section, we propose an inexact version of the LPA, which is

to solve (3.1) only approximately in each iteration (with progressively better accuracy), and investigate its

local convergence behavior. Specifically, we present the inexact version of the LPA as follows.

Algorithm 3.3. Given constants M > 0 and α > 2, initial points x0 ∈ Rn and d−1 ∈ Rn, and a

sequence of stepsizes {vk} ⊆ (0,+∞). Having xk and dk−1, we update

we set ϵk = M∥dk−1∥α and determine xk+1 and dk as follows. If LPvk
(xk) = 0, then it stops; else if 0 ∈

LPvk,ϵk(xk), then we set dk = ∥dk−1∥α−1dk−1 and xk+1 = xk+dk; otherwise, we calculate dk ∈ LPvk,ϵk(xk)

and set xk+1 = xk + dk.

The following theorem provides some sufficient conditions around initial points ensuring the convergence

of Algorithm 3.3.

Theorem 3.5. Let η > 0, β > 0 and δ̄ > 0. Let x̄ ∈ Rn and C be the set of weak sharp minima of order

p for h on B(F (x̄), δ̄) with modulus η. Suppose that F ∈ C1,1
L (B(x̄, δ̄)), and that inclusion (2.5) satisfies the

quasi-regularity condition on B(x̄, δ̄) with constant β. Suppose further that there exists δ > 0 such that

(a) δ ≤ min
{

δ̄
3 ,

2δ̄
7L0

, 1
2

(
1

32vM

) 1
α−2

}
,

(b) dist(F (x̄), C) < δ
2β ,

(c) β

(
Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)
≤ 1

2
√
2
,
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where L0 is the Lipschitz constant for F on B(x̄, δ̄). Then, there exists a neighborhood N(x̄) of x̄ such that, for

any x0 ∈ N(x̄), any sequence {xk} generated by Algorithm 3.3 with initial points x0 and ∥d−1∥ ≤
(

δ2

8vM

) 1
α

,

converges at a rate of q := min
{

α
2 ,

2
p

}
to a solution x∗ satisfying F (x∗) ∈ C.

Proof. Let β̄, r0, and N(x̄) be defined respectively as in the beginning of the proof for Theorem 3.2, and

let x0 ∈ N(x̄). Then, as discussed there, we have that

dist(F (x0), C) ≤ δ

2β
and dist(0, D(x0)) ≤

δ

2
. (3.26)

By the assumed quasi-regularity condition, Lemma 3.1 is applicable, and it follows that

∥d0∥ ≤
(
dist2(0, D(x0)) + 2vM∥d−1∥α

) 1
2 ≤

√
2

2
δ. (3.27)

We shall show by induction that the following estimates hold for each i = 0, 1, 2, . . . :

∥xi − x̄∥ < 3δ, dist(F (xi), C) ≤ δ

β

(
1

2

)qi+i

and ∥di∥ ≤ 2δ

(
1

2

)qi+i

. (3.28)

Note first that (3.28) holds for i = 0 (thanks to the choice of x0, (3.26) and (3.27)). Next, assume that

(3.28) holds for each i ≤ k − 1. Then it follows that

∥xk − x̄∥ ≤
k−1∑
i=0

∥di∥+ ∥x0 − x̄∥ ≤ 2δ
k−1∑
i=0

(
1

2

)qi+i

+ δ < 3δ. (3.29)

Since xk−1 ∈ B(x̄, 3δ) and by the choice of L0, one has that ∥F (xk−1)−F (x̄)∥ ≤ 3L0δ and ∥F ′(xk−1)∥ ≤ L0

(as δ̄ ≥ 3δ). Thus, we have that

∥F (xk−1) + F ′(xk−1)dk−1 − F (x̄)∥ ≤ ∥F (xk−1)− F (x̄)∥+ L0∥dk−1∥ ≤ 7

2
L0δ < δ̄

(due to assumption (a)). Hence Lemma 2.4 and Lemma 3.1(ii) are applicable to conclude that

dist(F (xk), C) ≤ L
2 ∥dk−1∥2 +

(
1
η

) 1
p

(h(F (xk−1) + F ′(xk−1)dk−1)− hmin)
1
p

≤ L
2 ∥dk−1∥2 +

(
1

2ηv

) 1
p (

dist2(0, D(xk−1)) + 2vM∥dk−2∥α
) 1

p .
(3.30)

We now claim that

dist(F (xk), C) ≤ δ

β

(
1

2

)qk+k

. (3.31)

In fact, if k = 1, then, (3.30), together with (3.26), (3.27) and the choice of d−1, implies that

dist(F (x1), C) ≤ L
2 ∥d0∥

2 +
(

1
2ηv

) 1
p (

dist2(0, D(x0)) + 2vM∥d−1∥α
) 1

p

≤ L
2

(√
2
2 δ
)2

+
(

1
2ηv

) 1
p
((

δ
2

)2
+ 2vM δ2

8vM

) 1
p

= 1
4Lδ

2 +
(

1
2ηv

) 1
p ( 1

2δ
2
) 1

p ,
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and so (3.31) is established because

1

4
Lδ2 +

(
1

2ηv

) 1
p
(
1

2
δ2
) 1

p

=
δ

4

(
1

2

) 1
p−1

((
1

2

)1− 1
p

Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)
≤ δ

8β
≤ δ

β

(
1

2

)q+1

,

where the first inequality is true by assumption (c) and the facts that
(
1
2

) 1
p−1 ∈ [1,

√
2] (noting p ∈ [1, 2]).

Now we consider the case when k ≥ 2. Then, noting the following elementary inequality:

(a+ b)r ≤ ar + br for any a ≥ 0, b ≥ 0 and r ∈ (0, 1], (3.32)

one has, from (3.30) and the induction assumption that (3.28) holds for each i ≤ k − 1, that

dist(F (xk), C) ≤ L
2 ∥dk−1∥2 +

(
1

2ηv

) 1
p
(
dist

2
p (0, D(xk−1)) + (2vM)

1
p ∥dk−2∥

α
p

)
≤ L

2 (2δ)
2
(
1
2

)2(qk−1+k−1)

+
(

1
2ηv

) 1
p

(
δ

2
p
(
1
2

) 2
p (q

k−1+k−1)
+ (2vM)

1
p (2δ)

α
p
(
1
2

)α
p (qk−2+k−2)

)
.

(3.33)

Noting by 2vM ≤ 1
16 (2δ)

2−α(that is, δ ≤ 1
2

(
1

32vM

) 1
α−2 by assumption (a)), we have that

(2vM)
1
p (2δ)

α
p ≤

(
1

16
(2δ)2−α

) 1
p

(2δ)
α
p =

(
1

2
δ

) 2
p

, (3.34)

and also note that

2(qk−1 + k − 1) ≥ qk + k,
2

p
(qk−1 + k − 1) ≥ qk + k − 1

and

α

p
(qk−2 + k − 2) ≥ qk + k − 2

(as q = min{α
2 ,

2
p}, α > 2, p ∈ [1, 2] and k ≥ 2). It follows from (3.33) that

dist(F (xk), C) ≤ L
2 (2δ)

2
(
1
2

)qk+k
+
(

1
2ηv

) 1
p

(
δ

2
p
(
1
2

)qk+k−1
+
(
1
2δ
) 2

p
(
1
2

)qk+k−2
)

= 2δ

(
Lδ +

(
1

2ηv

) 1
p
(
δ

2−p
p +

(
1
2

) 2
p−1

δ
2−p
p

))(
1
2

)qk+k

≤ 2δ

(
Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)(
1
2

)qk+k

< δ
β

(
1
2

)qk+k
,

where the last inequality holds because, by assumption (c), Lδ + 2
(

1
2ηv

) 1
p

δ
2−p
p ≤ 1

2
√
2β

< 1
2β . Hence (3.31)

is established. Thus, by (2.7), we have that

dist(0, D(xk)) ≤ βdist(F (xk), C) < δ

(
1

2

)qk+k

. (3.35)
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In view of Algorithm 3.3, if 0 ∈ LPv,ϵk(xk), then dk = ∥dk−1∥α−1dk−1. This, together with the induction

assumption that (3.28) holds for i = k − 1, implies that

∥dk∥ = ∥dk−1∥α ≤ (2δ)α
(
1

2

)α(qk−1+k−1)

< 2δ

(
1

2

)qk+k

(3.36)

(noting that α > 2 ≥ q;) otherwise, dk ∈ LPv,ϵk(xk), and it follows from Lemma 3.1(i) that

∥dk∥ ≤
(
dist2(0, D(xk)) + 2vM∥dk−1∥α

) 1
2 ≤ dist(0, D(xk)) + (2vM)

1
2 ∥dk−1∥

α
2

(thanks to (3.32)). Then, by (3.35) and the induction assumption that (3.28) holds for i = k − 1, it follows

that

∥dk∥ ≤ δ

(
1

2

)qk+k

+ (2vM)
1
2 (2δ)

α
2

(
1

2

)α
2 (qk−1+k−1)

.

Since α
2 (q

k−1 + k − 1) ≥ qk + k − 1 (as α
2 ≥ q ≥ 1) and since (2vM)

1
2 (2δ)

α
2 ≤ 1

2δ by (3.34) (with 2 in place

of p), it follows that

∥dk∥ ≤ δ

(
1

2

)qk+k

+
δ

2

(
1

2

)qk+k−1

= 2δ

(
1

2

)qk+k

. (3.37)

Hence, combining (3.29), (3.31), (3.36) and (3.37), one checks that (3.28) holds for i = k and so for each

i = 0, 1, 2, . . . . Consequently, {xk} is a Cauchy sequence, and converges to a point x∗, which, by (3.28),

satisfies that F (x∗) ∈ C, and

∥xk − x∗∥ ≤
+∞∑
i=k

∥di∥ ≤ 4δ

(
1

2

)qk+k

.

Therefore, {xk} converges to x∗ at a rate of q
(
= min

{
α
2 ,

2
p

})
, and the proof is complete.

Remark 3.5.

(a) Algorithm 3.3 not only has the attractive computational advantage that the subproblems need to be

solved only approximately, but also inherits the same convergence rate as that of Algorithm 3.1 if

α ≥ 4/p.

(b) When p ∈ [1, 2), Theorem 3.5 indicates the local superlinear convergence of Algorithm 3.3. In particular,

if p = 1 and α ≥ 4, then it shows the local quadratic convergence rate of Algorithm 3.3, which shares the

same convergence rate as that of the inexact GNM [21] under the weaker conditions. While, if p = 2, it

exhibits the local linear convergence rate of Algorithm 3.3, where the assumption (c) not only requires

δ to be small, but also needs v to stay large. This coincides with the property given by Rockafellar [30]

that the proximal point algorithm reaches the linear convergence if the stepsize remains large enough.

Similar to the case of Algorithm 3.1, we have the local convergence property for Algorithm 3.3 as follows.

Corollary 3.6. Let x̄ ∈ Rn satisfying inclusion (2.5), and let C be the set of local weak sharp minima

of order p for h at F (x̄) with the local weak sharp minima constant ηp(h;F (x̄)). Suppose that F ∈ C1,1
L (x̄, r)

for some r > 0, and that x̄ is a quasi-regular point of inclusion (2.5) with the quasi-regularity constant β(x̄).

Suppose further that p ∈ [1, 2) or the stepsize v > 16β(x̄)2

ηp(h;F (x̄)) (if p = 2). Then, there exists a neighborhood
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N(x̄) of x̄ such that, for any x0 ∈ N(x̄), the sequence {xk} generated by Algorithm 3.3 with initial points x0

and d−1 near 0, converges at a rate of q := min
{

α
2 ,

2
p

}
to a solution x∗ satisfying F (x∗) ∈ C.

Proof. Let ϵ̄ ∈ (0, ηp(h;F (x̄))) such that

v >
16(β(x̄) + ϵ̄)2

(ηp(h;F (x̄))− ϵ̄)
if p = 2. (3.38)

Recall from the definition of ηp(h;F (x̄)) in (2.3) and the definition of β(x̄) in (2.9), there exists δ̄ ∈ (0, r),

such that C is the set of weak sharp minima of order p for h on B(F (x̄), δ̄) with modulus η := ηp(h;F (x̄))− ϵ̄

and that inclusion (2.5) satisfies the quasi-regularity condition on B(x̄, δ̄) with constant β := β(x̄) + ϵ̄. We

denote by L0 the Lipschitz constant for F on B(x̄, δ̄). Set

δ :=


min

{
δ̄
2 ,

2δ̄
7L0

, 1
2 (

1
32vM )

1
α−2 , 1

4
√
2Lβ

,
(

2ηv

(8
√
2β)p

) 1
2−p

}
, p ∈ [1, 2),

min

{
δ̄
2 ,

2δ̄
7L0

, 1
2 (

1
32vM )

1
α−2 , 1

Lβ

(
1

2
√
2
−
(

2β2

ηv

) 1
2

)}
, p = 2.

(3.39)

Then δ > 0 and satisfies the assumptions (a), (b), (c) of Theorem 3.5. Thus, Theorem 3.5 is applicable and

the conclusion follows.

The proof of Corollary 3.6 (and that of Theorem 3.5) shows actually the following remark, which will

be useful in the proof of Theorem 4.3.

Remark 3.6.

(a) Theorem 3.5 and Corollary 3.6 remain true if Algorithm 3.3 is modified by choosing dk ∈ LPv,ϵk(xk)

in any case (even when 0 ∈ LPv,ϵk(xk)). Note that adopting dk = ∥dk−1∥α−1dk−1 in the case when

0 ∈ LPv,ϵk(xk) in Algorithm 3.3 is to avoid solving exactly subproblem (3.1) in the next iteration

(otherwise, dk = 0 could be chosen).

(b) Suppose that the assumptions of Corollary 3.6 are satisfied, and let {x̃k} be the sequence generated by

Algorithm 3.3 (or with the modification that dk ∈ LPv,ϵk(xk) in any cases) with initial points x̃0 and

d̃−1. Then, for any δ > 0 and M > 0, there exists rδ ∈ (0, δ) such that the following property holds:

If x̃0 ∈ B(x̄, rδ) and d̃−1 ∈ B(0, rδ), then ∥x̃k − x̄∥ < δ for any k = 0, 1, 2, . . . . (3.40)

4. Application to Feasibility Problem. The feasibility problem is at the core of the modeling of

many problems in various areas of mathematics and physical sciences. It consists of finding a point in

the intersection of a collection of closed sets (possibly nonconvex); see [1, 17] and references therein. The

feasibility problem we consider here is to find a solution of the following system of inequalities:

gi(x) ≤ 0 for each i = 1, . . . ,m, (4.1)

where gi : Rn → R are all continuously differentiable for i = 1, . . . ,m. The solution set of (4.1) is denoted by

X∗. The feasibility problem described above can be cast into framework (1.1) as the following two models:

min
x∈Rn

h(F (x)), where F := (g1, . . . , gm)⊤ and h(·) := 1

2
dist2(·,Rm

− ), (4.2)

and

min
x∈Rn

h(F (x)), where F := (g1, . . . , gm)⊤ and h(·) := dist(·,Rm
− ), (4.3)
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where Rm
− := {x = (x1, . . . , xm)⊤ : xi ≤ 0, i = 1, . . . ,m}.

Thus, one can solve the feasibility problem (4.1) naturally by applying the Algorithms 3.1 or 3.3 to the

reformulated models (4.2) and/or (4.3). In particular, when applied to the model (4.2), it follows from the

first order optimality condition that, for any fixed x, solving the subproblem (3.1) (with h defined in (4.2))

is equivalent to solve the following nonlinear equations

F ′(x)⊤(F (x) + F ′(x)d)+ +
d

v
= 0, (4.4)

where x+ denotes the componentwise nonnegative part of x. This motivates us to propose an algorithm for

solving the feasibility problem (4.1), which is given in the following Algorithm 4.1. For the sake of simplicity,

we introduce, for any x ∈ Rn, an auxiliary function Hx : Rn → Rm defined by

Hx(d) := F ′(x)⊤(F (x) + F ′(x)d)+ +
d

v
for each d ∈ Rn. (4.5)

Algorithm 4.1. Given constants M > 0, α > 1, initial points x0 ∈ Rn and d−1 ∈ Rn, and a sequence

of stepsizes {vk} ⊆ (0,+∞). Having xk and dk−1, we determine xk+1 and dk as follows.

If Hxk
(0) = 0, then it stops; else if ∥Hxk

(0)∥ ≤ M∥dk−1∥α, then we set dk = ∥dk−1∥α−1dk−1 and

xk+1 = xk + dk; otherwise, we solve the nonlinear equations Hxk
(d) = 0 to obtain dk such that

∥Hxk
(dk)∥ ≤ M∥dk−1∥α, (4.6)

and set xk+1 = xk + dk.

Similarly, applying directly Algorithm 3.3 to (4.3), we present the following algorithm for solving the

feasibility problem (4.1).

Algorithm 4.2. Given constants M > 0 and α > 2, initial points x0 ∈ Rn and d−1 ∈ Rn, and a

sequence of stepsizes {vk} ⊆ (0,+∞). Having xk and dk−1, we set ϵk = M∥dk−1∥α and determine xk+1 and

dk as follows.

Let f∗
k := mind∈Rn

{
dist(F (xk) + F ′(xk)d,Rm

− ) + 1
2vk

∥d∥2
}
. If dist(F (xk),Rm

− ) = f∗
k , then it stops; else

if dist(F (xk),Rm
− ) ≤ f∗

k + ϵk, then we set dk = ∥dk−1∥α−1dk−1 and xk+1 = xk + dk; otherwise, we set dk to

be an ϵk-optimal solution of

min
d∈Rn

f(xk; d) := dist(F (xk) + F ′(xk)d,Rm
− ) +

1

2vk
∥d∥2,

and xk+1 = xk + dk.

To obtain the convergence properties of Algorithms 4.1 and 4.2 by virtue of Corollary 3.6, we provide

the following two propositions to show the weak sharp minima property and quasi-regularity condition for

models (4.2) and (4.3). The first proposition is trivial by definition, and the second one is a consequence of

[19, Proposition 4.1].

Proposition 4.1. Let F : Rn → Rm, and let x̄ ∈ Rn be such that F (x̄) ∈ Rm
− .

(i) Let h := 1
2dist

2(·,Rm
− ). Then Rm

− is the set of weak sharp minima of order 2 for h at F (x̄) with

η2(h;F (x̄)) = 1
2 .
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(ii) Let h := dist(·,Rm
− ). Then Rm

− is the set of weak sharp minima for h at F (x̄) with η1(h;F (x̄)) = 1.

To ensure the quasi-regularity condition of the inclusion F (x) ∈ Rm
− , we introduce the Robinson con-

straint qualification at a point x̄ satisfying F (x̄) ∈ Rm
− (see [29, Definition 2]), that is, it holds that

0 ∈ int
{
F (x̄) + imF ′(x̄) + Rm

+

}
. (4.7)

By [29, Theorem 3] (with Rn in place of C), one sees that the Robinson constraint qualification (4.7) is

equivalent to the following condition

imF ′(x̄) + Rm
+ = Rm. (4.8)

Proposition 4.2. Let F : Rn → Rm, and let x̄ ∈ Rn be such that F (x̄) ∈ Rm
− . Suppose that

F ∈ C1,1
L (B(x̄, r)) for some r > 0 and that the Robinson constraint qualification (4.7) is satisfied. Let

β̄ := sup
∥y∥≤1

inf
F ′(x̄)d∈y+Rm

−

∥d∥. (4.9)

Then, x̄ is a quasi-regular point of the inclusion F (x) ∈ Rm
− with the quasi-regularity constant β(x̄) ≤ β̄.

Proof. Recall from [19, (2.10)] (with Rm
− in place of C) that the map T−1

x̄ and its norm ∥T−1
x̄ ∥ are

defined by

T−1
x̄ y := {d ∈ Rn : F ′(x̄)d ∈ y + Rm

−} for each y ∈ Rm,

and

∥T−1
x̄ ∥ := sup{inf{∥d∥ : d ∈ T−1

x̄ (y)} : ∥y∥ ≤ 1},

respectively. Hence ∥T−1
x̄ ∥ = β̄ by definition. Without loss of generality, we may assume that r ≤ 1

L .

Note that the Robinson constraint qualification (4.7) is equivalent to (4.8); hence Tx̄ is surjective (and so

∥T−1
x̄ ∥ < +∞). Then, one concludes from [19, Proposition 4.1(ii)] that the inclusion F (x) ∈ Rm

− satisfies the

quasi-regularity condition on B(x̄, t) with constant ∥T−1
x̄ ∥

1−Lt for any t ∈ (0, r). Hence it follows from (2.9) that

β(x̄) ≤ inf
t>0

{
∥T−1

x̄ ∥
1− Lt

}
= β̄,

and the proof is complete.

In the following paragraph we establish the local linear convergence result for Algorithm 4.1 by showing

that any generated sequence {xk} of this algorithm is also a sequence generated by Algorithm 3.3, but with

the modification that dk ∈ LPv,ϵk(xk) in any case, with the same initial points and some suitable error

controls {ϵk} for problem (4.2). Recall that β̄ is defined by (4.9).

Theorem 4.3. Let x̄ ∈ X∗. Suppose that F ∈ C1,1
L (B(x̄, r)) for some r > 0, imF ′(x̄) + Rm

+ = Rm,

and that the stepsize v > 32β̄2. Then, there exists a neighborhood N(x̄) of x̄ such that, for any x0 ∈ N(x̄),

any sequence {xk} generated by Algorithm 4.1 with initial points x0 and d−1 near 0, linearly converges to a

solution x∗ ∈ X∗.

Proof. Let δ := r, α̃ := 2α and M̃ := M + L2 + 1
v . By Remark 3.6(b), there exists rδ ∈ (0, r) such

that (3.40) holds with {r, α̃, M̃} in place of {δ, α,M}. Let x0 ∈ B (x̄, rδ) and d−1 ∈ B (0, rδ) be initial
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points, and let {xk} and {dk} be the sequences generated by Algorithm 4.1. Set ϵk := vM̃2∥dk−1∥2α for

each k = 0, 1, . . . , and let h be defined by (4.2). Fix k ∈ N. We first show the following implication:

xk ∈ B (x̄, r) =⇒ dk ∈ LPv,ϵk(xk). (4.10)

To do this, we assume that xk ∈ B (x̄, r). Without loss of generality, we may assume that Hxk
(0) ̸= 0

(otherwise, LPv(xk) = 0 and that dk ∈ LPv,ϵk(xk) is clear). We now claim that

∥Hxk
(dk)∥ ≤ M̃∥dk−1∥α. (4.11)

In view of Algorithm 4.1, we only need to consider that case when ∥Hxk
(0)∥ ≤ M∥dk−1∥α (since (4.11)

automatically holds otherwise). By (4.5), one has that

∥Hxk
(dk)−Hxk

(0)∥ ≤ ∥F ′(xk)
⊤∥∥(F (xk) + F ′(xk)dk)+ − (F (xk))+∥+

1

v
∥dk∥. (4.12)

Note that y+ is the projection of y onto Rm
+ . Then it follows from [15, Chapter A, (3.1.6)] that ∥(F (xk) +

F ′(xk)dk)+ − (F (xk))+∥ ≤ ∥F ′(xk)dk∥. As F ∈ C1,1
L (B(x̄, r)) and xk ∈ B (x̄, r), it follows from (4.12) that

∥Hxk
(dk)−Hxk

(0)∥ ≤ ∥F ′(xk)∥2∥dk∥+
1

v
∥dk∥ ≤

(
L2 +

1

v

)
∥dk−1∥α

(due to dk = ∥dk−1∥α−1dk−1), and thus,

∥Hxk
(dk)∥ ≤ ∥Hxk

(0)∥+ ∥Hxk
(dk)−Hxk

(0)∥ ≤ M̃∥dk−1∥α.

Hence (4.11) is verified. To proceed, we define, for any x ∈ Rn, the function ϕx : Rn → Rm by

φx(d) :=
1
2dist

2(F (x) + F ′(x)d,Rm
− ) + 1

2v∥d∥
2 for each d ∈ Rn.

Note that φx (for fixed x ∈ Rn) is a convex function and that Hx(·) defined in (4.5) is its gradient. Hence

one has that

φxk
(d) ≥ φxk

(dk) + ⟨Hxk
(dk), d− dk⟩ for any d ∈ Rn.

In particular, letting d∗k := LPv(xk) (and so φxk
(d∗k) = mind∈Rn φxk

(d)), one concludes that

φxk
(dk) ≤ φxk

(d∗k)− ⟨Hxk
(dk), d

∗
k − dk⟩ ≤ φxk

(d∗k) + ∥Hxk
(dk)∥∥d∗k − dk∥. (4.13)

Moreover, by [30, Proposition 3], we have that ∥d∗k − dk∥ ≤ v∥Hxk
(dk)∥. This, together with (4.13) and

(4.11), implies that

φxk
(dk) ≤ φxk

(d∗k) + v∥Hxk
(dk)∥2 ≤ φxk

(d∗k) + vM̃2∥dk−1∥2α = φxk
(d∗k) + ϵk.

This means that dk ∈ LPv,ϵk(xk). Thus, implication (4.10) is checked. Next we further verify that

dk ∈ LPv,ϵk(xk) for each k ∈ N. (4.14)

Granting this and noting by Propositions 4.1(i) and 4.2 that both the weak sharp minima assumption (p = 2)

for h and the quasi-regularity assumption for the inclusion F (x) ∈ Rm
− are satisfied, one sees that Corollary

3.6 (and Remark 3.6(a)) is applicable; hence the conclusion follows.
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To show (4.14), note first that x0 ∈ B (x̄, rδ) ⊆ B (x̄, r) and so d0 ∈ LPv,ϵ0(x0) by implication (4.10).

We next assume that di ∈ LPv,ϵi(xi) for any i ≤ k. Then, by (3.40) (with {r, α̃, M̃} in place of {δ, α,M}),
we have that xk+1 ∈ B (x̄, r) ans dk+1 ∈ LPv,ϵk+1

(xk+1) by implication (4.10). Thus (4.14) is seen to hold

by mathematical induction; hence the proof is complete.

For Algorithm 4.2, we have the following local quadratic convergence result.

Theorem 4.4. Let x̄ ∈ X∗. Suppose that F ∈ C1,1
L (B(x̄, r)) for some r > 0 and that imF ′(x̄) + Rm

+ =

Rm. Then, there exists a neighborhood N(x̄) of x̄ such that, for any x0 ∈ N(x̄), any sequence {xk} generated

by Algorithm 4.2 with initial points x0 and d−1 near 0, quadratically converges to some x∗ ∈ X∗.

Proof. Note that the Algorithm 4.2 is a direction applying of Algorithm 3.3 to problem (4.3). Propositions

4.1(i) and 4.2 say that both the weak sharp minima assumption (p = 1) for h and the quasi-regularity

assumption for the inclusion F (x) ∈ Rm
− are satisfied. Hence Corollary 3.6 is applicable, and the conclusion

follows.

For the subproblem of solving each nonlinear equations Hxk
(d) = 0 in Algorithm 4.1, there are many

efficient methods such as the Newton-type methods and the trust region methods; see the monograph [26] for

more details. Note that the function Hx (for fixed x ∈ Rn) is p-order semismooth∗ everywhere for any p > 0

(which could be verified by definition). Recall from [28] that the semismooth Newton method for p-order

semismooth functions converges locally at a rate of 1+ p. This means that the semismooth Newton method

is highly efficient in solving each nonlinear equations Hxk
(d) = 0 (indeed, one iteration is enough in most

cases for our application in the sensor network localization problem below). This motivates us to present

the following algorithm based on one semismooth Newton iteration for solving each nonlinear equations

Hxk
(d) = 0.

Algorithm 4.3. Given initial points x0 ∈ Rn, d−1 ∈ Rn, and a sequence of stepsizes {vk} ⊆ (0,+∞).

Having xk and dk−1, we calculate the search direction dk by

V = F ′(xk)
⊤ diag(sgn(F ′(xk)d+ F (xk))+)F

′(xk) +
1

vk
In and dk = dk−1 − V −1Hxk

(dk−1),

where sgn(·) denotes the sign function, and set xk+1 = xk + dk.

Before conducting the numerical experiments, we make a remark on the comparison of the proposed

algorithms for the feasibility problem.

Remark 4.1.

(a) As showed by Theorems 4.4 and 4.3, Algorithm 4.2 achieves a local quadratic convergence rate while

Algorithm 4.1 concludes a local linear convergence rate. However, their numerical efficiency depends

on the costs of solving the corresponding subproblems. As illustrated in numerical experiments below,

Algorithm 4.1 is more efficient and costs less CPUtime than Algorithm 4.2. This is because that the

semismooth Newton method is highly efficient in solving each subproblem in Algorithm 4.1; while each

∗A locally Lipschitzian function ϕ : Rn → Rm is said to be p-order semismooth (p > 0) at x if

lim sup
h→0

sup
V ∈∂ϕ(x+h)

V h− ϕ′(x;h)

∥h∥1+p
is bounded,

where ϕ′(x;h) denotes the directional derivative of ϕ at x along h, and ∂ϕ(x) is the generalized Jacobian of ϕ at x (see [28]).

An important family of the p-order semi-smooth functions are the semi-algebraic Lipschitz functions, which covers most of

applications; see, e.g., [5].
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subproblem in Algorithm 4.2 is a (large scale) nonsmooth convex optimization problem, and it usually

takes much more time to solve this subproblem by using any popular algorithm such as the primal-dual

interior point method [41] or the alternating direction method [14].

(b) Although we cannot provide the proof of the linear convergence rate of Algorithm 4.3, our numerical

experiments below illustrate that it shares the same stability and linear convergence rate as Algorithm

4.1, and costs less CPUtime.

The rest of this section is devoted to demonstrate the performance of the LPA type algorithms on the

sensor network localization problem, arising from the area of wireless sensor networks.

Typical wireless sensor networks consist of a large number of inexpensive wireless sensors deployed in

a geographical area with the ability to communicate with their neighbors within a limited radio range.

The sensor network localization problem is to estimate the positions of the sensors in a network by using

the given incomplete pairwise distance measurements; see [4, 22, 38] and references therein. Formally, let

Vs = {s1, . . . , sn} ⊂ R2 and Va = {an+1, . . . , an+m} ⊂ R2 be the sets of sensors and anchors (a small

quantity of sensors whose positions are known), respectively. For each pair of (sensor, sensor) or (sensor,

anchor), if their distance is within the radio range (denoted by R), then they can detect each other and this

edge is recorded in the set Ess (the set of sensor-sensor edges) or Esa (the set of sensor-anchor edges). That

is, Ess and Esa denote the sets of sensor-sensor edges and sensor-anchor edges, whose length dij is less or

equal to the radio range R, respectively. Thus, the sensor network localization problem can be cast into the

feasibility problem of finding n locations xi ∈ R2 (i = 1, . . . , n) such that

∥xi − xj∥2 = d2ij , (i, j) ∈ Ess,

∥xi − xj∥2 > R2, (i, j) /∈ Ess,

∥xi − aj∥2 = d̄2ij , (i, j) ∈ Esa,

∥xi − aj∥2 > R2, (i, j) /∈ Esa,

(4.15)

see [34]. In general, the problem (4.15) is difficult to solve (indeed, it is NP-hard; see [33]), as the quadratic

constraints in it are nonconvex. As shown in (4.2) and (4.3), we can reformulate the feasibility problem

(4.15) as a convex composite optimization problem (a small perturbation on the strict inequalities of (4.15)

is required to maintain the closeness of the feasibility system), where the inner functions in (4.2) and (4.3)

are given by

gi,j,1(x) = ∥xi − xj∥2 − d2ij and gi,j,2(x) = d2ij − ∥xi − xj∥2, (i, j) ∈ Ess,

gi,j,0(x) = R2 − ∥xi − xj∥2, (i, j) /∈ Ess,

ḡi,j,1(x) = ∥xi − aj∥2 − d̄2ij and ḡi,j,2(x) = d̄2ij − ∥xi − aj∥2, (i, j) ∈ Esa,

ḡi,j,0(x) = R2 − |xi − aj∥2, (i, j) /∈ Esa.

Here, we will apply Algorithms 4.1, 4.2 and 4.3 to solve it in the numerical experiments.

Many works concentrate on the following relaxation model, neglecting all inequality constraints in (4.15),

∥xi − xj∥2 = d2ij , (i, j) ∈ Ess,

∥xi − aj∥2 = d̄2ij , (i, j) ∈ Esa,
(4.16)

see [4, 22] and references therein. We also apply Algorithms 4.1 and 4.2 to solve the relaxed problem (4.16).

One of the most popular and practical tools for solving the sensor network localization problem is the

semidefinite relaxation (SDR) technique, which further relaxes (4.16) into a semidefinite programming; see,
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e.g., [4, 22]. We choose the MATLAB software† in [4] as the representative of the semidefinite relaxation

technique. Furthermore, the proximal bundle method [32] is an implementable algorithm for solving the

convex composite optimization problems, which is also compared in the numerical experiments. Note that a

quadratic subproblem is solved to find the search direction in each iteration of the proximal bundle method,

here we employ the CVX‡ to solve such subproblems.

All numerical experiments are implemented in MATLAB R2013b and executed on a personal desktop

(Intel Core Duo E8500, 3.16 GHz, 4.00 GB of RAM). In the numerical experiments, the sensors and anchors

are randomly placed in the unit square [−0.5, 0.5]2:

Vs = −0.5 + 0.5 ∗ rand(2, n) and Va = −0.5 + 0.5 ∗ rand(2,m).

The key criterion to characterize the performance of executed algorithms is the accuracy of the estimation

{x1, . . . , xn}, measured by the root mean square distance (RMSD):

RMSD =
1√
n

(
n∑

i=1

∥si − xi∥2
) 1

2

.

In order to facilitate the reading of the numerical results, we list the abbreviations of the algorithms for

the sensor network localization problem in Table 4.1.

Table 4.1

List of the algorithms for solving the sensor network localization problem.

Abbreviations Algorithms

SDR SemiDefinite Relaxation method in [4], which is to solve the relaxed problem (4.16).

LPA-I Algorithm 4.1 for solving the problem (4.15).

LPA-II Algorithm 4.2 for solving the problem (4.15).

LPA-SN Algorithm 4.3 for solving the problem (4.15).

LPA-I-R Algorithm 4.1 for solving the Relaxed problem (4.16).

LPA-II-R Algorithm 4.2 for solving the Relaxed problem (4.16).

CPB The Composite Proximal Bundle method for solving the problem (4.15).

CPB-R The Composite Proximal Bundle method for solving the Relaxed problem (4.16).

When implementing the LPA type algorithms, we set M = 1, α = 2, d−1 = rand(2, n), the constant

stepsize v = 100 (unless otherwise specified), the stopping criterion of inner iteration (except the LPA-SN)

as Hxk
(d) < max{∥dk−1∥3, 1e− 6} or the number of iterations is greater than 50, and the stopping criterion

of the LPA type algorithms as RMSD < 1e− 10 or the number of outer iterations is greater than 100. The

initial starting point for The LPA-I and LPA-SN is chosen randomly, that for the LPA-II and LPA-II-R, CPB

and CPB-R is set as sensor+0.2 ∗ randn(2, n) and that for the LPA-I-R is set as sensor+0.5 ∗ randn(2, n).
Observing in the extensive simulations of the LPA type algorithms, we find that the number of semismooth

Newton iterations is frequently 1 and occasionally 2 or 3 in the first 10 outer iterations, and always 1 in the

rest of iterations. Hence, it is indicative that the semismooth Newton method is highly efficient in solving

the subproblem (4.4) of Algorithm 4.1. On the other hand, solving the subproblem of Algorithm 4.2 seems

†The code and description are available in http://www.math.nus.edu.sg/∼mattohkc/SNLSDP.html.
‡CVX, designed by Michael Grant and Stephen Boyd, is a MATLAB-based modeling system for convex optimization.

Detailed information is available at the website http://cvxr.com/cvx/.
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much harder than the semismooth Newton method for the subproblem of Algorithm 4.1, which is consistent

with Remark 4.1(a).

We first demonstrate the performance of the SDR, the LPA type and the CPB type algorithms on a

randomly generated network of 100 sensors, 10 anchors and the radio range being 0.3. All the algorithms

listed in Table 4.1 are tested in this experiment. The realization of the LPA-I is presented in Figure 4.1,

where the anchors are denoted by diamonds, the true sensors are denoted by circles and their estimates by

asterisks. The performance of all the algorithms are listed in Table 4.2. Three observations are indicated by

Table 4.2: (i) The SDR, LPA-I, LPA-SN and LPA-I-R (based on model (4.2)) can achieve the estimation in a

few seconds, while the LPA-II and LPA-II-R (based on model (4.3)), CPB and CPB-R are not suitable for the

large scale sensor network localization problem, since they take too much time in solving the subproblems.

(ii) We find that the performance of the LPA-I and LPA-SN do not depend on the choice of initial starting

points. Thus we believe that the LPA-I and LPA-SN can converge globally, even though this property cannot

be proved for the moment. The LPA-II, LPA-I-R and LPA-II-R converge locally, as shown in Theorems 4.3

and 4.4. The choices of the initial starting points also indicate that the LPA-I-R allows a larger region of the

initial points than the LPA-II and LPA-II-R. (iii) The LPA-I, LPA-SN and LPA-I-R achieve a more precise

solution and take less CPUtime than the SDR and CPB type algorithms do, since the LPA-I, LPA-SN and

LPA-I-R converge fast and do not need any software package. Moreover, the LPA-I and LPA-SN consume

more CPUtime than the LPA-I-R, because the LPA-I and LPA-SN are designed to solve the full version

of feasibility problem (4.15), whose the number of constraints is about the triple of that of the relaxation

problem (4.16), solved by LPA-I-R.
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Fig. 4.1. The LPA-I can successfully localize the positions of sensors in a wireless sensor network (100 sensors, 10

anchors, and radio range = 0.3), where the RMSD is 5.3e-11 and the CPUtime is 5.8 seconds.

Table 4.2

The performance of SDR, the LPA type and the CPB type algorithms for a sensor network localization problem (100

sensors, 10 anchors, and radio range = 0.3).

SDR LPA-I LPA-SN LPA-II LPA-I-R LPA-II-R CPB CPB-R

RMSD 1.9e-5 5.3e-11 4.5e-11 1.8e-10 6.1e-11 3.8e-15 1.3e-4 3.4e-4

CPUtime (seconds) 7.9 5.8 4.1 765 0.9 22 98 39

We also verify the local convergence rate of the LPA type algorithms by conducting extensive simulations.

Figure 4.2 plots the RMSD of the estimation along the number of the outer iterations in a random trial.
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Figure 4.2(a) illustrates the local linear convergence rate of the LPA-I, LPA-SN and LPA-I-R (based on

model (4.2)), which is consistent with the theoretical analysis in Theorem 4.3. Figure 4.2(b) demonstrates

the local quadratic convergence rate of the LPA-II and LPA-II-R (based on model (4.3)), which is consistent

with the theoretical analysis in Theorem 4.4.
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(a) The linear convergence rate.
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(b) The quadratic convergence rate.

Fig. 4.2. The local convergence rate of the LPA type algorithms.

The third experiment is performed to study the variation of RMSD when varying the circumstances

(the radio range and the number of anchors) of the wireless sensor network of 100 of them. Figure 4.3(a)

shows the variation of RMSD by increasing the radio range from 0.1 to 0.4 for the LPA-I, LPA-SN, LPA-I-R,

SDR and CPB. When the radio range R is too low, there is no enough information between the sensors or

anchors for the estimation to be effective. The accuracy is improved (the RMSD decreases) consistently for

all algorithms as the radio range is increased. It is also illustrated that the LPA-I and LPA-SN can obtain

more accurate estimation by using less information between the sensors or anchors (only need R ≥ 0.2).

Figure 4.3(b) illustrates the variation of RMSD by varying the number of anchors from 1 to 12. When

the number of anchors is too small, the estimation fails since the information revealed in the network is

not enough. The accuracy is enhanced consistently for all algorithms as the number of anchors increases.

The perfect estimation is realized by SDR and CPB when the number of anchors is greater than 4 and 5,

respectively, while the LPA-I, LPA-SN and LPA-I-R only require 2 anchors. This experiment indicates that

the LPA type algorithms can achieve the perfect estimation (in higher precision) by using less information

(the small radio range and the few anchors) than that of SDR.

We finally demonstrate the effect of the stepsize on the LPA type algorithms to localize a wireless sensor

network of 100 sensors and 10 anchors and the radio range being 0.3. Figure 4.4 shows the variation of

RMSD and CPUtime when varying the stepsize from 10−5 to 105. As shown in Figure 4.4(a), the accuracy

of the estimation is improved consistently for the LPA-I, LPA-SN and LPA-I-R as the stepsize increases.

This is because the stepsize is indeed a proximal parameter and this numerical result is consistent with the

theory on the proximal point algorithm in [30] (also Remarks 3.2(ii) and 3.5(ii)). Thus we conclude that

the larger the proximal parameter, the better the performance. We further find that the perfect estimation

requires the stepsize to be as large as v ≥ 10. It is illustrated in Figure 4.4(b) that the CPUtime drops when

v = 10 or 100 and decreases little when v > 100. Thus, in all experiments, we set the stepsize v = 100 as

default; see the paragraph below Table 4.1.
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(a) Varying the radio range of a network of 100 sensors

and 10 anchors.
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(b) Varying the number of anchors of a network of 100

sensors and R = 0.3.

Fig. 4.3. Variation of RMSD when varying the circumstances of network.
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Fig. 4.4. Variation of RMSD and CPUtime when varying the stepsize.

The conclusions of the numerical experiments can be summarized as follows. (i) The LPA-I, LPA-SN

and LPA-I-R (based on model (4.2)) can achieve a more precise solution, take less CPUtime and require

less information (the small radio range and the few anchors) than the SDR does. The LPA-II and LPA-II-R

(based on model (4.3)) are not suitable for the large scale sensor network localization problem. (ii) The

LPA-I and LPA-SN globally converge to the true sensors, while the LPA-II, LPA-I-R and LPA-II-R only

locally converge. (iii) For the LPA-I, LPA-SN and LPA-I-R, the larger the stepsize, the more precise the

estimation and the less the CPUtime. Further from the extensive simulations, we find that the LPA type

algorithms are a little less robust than the SDR. In particular, the estimation is regarded as “successful”

if the estimated RMSD is less than 1e − 3. Thus, the successful estimation rate of the SDR is about 96%,

while the LPA-I and LPA-SN can only successfully localize 93% wireless sensor networks.
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