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Abstract
The iterative soft thresholding algorithm (ISTA) is one of the most popular opti-

mization algorithms for solving the `1 regularized least square problem, and its linear
convergence has been investigated under the assumption of finite basis injectivity prop-
erty or strict sparsity pattern. In this paper, we consider the `1 regularized least square
problem in finite- or infinite-dimensional Hilbert space, introduce a weaker notion of or-
thogonal sparsity pattern (OSP), and establish the Q-linear convergence of ISTA under
the assumption of OSP. Examples are provided to illustrate the cases where the linear
convergence of ISTA can be established only by our result, but cannot be ensured by
any existing result in the literature.
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1 Introduction

Let H be a Hilbert space, and let l2 denote the Hilbert space consisting of all square-
summable sequences. Let N ∈ N ∪ {+∞} be fixed, and write

l2N :=

{
RN , if N ∈ N,
l2, otherwise,

and IN :=

{
{1, . . . , N}, if N ∈ N,

N, otherwise.

In this paper, we consider the following `1 regularized least square problem

min
u∈l2

1

2
‖Ku− h‖2 +

N∑
k=1

ωk|uk|, (1.1)
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where K : l2N → H is a bounded linear operator, and ω := (ωk) is a sequence of weights
satisfying

ωk ≥ ω > 0 for any k ∈ IN . (1.2)

In the last decade, problem (1.1) has been widely studied to approach a sparse approximate
solution of the linear inverse problem and gained successful applications in a wide range of
fields, such as compressive sensing [8,9,11], image science [4,6,13], systems biology [25,27,30]
and machine learning [1, 19, 22] in finite-dimensional spaces; and Fourier analysis [2, 7] and
Harmonic analysis [12,16] in infinite-dimensional spaces.

Motivated by successful applications of the `1 regularization problem (1.1), many prac-
tical and efficient optimization algorithms have been proposed to solve problem (1.1);
see [9, 15,18–23,31,32] and references therein. In particular, the iterative soft thresholding
algorithm (in short, ISTA) is one of the most widely studied first-order iterative algorithms
for solving problem (1.1). The ISTA was originally proposed to solve the image deconvolu-
tion problem in Euclidean spaces, independently introduced by Figueiredo and Nowak [14]
to approach a penalized maximum likelihood estimator under the name of EM algorithm,
and by Starck et al. [28] to minimize a total-variation regularized least square problem; and
it was first investigated in [10] for Hilbert spaces. The ISTA is formally described as follows.

Algorithm 1. Let an initial point u0 ∈ l2N be given. Having un, we choose a step size
sn > 0 and determine un+1 by

un+1 := Ssnω(un − snK∗(Kun − h)),

where Ssnω : l2N → l2N is a soft thresholding operator, defined by

Ssnω(v) := (sign(vk) · (|vk| − snωk)+) for each v := (vk) ∈ l2N . (1.3)

Under the assumption that the step sizes {sn} satisfy

0 < s ≤ sn ≤ s <
2

‖K‖2
for any n ∈ N, (1.4)

the (strong) convergence result of the ISTA with the initial point u0 ∈ l2N satisfying

N∑
k=1

ωk|u0k| <∞ (1.5)

(noting that this condition holds automatically for any u0 ∈ l2N in the case when N < ∞)
has been established in [5] for finite-dimensional spaces and in [10] for infinite-dimensional
spaces, respectively.

In recent years, many articles have been devoted to the study of convergence rates of the
ISTA, including convergence rates in terms of objective values and iterates; see [4,7,17,24,29]
and references therein. In this paper, we concentrate on the linear convergence of the ISTA
in terms of iterates. For I ⊆ IN , we define EI and K|I : EI → H respectively by

EI := {u ∈ l2N : uk = 0 for each k ∈ Ic} and K|I(u) := Ku for each u ∈ EI . (1.6)
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K is said to satisfy the I-basis injective property (in short, I-BI) if K|I is injective.
Based on the convergence result and under the basic assumptions (1.4) and (1.5), the

linear convergence of the ISTA has been established in [7, 17, 29] under some additional
assumptions. In the case when N < ∞, Hale et al. [17] proved the linear convergence of
the ISTA for the special case when ωk ≡ µ and under either of the following assumptions
held at the limiting point u∗ of the ISTA:

• J-BI: The operator K satisfies the J-BI (at x∗) with

J := {k ∈ IN : |(K∗(Ku∗ − h))k| = ωk}; (1.7)

• SCC: The strict complementarity condition is satisfied at u∗, i.e., supp(u∗) = J .

In 2016, Tao et al. [29] developed a new approach, based on spectral analysis, to provide
a linear convergence analysis of the ISTA under the assumptions that problem (1.1) has a
unique solution and that the SCC is satisfied at this solution; this new approach can also
be used to establish the linear convergence of the FISTA, which was proposed by Beck and
Teboulle [4]. Considering the infinite-dimensional case (i.e., l2N = l2), Bredies and Lorenz [7]
established the linear convergence of the ISTA under either of the following assumptions:

• FBI: The operator K has the finite basis injectivity property, i.e., K|I is injective for
any finite subset I ⊆ N;

• SSP: The strict sparsity pattern is satisfied at the limiting point u∗ of the ISTA, i.e.,
it holds for any k ∈ N that

u∗k = 0 ⇒ |(K∗(Ku∗ − h))k| < ωk.

Note that the FBI does not depend on the limiting point u∗, while the J-BI is crucial in
the establishment of linear convergence of the ISTA; see [7, Remark 8] for details. In the
special case when N <∞, the FBI implies the J-BI, and that the SSP is equivalent to the
SCC.

Inspired by the notions of FBI and SSP, we introduce a new notion of the orthogonal
sparsity pattern (in short, OSP), which is weaker than either FBI or SSP; see Remark 1.2
for details. Let the solution set of problem (1.1) be denoted by S. For a closed linear
subspace C of l2N , we use PC to denote the metric projection onto C, that is,

PC(u) := arg minv∈C‖v − u‖ for any u ∈ l2N .

In particular, (PC(u))i = ui when i ∈ I and (PC(u))i = 0 otherwise, where C = EI defined
by (1.6).

Definition 1.1. Let u∗ ∈ S, and let J be defined by (1.7). A bounded linear operator
K : l2N → H is said to have the OSP at u∗, if there exists an index set I ⊆ IN with

{k ∈ J : u∗k = 0} ⊆ I ⊆ J (1.8)

such that K satisfies the I-BI (i.e., K|I is injective) and

〈KPEI
(u),KPEJ\I (u)〉 = 0 for any u ∈ l2N . (1.9)
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Remark 1.2. (i) The set J defined in (1.7) is a finite set. Indeed, it is trivial when l2N = RN ;
otherwise, by (1.2) and (1.7), one has that

|J |ω2 ≤
∑
k∈J
|ωk|2 =

∑
k∈J
|(K∗(Ku∗ − h))k|2 ≤

∑
k∈N
|(K∗(Ku∗ − h))k|2 <∞.

This shows that J is a finite set.
(ii) By (i) of this remark, the following implications/equivalence are true by definition.

FBI ⇒ J-BI ⇒ OSP;

and
SSP ⇔ SSC ⇒ OSP.

The main result of this paper is presented in the following theorem, where the Q-linear
convergence of the ISTA is ensured provided the OSP, a weaker assumption than the one
assumed in [7, 17].

Theorem 1.3. Let {un} be a sequence generated by Algorithm 1 satisfying (1.4) and (1.5).
Then {un} converges to a solution u∗ of problem (1.1). Suppose that K possesses the OSP
at u∗. Then {un} linearly converges to u∗, that is, there exist λ ∈ (0, 1) and M ∈ N such
that

‖ un+1 − u∗‖ ≤ λ‖un − u∗‖ for any n > M.

By Theorem 1.3 and Remark 1.2, we directly obtain the following corollary, which was
proved in [17] for the case when N ∈ N and in [7] for the case when N =∞.

Corollary 1.4. Let {un} be a sequence generated by Algorithm 1 satisfying (1.4) and (1.5).
Then {un} converges to a solution u∗ of problem (1.1). Moreover, {un} linearly converges
to u∗ provided either of the following assumptions:

(a) the J-BI is satisfied;

(b) the SSP is satisfied at u∗.

The proof of Theorem 1.3 is presented in the next section. Examples are provided in
section 3 to show the cases where our result in this paper is available but neither the one
in [17] nor the one in [7].

2 Proof of Theorem 1.3

Let I ⊆ IN and C ⊆ l2N . As usual, we use C⊥ and Ic to denote the orthogonal complement
of C and the complementary of I, respectively. As presented in the preceding section, let
K : l2N → H be a bounded linear operator. The kernel and image of K are respectively
defined by

kerK = {u ∈ l2N : Ku = 0} and imK = {Ku : u ∈ l2N}.

The restriction of K on C is denoted by K|C : C → H and defined by

K|C(u) := Ku for each u ∈ C.
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Note by (1.6) that K|I = K|EI
for each index set I ⊆ IN .

To accomplish the proof of Theorem 1.3, we first present some basic properties of the
projection operator in the following lemmas, in which Lemma 2.1(a) (resp. (b), (c), (d)) is
taken from Theorem 3.14 (resp. Corollary 3.22(iii), (vi), Proposition 3.19) of [3], Lemma
2.2 is a direct consequence of [3, Fact 2.18] and Lemma 2.1(c).

Lemma 2.1. Let C be a closed linear subspace of l2N and x ∈ l2N . Then the following
assertions hold:

(a) z = PC(x) if and only if z ∈ C and x− z ∈ C⊥ for any y ∈ C;

(b) PC is a linear and continuous operator with ‖ PC ‖≤ 1;

(c) P ∗C = PC ;

(d) PC is idempotent, i.e., P 2
C = PC .

Lemma 2.2. Let I ⊆ IN . Then the following assertion holds:

(ker(KPEI
))⊥ = im(PEI

K∗).

Lemma 2.3. Let x ∈ l2N and y ∈ l2N , and let I1 ⊆ IN and I2 ⊆ IN be such that I1 ∩ I2 = ∅
and

〈KPEI1
(u),KPEI2

(u)〉 = 0 for any u ∈ l2N . (2.1)

Then the following assertion holds:

〈KPEI1
(x),KPEI2

(y)〉 = 0.

Proof. Let u := PEI1
(x) + PEI2

(y) ∈ l2N . Then it follows that

〈KPEI1
(x),KPEI2

(y)〉 = 〈KPEI1
(u),KPEI2

(u)〉 = 0

(due to (2.1) and Lemma 2.1). The proof is complete.

Associated to problem (1.1), one can directly check by using the optimality condition
of convex optimization [26] that

u∗ ∈ S ⇔ (−K∗(Ku∗ − h))k


= ωk, if u∗k > 0,
∈ [−ωk, ωk], if u∗k = 0,
= −ωk, if u∗k < 0,

for any k ∈ IN . (2.2)

For the remainder of this section, we always assume that

(A1) {un} is generated by Algorithm 1 satisfying (1.4) and (1.5);

(A2) u∗ := limn→∞ u
n ∈ S.
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For simplicity, we further write

v∗ := −K∗(Ku∗ − h) and vn := −K∗(Kun − h) for each n ∈ N. (2.3)

Then we have that

v∗ = limn→∞ v
n. (2.4)

Next, we provide the following three lemmas for the iterative procedure of Algorithm 1.
Recall that J is defined by (1.7).

Lemma 2.4. Let I ⊆ J . Then there exists M ∈ N such that

PEIc
(un − u∗) = PEJ\I (un − u∗) for any n > M. (2.5)

Proof. By (1.7), (2.2) and (2.3), one has that

Jc = {k ∈ IN : |v∗k| < ωk} ⊆ {k ∈ IN : u∗k = 0}. (2.6)

Set v∗k = 0 and ωk = ω for each k > N in the case when N < +∞. Then v∗ ∈ l2 for each
N ∈ N ∪ {+∞}. Hence it follows that limk→∞ |v∗k| = 0, and so it follows from (1.2) that

limk→∞
|v∗k|
ωk
≤ limk→∞

|v∗k|
ω = 0. Fix τ0 ∈ (0, 1). Then there exists M ∈ N such that

|v∗k|
ωk
≤ τ0 for any n ≥M.

Let τ := max
{
τ0,max

{
|v∗k|
ωk

: k ∈ Jc, k ≤M
}}

. Hence we have that τ ∈ (0, 1) and that

v∗k ∈ [−τωk, τωk] for any k ∈ Jc. (2.7)

By assumption (A2) and (2.4), there exists M ∈ N such that

‖un − u∗‖ ≤ 1− τ
2

s ω and ‖vn − v∗‖ ≤ 1− τ
2

ω for any n ≥M. (2.8)

Fix i ∈ Jc and n ≥ M . Note by (2.6) that u∗i = 0 and by (1.2) that ωi ≥ ω > 0. Then it
follows from (2.8) and (1.4) that

|uni | = |uni − u∗i | ≤
1− τ

2
s ω ≤ 1− τ

2
snωi,

and from (2.7) and (2.8) that

|vni | ≤ |vni − v∗i |+ |v∗i | ≤
1− τ

2
ω + τωi ≤

1− τ
2

ωi + τωi =
1 + τ

2
ωi.

Combining the above two inequalities, we obtain that |uni + snv
n
i | ≤ |uni | + sn|vni | ≤ snωi.

Hence, in view of Algorithm 1 and by (2.3), one has that

un+1
i = sign(uni + snv

n
i ) · (|uni + snv

n
i | − snωi)+ = 0.
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Since i ∈ Jc is arbitrary, we have that

PEJc (un+1) = 0. (2.9)

Note that EJ\I ⊥ EJc and EIc = EJ\I + EJc (since I ⊆ J). Then it follows that

PEIc
(un+1) = PEJc (un+1) + PEJ\I (un+1) = PEJ\I (un+1) (2.10)

(due to (2.9)). By (2.6), we obtain that

PEIc
(u∗) = PEJc (u∗) + PEJ\I (u∗) = PEJ\I (u∗).

This, together with (2.10) and Lemma 2.1(b), implies (2.5), and the proof is complete.

Lemma 2.5. Let I ⊆ J be such that the I-BI and (1.9) are satisfied. Then there exist
λ ∈ (0, 1) and M ∈ N such that

‖PEI
(un+1 − u∗)‖ ≤ λ‖PEI

(un − u∗)‖ for any n > M. (2.11)

Proof. By assumption, Lemma 2.4 is applicable to concluding that there exists M ∈ N such
that (2.5) holds. One checks by definition (cf. (1.3)) that Ssnω is nonexpansive, that is,

‖Ssnω(u)− Ssnω(v)‖ ≤ ‖u− v‖ for any u, v ∈ l2N . (2.12)

Fix n > M . In view of Algorithm 1, by (2.12) and Lemma 2.1(b), one has that

‖PEI
(un+1 − u∗)‖ = ‖PEI

(Ssnω(un − snK∗(Kun − h))− Ssnω(u∗ − snK∗(Ku∗ − h)))‖
= ‖SsnωPEI

(un − snK∗(Kun − h))− SsnωPEI
(u∗ − snK∗(Ku∗ − h))‖

≤ ‖PEI
(un − snK∗(Kun − h)− (u∗ − snK∗(Ku∗ − h)))‖

= ‖PEI
(I − snK∗K)(un − u∗)‖.

Noting that u = PEIc
(u)+PEI

(u) for any u ∈ l2N , we obtain by Lemma 2.1 that PEI
PEIc

= 0
and PEI

is linear idempotent, and then it follows from above that

‖PEI
(un+1 − u∗)‖

≤ ‖PEI
(I − snK∗K)PEI

(un − u∗) + PEI
(I − snK∗K)PEIc

(un − u∗)‖
= ‖(PEI

− snPEI
K∗KPEI

)PEI
(un − u∗)− snPEI

K∗KPEIc
(un − u∗)‖.

(2.13)

Then we claim that
PEI

K∗KPEIc
(un − u∗) = 0. (2.14)

Indeed, by (2.5) and Lemma 2.1(c)-(d), we obtain that

‖PEI
K∗KPEIc

(un − u∗)‖2 = ‖PEI
K∗KPEJ\I (un − u∗)‖2

= 〈PEI
K∗KPEJ\I (un − u∗), PEI

K∗KPEJ\I (un − u∗)〉
= 〈KPEJ\I (un − u∗),KPEI

K∗KPEJ\I (un − u∗)〉.

By assumption that (1.9) is satisfied, Lemma 2.3 is applicable (with I, J \ I in place of I1,
I2); hence we proved (2.14).
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Together with (2.14), (2.13) is reduced to

‖PEI
(un+1 − u∗)‖ ≤ ‖(PEI

− snPEI
K∗KPEI

)PEI
(un − u∗)‖

≤ ‖PEI
− snPEI

K∗KPEI
‖‖PEI

(un − u∗)‖. (2.15)

We end this proof by estimating ‖PEI
− snPEI

K∗KPEI
‖. One has by definition that

‖PEI
− snPEI

K∗KPEI
‖2

= sup‖u‖=1〈(PEI
− snPEI

K∗KPEI
)(u), (PEI

− snPEI
K∗KPEI

)(u)〉
= sup‖u‖=1 ‖PEI

(u)‖2 − 2sn〈PEI
(u), PEI

K∗KPEI
(u)〉+ s2n‖PEI

K∗KPEI
(u)‖2.

(2.16)

By Lemma 2.1, one has that

〈PEI
(u), PEI

K∗KPEI
(u)〉 = 〈KPEI

(u),KPEI
(u)〉 = ‖KPEI

(u)‖2, (2.17)

and that

‖PEI
K∗KPEI

(u)‖2 ≤ ‖KPEI
‖2‖KPEI

(u)‖2 ≤ ‖K‖2‖KPEI
(u)‖2. (2.18)

Together with (2.17) and (2.18), (2.16) implies that

‖PEI
− snPEI

K∗KPEI
‖2 ≤ sup

‖u‖=1
‖PEI

(u)‖2 − 2sn

(
1− sn

2
‖K‖2

)
‖KPEI

(u)‖2. (2.19)

Note by assumptions that EI is finite-dimensional and that K|I is injective. There exists
α ∈ (0, ‖K‖2) such that

‖KPEI
(u)‖ ≥ α‖PEI

(u)‖ for any u ∈ l2N . (2.20)

Also note by (1.4) that

sn

(
1− sn

2
‖K‖2

)
≥ s

(
1− s

2
‖K‖2

)
> 0. (2.21)

Together with (2.20) and (2.21), (2.19) yields that

‖PEI
− snPEI

K∗KPEI
‖2 ≤ sup

‖u‖=1

(
1− 2s

(
1− s

2
‖K‖2

)
α2

)
‖PEI

(u)‖2. (2.22)

Let λ :=
√

1− 2s
(
1− s

2‖K‖2
)
α2 ∈ (0, 1) (by (1.4)). Noting by Lemma 2.1(b) that

‖PEI
(u)‖ ≤ ‖u‖ we have by (2.22) that

‖PEI
− snPEI

K∗KPEI
‖ ≤ λ. (2.23)

This, together with (2.15), implies (2.11), and the proof is complete.

Lemma 2.6. Let I ⊆ IN be such that (1.8) and (1.9) are satisfied. Then there exist
λ ∈ (0, 1) and M ∈ N such that

‖PEIc
(un+1 − u∗)‖ ≤ λ‖PEIc

(un − u∗)‖ for any n > M. (2.24)
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Proof. By assumption (A2) and (2.4), there exists M ∈ N such that

|uni − u∗i | ≤
τ

2
and |vni − v∗i | ≤

τ

2s
for any n > M. (2.25)

Fix n > M . We first show that

PEJ\I (un+1) = PEJ\I (I − snK∗K)(un − u∗) + PEJ\I (u∗). (2.26)

To this end, we define

T := {k ∈ IN : u∗k 6= 0}. (2.27)

It follows from (1.7) and (2.2) that T ⊆ J , which is a finite set (see Remark 1.2). Let
τ := min {ω,min {|u∗k| : k ∈ T}} > 0 and fix i ∈ T . Then it follows that |u∗i | ≥ τ > 0.
Without loss of generality, we assume that

u∗i ≥ τ > 0; (2.28)

so we obtain by (2.2) that

v∗i = ωi. (2.29)

Note that

uni + snv
n
i = u∗i + uni − u∗i + sn(vni − v∗i ) + snv

∗
i ≥ u∗i − |uni − u∗i | − sn|vni − v∗i |+ snv

∗
i .

This, together (2.28), (2.25) and (2.29), yields that

uni + snv
n
i ≥ τ −

τ

2
− snτ

2s
+ snωi ≥ snωi > 0

(due to (1.4)). This says that sign(uni + snv
n
i ) > 0 and that |uni + snv

n
i | − snωi = uni +

snv
n
i − snωi ≥ 0. Therefore, in view of Algorithm 1, one has by (2.29) that

un+1
i = uni + snv

n
i − snωi = uni − u∗i + sn(vni − v∗i ) + u∗i = ((I − snK∗K)(un − u∗))i + u∗i

(due to (2.3)). Noting by (1.8) and (2.27) that J \ I ⊆ T and recalling that i ∈ T is
arbitrary, we obtained (2.26).

Let U := ker(KPEJ\I ). By Lemma 2.2, one has that

U⊥ = im(PEJ\IK
∗). (2.30)

Next, we show that

‖PIc(u
n+1 − u∗)‖ ≤ ‖PU⊥ − snPU⊥K

∗KPU⊥‖‖PEIc
(un − u∗)‖. (2.31)

To show this, employing PU on both sides of (2.26), we obtain by Lemma 2.1(b) that

PUPEJ\I (un+1) = PUPEJ\I (un − u∗)− snPUPEJ\IK
∗K(un − u∗) + PUPEJ\I (u∗)

= PUPEJ\I (un)− snPUPEJ\IK
∗K(un − u∗).

(2.32)

9



Noting by (2.30) that PEJ\IK
∗K(un − u∗) ∈ U⊥, it is easy to see from Lemma 2.1(a) that

PUPEJ\IK
∗K(un − u∗) = 0. This, together with (2.32), implies that

PUPEJ\I (un+1) = PUPEJ\I (un).

Noting by assumption (A2) that limn→∞ u
n = u∗ and that n > M is arbitrary, we obtain

by Lemma 2.1(b) that
PUPEJ\I (un) = PUPEJ\I (u∗). (2.33)

Then it follows from (2.33) and Lemma 2.1(b) that

PEJ\I (un − u∗) = PUPEJ\I (un − u∗) + PU⊥PEJ\I (un − u∗) = PU⊥PEJ\I (un − u∗). (2.34)

Employing PU⊥ on both side of (2.26), we have by Lemma 2.1(b) that

PU⊥PEJ\I (un+1 − u∗)
= PU⊥PEJ\I (I − snK∗K)(un − u∗)
= PU⊥PEJ\I (I − snK∗K)PEIc

(un − u∗) + PU⊥PEJ\I (I − snK∗K)PEI
(un − u∗)

= PU⊥PEJ\I (I − snK∗K)PEIc
(un − u∗)− snPU⊥PEJ\IK

∗KPEI
(un − u∗).

(2.35)
By assumption, Lemma 2.4 is applicable to ensuring (2.5). Then it follows from Lemma
2.1(b) and (d) that

PU⊥PEJ\I (I − snK∗K)PEIc
(un − u∗)

= PU⊥PEJ\I (I − snK∗K)PEJ\I (un − u∗)
= (PU⊥ − snPU⊥PEJ\IK

∗KPU⊥)PEJ\I (un − u∗)
(2.36)

(due to (2.34)). By definition of U⊥ (cf. (2.30)), one has that PU⊥PEJ\IK
∗v = PU⊥K

∗v
for any v ∈ H. This, together with (2.36), implies that

PU⊥PEJ\I (I − snK∗K)PEIc
(un − u∗) = (PU⊥ − snPU⊥K

∗KPU⊥)PEJ\I (un − u∗). (2.37)

On the other hand, by (2.30) and Lemma 2.1(c)-(d), we have that

‖PU⊥PEJ\IK
∗KPEI

(un − u∗)‖2
= 〈PU⊥PEJ\IK

∗KPEI
(un − u∗), PU⊥PEJ\IK

∗KPEI
(un − u∗)〉

= 〈KPEI
(un − u∗),KPEJ\IPU⊥PEJ\IK

∗KPEI
(un − u∗)〉.

Note by (1.9) that Lemma 2.3 is applicable to concluding that

PU⊥PEJ\IK
∗KPEI

(un − u∗) = 0. (2.38)

Together with (2.37) and (2.38), (2.35) is reduced to

PU⊥PEJ\I (un+1 − u∗) = (PU⊥ − snPU⊥K
∗KPU⊥)PEJ\I (un − u∗). (2.39)

Note by (2.5) and (2.34) that PIc(u
n − u∗) = PEJ\I (un − u∗) = PU⊥PEJ\I (un − u∗). This,

together with (2.39), yields (2.31).
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Recall that J is finite (see Remark 1.2), and so U⊥ is finite-dimensional (by (2.30)). We
also claim that K|U⊥ is injective. Indeed, let u ∈ U⊥ be such that

Ku = 0. (2.40)

By (2.30), there exists v ∈ H such that u = PEJ\IK
∗v; hence (2.40) says that KPEJ\IK

∗v =
0. Then it follows from Lemma 2.1(c)-(d) that

‖u‖2 = ‖PEJ\IK
∗v‖2 = 〈PEJ\IK

∗v, PEJ\IK
∗v〉 = 〈KPEJ\IK

∗v, v〉 = 0.

Thus we proved that K|U⊥ is injective, as desired.
Thus, by the arguments as we did for (2.23) (and by (2.30)), we obtain that there exists

λ ∈ (0, 1) such that
‖PU⊥ − snPU⊥K

∗KPU⊥‖ ≤ λ.
This, together with (2.31), yields (2.24), and the proof is complete.

Now we are ready to provide the proof of Theorem 1.3 as follows.

Proof of Theorem 1.3. As mentioned in the preceding section, {un} strongly converges to
u∗ ∈ S. By assumptions of Theorem 1.3, the blanket assumptions in this section and the
assumptions of Lemmas 2.5 and 2.6 are satisfied. Then the conclusion follows.

3 Examples

In this section, we provide two examples to show the cases where our result in this paper
is available but neither the one in [17] nor the one in [7]. The first example is illustrated in
Euclidean space, and the second one is demonstrated in infinite-dimensional space.

Example 3.1. Consider problem (1.1) with

K =

(
−1 1 −1 2
1 1 1 2

)
, h = (−3, 5)T and ω = (4, 2, 4, 8)T .

By (2.2), we have that u∗ ∈ S if and only if

0 ∈ 2u∗1 + 2u∗3 − 8 + 4 Sign(u∗1),
0 ∈ 2u∗2 + 4u∗4 − 2 + 2 Sign(u∗2),
0 ∈ 2u∗1 + 2u∗3 − 8 + 4 Sign(u∗3),
0 ∈ 4u∗2 + 8u∗4 − 4 + 8 Sign(u∗4),

(3.1)

where

Sign(t) :=


{1}, t > 0,

[−1, 1], t = 0,
{−1}, t < 0,

for any t ∈ R.

Clearly, the second and fourth inclusions of (3.1) are equivalent to that u∗4 = 0 and u∗2 = 0;
while the first and third inclusions of (3.1) are equivalent to that u∗1 + u∗3 = 2. Therefore,
we have that

S =
{

(a, 0, 2− a, 0)T : 0 ≤ a ≤ 2
}
. (3.2)

Write x∗ := (2, 0, 0, 0)T and y∗ := (0, 0, 2, 0)T . Then we have that
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(i) neither J-BI nor SSP is satisfied at any u∗ ∈ S;

(ii) OSP is satisfied at each u∗ ∈ S \ {x∗, y∗}.

Indeed, by (3.2), it is clear that

supp(u∗) =


{1}, if u∗ = x∗,
{3}, if u∗ = y∗,
{1, 3}, if u∗ ∈ S \ {x∗, y∗}.

(3.3)

For each u∗ ∈ S, one checks that

|K∗(Ku∗ − h)| = (4, 2, 4, 4)T , J = {1, 2, 3}, K|J =

(
−1 1 −1
1 −1 1

)
; (3.4)

hence we observe from (3.3) and (3.4) that K|J is not injective and that supp(u∗) 6= J .
Thus assertion (i) is verified. Fix u∗ ∈ S \ {x∗, y∗}. Note by (3.3) that supp(u∗) = {1, 3}
and note by (3.4) that J = {1, 2, 3}. Let I = {2}. Then one checks by (3.4) that (1.8),
(1.9) and the I-BI are satisfied; consequently, assertion (ii) is proved.

Let u0 = 0 and sn ≡ s ∈ (0, 15) (‖K‖ =
√

10), and let {un} be a sequence generated by
Algorithm 1. Below, we show that {un} linearly converges to a solution of problem (1.1).
In view of Algorithm 1, one has that

un = (1− (1− 4s)n, 0, 1− (1− 4s)n, 0)T for any n ∈ N.

Since s ∈ (0, 15), it follows that

lim
n→∞

un = (1, 0, 1, 0)T ∈ S

(due to (3.2)). Noting by assertion (ii) that the OSP is satisfied at (1, 0, 1, 0)T , we obtain by
Theorem 1.3 the linear convergence of {un} to (1, 0, 1, 0)T . However, according to assertion
(i), neither the result of linear convergence in [17] nor the one in [7] is available when solving
this example.

Example 3.2. Consider problem (1.1) with K : l2 → l2 being defined by

Ku := (u1 + u2, u3, u4, u5, u6, · · · )T for each u := (uk) ∈ l2,

h := (2, 13 ,
1
4 ,

1
5 ,

1
6 , · · · )

T and ω := (1, 1, 15 ,
1
5 ,

1
5 ,

1
5 , · · · )

T . Then problem (1.1) is equivalent to

min

(
1

2
(u1 + u2 − 2)2 + |u1|+ |u2|

)
+
∞∑
k=3

min

(
1

2
(uk −

1

k
)2 +

1

5
|uk|

)
. (3.5)

Let u∗ ∈ S. Clearly, the first minimization of problem (3.5) is equivalent to that u∗1+u∗2 = 2;
while the others are equivalent to that u∗3 = 2

15 , u∗4 = 1
20 and u∗k = 0 for each k ≥ 5.

Therefore, we have that

S =

{
(a, 1− a, 2

15
,

1

20
, 0, 0, · · · )T : 0 ≤ a ≤ 1

}
. (3.6)
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Write x∗ := (1, 0, 2
15 ,

1
20 , 0, 0, · · · )

T and y∗ := (0, 1, 2
15 ,

1
20 , 0, 0, · · · )

T . Then we have
assertions (i) and (ii) in Example 3.1. Indeed, by (3.6), it is clear that

supp(u∗) =


{1, 3, 4}, if u∗ = x∗,
{2, 3, 4}, if u∗ = y∗,
{1, 2, 3, 4}, if u∗ ∈ S \ {x∗, y∗}.

(3.7)

For each u∗ ∈ S, one checks that

|K∗(Ku∗ − h)| = (1, 1,
1

5
,
1

5
,
1

5
,
1

6
,
1

7
, · · · )T ,

and so

J = {1, 2, 3, 4, 5} and K|J =



1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
...

...
...

...
...


; (3.8)

hence we observe from (3.7) and (3.8) that K|J is not injective and that supp(u∗) 6= J . That
is, assertion (i) is verified. Fix u∗ ∈ S \ {x∗, y∗}. Note by (3.7) that supp(u∗) = {1, 2, 3, 4}
and note by (3.8) that J = {1, 2, 3, 4, 5}. Let I = {5}. Then one checks by (3.8) that (1.8),
(1.9) and the I-BI are satisfied; hence assertion (ii) is proved.

Let u0 = 0 and sn ≡ s ∈ (0, 1) (‖K‖ =
√

2), and let {un} be a sequence generated by
Algorithm 1. Below, we show that {un} linearly converges to a solution of problem (1.1).
In view of Algorithm 1, one has that

un =



1
2 −

1
2(1− 2s)n

1
2 −

1
2(1− 2s)n

2
15 −

2
15(1− s)n

1
20 −

1
20(1− s)n

0
0
...


for any n ∈ N.

Since s ∈ (0, 1), it follows that

lim
n→∞

un = (
1

2
,
1

2
,

2

15
,

1

20
, 0, 0, · · · )T ∈ S

(due to (3.6)). Noting by assertion (ii) that the OSP is satisfied at (12 ,
1
2 ,

2
15 ,

1
20 , 0, 0, · · · )

T ,
Theorem 1.3 is applicable to concluding that {un} linearly converges to (12 ,

1
2 ,

2
15 ,

1
20 , 0, 0, · · · )

T .
However, according to assertion (i), the result of linear convergence in [7] is not available
when solving this example.
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[5] J. Bect, L. Blanc-Fèraud, G. Aubert, and A. Chambolle, A l1 unified varia-
tional framework for image restoration, in: T. Pajdla and J. Matas (Eds.), Proc. Eighth
Europ. Conf. Comput. Vision, 2004, pp. 1–13.

[6] K. Bredies and D. A. Lorenz, Iterated hard shrinkage for minimization problems
with sparsity constraints, SIAM J. Sci. Comput., 30 (2008), pp. 657–683.

[7] K. Bredies and D. A. Lorenz, Linear convergence of iterative soft-thresholding, J.
Fourier Anal. Appl., 14 (2008), pp. 813–837.

[8] E. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inform. The-
ory, 51 (2005), pp. 4203–4215.

[9] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward
splitting, Multiscale Model. Sim., 4 (2005), pp. 1168–1200.

[10] I. Daubechies, M. Defrise, and C. D. Mol, An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint, Commun. Pur. Appl. Math., 57
(2004), pp. 1413–1457.

[11] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–
1306.

[12] D. L. Donoho, Nonlinear solution of linear inverse problems by wavelet-vaguelette
decomposition, Appl. Comput. Harmon. Anal. 2 (1995), pp. 101–126.

[13] M. Elad, Sparse and Redundant Representations, Springer, New York, 2010.

[14] M. A. T. Figueiredo and R. D. Nowak, An EM algorithm for wavelet-based image
restoration, IEEE Trans. Image Process., 12 (2003), pp. 906–916.

[15] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse problems,
IEEE J. Sel. Top. Signa., 1 (2007), pp. 586–597.

14



[16] R. Gribonval and M. Nielsen, Highly sparse representations from dictionaries are
unique and independent of the sparseness measure, Appl. Comput. Harmon. Anal., 22
(2007), pp. 335–355.

[17] E. T. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for `1-minimization:
Methodology and convergence, SIAM J. Optim., 19 (2008), pp. 1107–1130.

[18] B. He and X. Yuan, On the O(1/n) convergence rate of the Douglas-Rachford alter-
nating direction method, SIAM J. Numer. Anal., 50 (2012), pp. 700–709.

[19] Y. Hu, C. Li, K. Meng, J. Qin, and X. Yang, Group sparse optimization via `p,q
regularization, J. Mach. Learn. Res., 18 (2017), pp. 1–52.

[20] Y. Hu, C. Li, and X. Q. Yang, On convergence rates of linearized proximal algo-
rithms for convex composite optimization with applications, SIAM J. Optim., 26 (2016),
pp. 1207–1235.

[21] Z. Lu and L. Xiao, On the complexity analysis of randomized block-coordinate descent
methods, Math. Program., 152 (2015), pp. 615–642.

[22] J. Mairal, Incremental majorization-minimization optimization with application to
large-scale machine learning, SIAM J. Optim., 25 (2015), pp. 829–855.

[23] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization
problems, SIAM J. Optim., 22 (2012), pp. 341–362.

[24] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program.,
140 (2013), pp. 125–161.

[25] J. Qin, Y. H. Hu, F. Xu, H. K. Yalamanchili, and J. Wang, Inferring gene
regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-
type regularization methods, Methods, 67 (2014), pp. 294–303.

[26] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

[27] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, A sparse-group Lasso, J.
Comput. Graph. Stat., 22 (2013), pp. 231–245.

[28] J.-L. Starck, M. K. Nguyen, and F. Murtagh, Wavelets and curvelets for image
deconvolution: A combined approach, Signal Process., 83 (2003), pp. 2279–2283.

[29] S. Tao, D. Boley, and S. Zhang, Local linear convergence of ISTA and FISTA on
the LASSO problem, SIAM J. Optim., 26 (2016), pp. 313–336.

[30] J. Wang, Y. Hu, C. Li, and J.-C. Yao, Linear convergence of CQ algorithms and
applications in gene regulatory network inference, Inverse Probl., to appear, 2017.

[31] L. Xiao and T. Zhang, A proximal-gradient homotopy method for the sparse least-
squares problem, SIAM J. Optim., 23 (2013), pp. 1062–1091.

[32] J. Yang and Y. Zhang, Alternating direction algorithms for `1-problems in compres-
sive sensing, SIAM J. Sci. Comput., 33 (2011), pp. 250–278.

15


