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Abstract. In this paper, we consider a saddle point problem of qua-
siconvex optimization, which is to find a saddle point of a quasiconvex-
quasiconcave function over a closed convex set. We propose a subgradi-
ent method to approach the saddle value and investigate its convergence
property under a general assumption of the Hölder condition of order
p and using the constant or diminishing stepsize rules. To avoid the
difficulty in calculating the exact subgradient, we further propose a sto-
chastic subgradient method, where a random noisy quasi-subgradient
is employed in the subgradient approach in place of the exact quasi-
subgradient. The convergence analysis shows that the stochastic sub-
gradient method shares the same convergence behavior as that of the
exact subgradient method with probability 1.

Our motivation also comes from a major application of subgradient
methods: the Lagrangian duality. In general, the subgradient of the dual
function is usually difficult to calculate in the quasiconvex setting, since
it requires to estimate values of dual functions, that is to solve many
nonconvex optimization problems. This hinders the implementation of
the dual subgradient method for (quasiconvex) optimization problems.
To overcome this obstacle, applying the proposed subgradient method-
s to solve the resulting primal-dual problem, we obtain a primal-dual
subgradient method to approximate a saddle value of the Lagrangian
function, which only requires to directly calculate the subgradient of
the Lagrange function without solving any auxiliary problem, and thus
avoiding the difficulty in computing the subgradient of the dual function.
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1. Introduction

Saddle point problem is an important issue arising in a wide range of
areas, such as duality theory of constrained optimization, zero-sum games
and general equilibrium theory. The general saddle point problem is to find
a saddle point (x∗, y∗) of a convex-concave function F(x, y) on closed convex
sets X ⊆ Rn and Y ⊆ Rm such that

(1.1) F(x∗, y) ≤ F(x∗, y∗) ≤ F(x, y∗) for any x ∈ X and y ∈ Y .

Subgradient methods provide a popular and practical decentralized com-
putational technique for solving non-smooth saddle point and optimization
problems in many disciplines. Subgradient methods originated with the
works of Polyak [30] and Ermoliev [8], many extensions and generalizations
have been considered and numerous applications have been proposed; see
[4, 15, 16, 21, 26, 27, 29, 33] and references therein. Nowadays, because of
the simple formulation and low storage requirement, subgradient methods
remain important for solving nonsmooth or stochastic optimization prob-
lems, especially for large-scale problems.

Many works have been devoted to the study of subgradient methods for
approaching the saddle value (or a saddle point) of a convex-concave func-
tion; see, e.g., [1, 19, 24, 28, 29, 32]. In particular, Larsson et al. [24]
and Nesterov [29] studied convergence properties of primal-dual subgradient
methods along with the averaging scheme and using the diminishing stepsize
rule. Sen and Sherali [32] proposed a class of primal-dual subgradient meth-
ods that employed Lagrangian dual functions along with suitable penalty
functions, and proved that the sequence of primal-dual iterates converges
to a saddle point when using several classical types of penalty functions.
Recently, Nedić and Ozdaglar [28] adopted the constant stepsize rule and
estimated the convergence rate of the sequence generated by subgradient
methods to the saddle value per iteration.

In recent years, a central challenge to many fields of science and engi-
neering involves nonconvex optimization in high-dimensional spaces. One
of the most important types beyond convex optimization is the quasicon-
vex optimization, which have many important applications in various areas,
such as economics, engineering, management science and various applied
sciences; see [3, 7, 14, 34] and references therein. However, the study of
subgradient methods for solving quasiconvex optimization problems is lim-
ited. In particular, Kiwiel [20] studied convergence properties of the exact
subgradient method for solving quasiconvex optimization problems in the
use of the diminishing stepsize rule. By extending this work and further
using the constant stepsize rule, Hu et al. [17] proposed a generic inexact
subgradient method to solve quasiconvex optimization problems, and stud-
ied the influence of the deterministic noise by describing convergence results
in both objective values and iterates and finite convergence to the approxi-
mate optimality. Furthermore, Hu et al. [18] studied convergence properties
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of the stochastic subgradient method for solving quasiconvex optimization
problems. On the other hand, the modified dual subgradient algorithms
were investigated in Gasimov [11] and Burachik et al. [6] for solving a gen-
eral nonconvex optimization problem with equality constraints by virtue of
a sharp augmented Lagrangian.

Extending to the quasiconvex setting, in this paper, we consider the fol-
lowing saddle point problem in the quasiconvex setting

(1.2) min
x∈X

max
y∈Y

F(x, y)

where F : Rn×Rm → R is a quasiconvex-quasiconcave function, and X and
Y are the nonempty, closed and convex sets in Rn and Rm, respectively. In
particular, F(·, y) is quasiconvex for any y ∈ Y , and F(x, ·) is quasiconvex
for any x ∈ X. It is clear that a solution of problem (1.2) is a pair (x∗, y∗) ∈
X × Y satisfying (1.1). Such a vector pair (x∗, y∗) is also referred to as a
saddle point of the function F on the set X × Y .

In this paper, we will introduce a subgradient method to solve the con-
strained minimax problem (1.2) of a quasiconvex-quasiconcave function, and
explore convergence properties of the subgradient method when using the
constant or diminishing stepsize rules. Lacking the convexity assumed in
[28], the quasiconvex optimization is more difficult to deal with, and the
main technical challenge of convergence analysis of the subgradient method
is to establish a proper basic inequality, which is a key tool in the literature
of subgradient methods. To this end, we will adopt the quasi-subdifferential
and assume the Hölder condition, as in [17]. We will show that the subgra-
dient method converges to the optimal value of problem (1.2) within some
tolerance (given in terms of the stepsize) when using the constant stepsize
rule, and exactly converges to the optimal value in the use of the diminishing
stepsize rule.

Due to errors in measurements or uncertainty in problem data, the di-
rect application of the exact subgradient may not be meaningful. In such
situations, we propose a stochastic subgradient method, where the noisy
(unbiased) quasi-subgradient (see Definition 2.2) is adopted in each itera-
tion, to solve problem (1.2). The convergence theory presented in this paper
extends the one shown in [18] to the saddle point problem or the constrained
minimax problem, and improves the one reported in [17]. In particular, our
convergence results show that the stochastic subgradient method shares the
same convergence behavior as that of the exact subgradient method (see
Theorems 3.2 and 3.3) with probability 1, and it achieves a better tolerance
than that of the inexact subgradient method reported in [17] (see Theorems
4.3 and 4.4).

The motivation of our work also stems from a major application of sub-
gradient methods, which is to the Lagrangian function of a constrained op-
timization problem. For example, we usually face the following constrained
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quasiconvex optimization problem (the primal problem)

(1.3)
min f(x)
s.t. g(x) ≤ 0,

x ∈ X,

where f : Rn → R is a quasiconvex function, g = (g1, . . . , gm)⊤ with each
gi : Rn → R being quasiconvex, and X ⊆ Rn is a closed and convex set.
Although the primal subgradient method has been investigated in [17, 18,
20] to solve the primal problem (1.3), but all these works are under an
assumption that the projection onto the feasible set is easy to compute.
However, the projection onto {x : g(x) ≤ 0} ∩X, the feasible set associated
with (1.3), is not easily implemented in general. An alternative and popular
technique for (1.3) is to adopt the dual approach, which is defined by the
Lagrangian relaxation of the inequality constraint g(x) ≤ 0 and is given by

(1.4)
max q(µ)
s.t. µ ∈ Rm

+ ,

where the dual function q : Rm → R is defined by

q(µ) = inf
x∈X

L(x, µ) via L(x, µ) = f(x) + µ⊤g(x).

The strong duality between (1.3) and (1.4) has been established in [10, The-
orems 9 and 14] for quasiconvex optimization under some mild conditions.
The dual subgradient method has been investigated in [6, 13, 27] for convex
optimization, while the implementation of dual subgradient method deeply
relies on the assumption that the subgradient of the dual function can be
estimated efficiently. However, the dual function q(·) and its subgradient
are difficult to calculate in the quasiconvex setting, since it requires to solve
a nonconvex optimization problem. This hinders the implementation of the
dual subgradient method for quasiconvex optimization. To overcome this
obstacle, we consider the following primal-dual problem

(1.5) max
µ∈Rm

+

min
x∈X

L(x, µ).

It is clear that L(x, ·) is quasiconcave (in particular, it is linear) for any
x ∈ X. For some classical types of quasiconvex functions, such as fractional
functions (see, e.g., [34]), L(·, µ) is quasiconvex for any µ ∈ Rm

+ . An example
is that

f(x) =
p(x)

r(x)
and g(x) =

q(x)

r(x)
,

where p(·) > 0 and q(·) > are convex, and r(·) > 0 is concave. Directly
applying the proposed subgradient methods to solve the primal-dual problem
(1.5), we obtain a primal-dual subgradient method to approximate a saddle
value (or a saddle point) of the Lagrangian function. In contrast to the
dual subgradient method, the primal-dual subgradient method approaches
a saddle value without solving any auxiliary problems, and thus avoids the
difficulty in computing subgradients of the dual function.
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The paper is organized as follows. In section 2, we present the notation
and preliminary results used in this paper. In section 3, we introduce a sub-
gradient method to approximate a saddle value of quasiconvex-quasiconcave
function, and investigate convergence properties of the subgradient method
when using the constant or diminishing rules. In section 4, we propose a
stochastic subgradient method and establish its convergence properties in
sense of with probability 1.

2. Notation and preliminary results

We consider the n-dimensional Euclidean space Rn with inner product
⟨·, ·⟩ and norm ∥ · ∥. In particular, we use S to denote the unit sphere
centered at the origin. For x ∈ Rn and Z ⊆ Rn, we use dist(x,Z) and
PZ(x) to denote the Euclidean distance of x from Z and the classical metric
projection of x onto Z, respectively, i.e.,

dist(x,Z) := inf
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

A function h : Rn → R is said to be quasiconvex if

h((1− α)x+ αy) ≤ max{h(x), h(y)} for any x, y ∈ Rn and α ∈ [0, 1];

h is said to be quasiconcave if −h is quasiconvex, that is,

h((1− α)x+ αy) ≥ min{h(x), h(y)} for any x, y ∈ Rn and α ∈ [0, 1].

For any α ∈ R, we denote the level sets of h by

lev<αh := {x ∈ Rn : h(x) < α}, lev≤αh := {x ∈ Rn : h(x) ≤ α},
lev>αh := {x ∈ Rn : h(x) > α}, lev≥αh := {x ∈ Rn : h(x) ≥ α}.

It is well-known that h is quasiconvex if and only if lev<αh (and/or lev≤αh)
is convex for any α ∈ R, and that h is quasiconcave if and only if lev>αh
(and/or lev≥αh) is convex for any α ∈ R.

The subdifferential of quasiconvex functions is an important issue of qua-
siconvex optimization, and several types of subdifferentials of quasiconvex
functions have been introduced in the literature; see, e.g., [2, 12, 17, 20]. In
particular, Kiwiel [20] and Hu et al. [17] introduced a quasi-subdifferential,
which is a normal cone to a strict sublevel set of the quasiconvex function,
and utilized such a subgradient in their proposed subgradient methods. We
recall the definition of quasi-subdifferential as follows.

Definition 2.1. Let h : Rn → R and x ∈ Rn.

(a) Assume that h is quasiconvex. The quasi-subdifferential of h at x is
defined by

∂h(x) = {g : ⟨g, y − x⟩ ≤ 0, ∀y ∈ lev<h(x)h}.
(b) Assume that h is quasiconcave. The quasi-subdifferential of h at x is

defined by

∂h(x) = {g : ⟨g, y − x⟩ ≥ 0, ∀y ∈ lev>h(x)h}.
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Any vector g ∈ ∂h(x) is called a quasi-subgradient of h at x.

Allowing a random noise, the following noisy quasi-subgradient was in-
troduced and employed in the stochastic subgradient method in [18].

Definition 2.2. Let h : Rn → R and x ∈ Rn, and let g̃(x) ∈ Rn be a
random vector.

(a) Assume that h is quasiconvex. g̃(x) is called a noisy (unbiased) quasi-
subgradient of h at x if Eg̃(x) ∈ ∂h(x), that is,

E⟨g̃(x), y − x⟩ ≤ 0 for any y ∈ lev<h(x)h,

where E(·) denotes the expectation of a random variable, and E⟨g̃(x), y−
x⟩ = ⟨Eg̃(x), y − x⟩.

(b) Assume that h is quasiconcave. g̃(x) is called a noisy quasi-subgradient
of h at x if

E⟨g̃(x), y − x⟩ ≥ 0 for any y ∈ lev>h(x)h.

(c) g̃(x) is called a unit noisy quasi-subgradient of h at x if it is a noisy
quasi-subgradient of f at x and satisfies ∥Eg̃(x)∥ = 1.

The Hölder condition is a critical assumption for the convergence study
of numerical algorithms in quasiconvex optimization. The Hölder condition
of order p is used to describe some properties of the quasi-subgradient in
[22, 23], and assumed in [17, 18] to investigate convergence properties of the
inexact quasi-subgradient method and the stochastic subgradient method.

Definition 2.3. Let p > 0, L > 0 and x̄ ∈ Rn. h : Rn → R is said to satisfy
the Hölder condition of order p with modulus L at x̄ if

(2.1) |h(x)− h(x̄)| ≤ L∥x− x̄∥p for any x ∈ Rn.

h is said to satisfy the Hölder condition of order p with modulus L on X if
(2.1) holds for any x̄ ∈ X.

A bounded subgradient assumption is usually assumed in the literature of
subgradient methods for convex optimization; see, e.g., [21, 26, 27, 28]. This
assumption can be guaranteed when the function h is globally Lipschitz, that
is,

|h(x)− h(x̄)| ≤ L∥x− x̄∥ for any x ∈ Rn.

More precisely, the Hölder condition of order 1 is equivalent to the bounded
subgradient assumption whenever h is convex (see [17]). Moreover, we pro-
vide some examples of quasiconvex-quasiconcave functions that satisfy the
Hölder condition.

Example 2.4. (i) f(x, y) :=
√
|x| −

√
|y| satisfies the Hölder condition of

1
2 with modulus 1.
(ii) f(x, y) := ∥x∥p − ∥y∥p with p ∈ (0, 1) satisfies the Hölder condition of p
with modulus 1.
(iii) f(x, y) := ∥x∥pp−∥y∥pp, where p ∈ (0, 1) and ∥x∥pp :=

∑n
i=1 |xi|p, satisfies

the Hölder condition of p with modulus 1.



PRIMAL-DUAL SUBGRADIENT METHOD 7

The following lemma describes an important property of a quasiconvex
function that satisfies the Hölder condition. This property locally relates
the quasi-subgradient with objective function values, which is a key tool to
establish the basic inequality in convergence analysis. Items (i) and (ii) are
taken from [23, Proposition 2.1] and [18, Lemma 2.4], respectively.

Lemma 2.5. Let h be a quasiconvex function, X be a closed and convex set,
and let X∗ be set of minima of h on X. Let p > 0, L > 0 and x ∈ X \X∗.
Suppose that h satisfies the Hölder condition of order p with modulus L at
some x∗ ∈ X∗. Then it holds that

(i) Let g ∈ ∂h(x) ∩ S. Then

⟨g, x− x∗⟩ ≥
(
h(x)− h(x∗)

L

) 1
p

.

(ii) Let g̃(x) be a unit noisy quasi-subgradient of h at x. Then

E⟨g̃(x), x− x∗⟩ ≥
(
h(x)− h(x∗)

L

) 1
p

.

3. Subgradient method for saddle point problem

The aims of this section are to introduce a subgradient method to solve
problem (1.2), and to investigate its convergence properties. The subgradi-
ent method for solving (1.2) is formally presented as follows.

Algorithm 3.1. Select initial points x0 ∈ X and y0 ∈ Y , and a sequence
of stepsizes {vk} ⊆ (0,+∞). Having xk and yk, we calculate the unit quasi-
subgradients of F at (xk, yk) with respect to x and y, that is, compute

Fx(xk, yk) ∈ ∂xF(xk, yk) ∩ S and Fy(xk, yk) ∈ ∂yF(xk, yk) ∩ S,

and update xk+1 and yk+1, respectively, by

xk+1 = PX(xk − vkFx(xk, yk)),(3.1)

yk+1 = PY (yk + vkFy(xk, yk)).(3.2)

The stepsize rule has a critical effect on the convergence behavior and
computational performance of subgradient methods. In this paper, we con-
sider the following two typical stepsize rules.

(a) Constant stepsize rule.

vk ≡ v(> 0).

(b) Diminishing stepsize rule.

(3.3) vk > 0, lim
k→∞

vk = 0,
∞∑
k=0

vk = +∞.
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To study the convergence properties of our methods, we make the follow-
ing assumption1:

• Let (x∗, y∗) be a saddle point of (1.2). Assume that F satisfies the
Hölder condition of order p > 0 with modulus L > 0 on X × Y .

We start the convergence analysis of Algorithm 3.1 by providing the fol-
lowing basic inequalities, which show the behaviour of the subgradient iter-
ations. Item (i) is for the primal subgradient approach, and item (ii) is for
the dual subgradient approach.

Lemma 3.1. Let {xk} and {yk} be sequences generated by Algorithm 3.1.
Then the following two assertions hold for any k ≥ 0:

(i) If F(xk, yk) > F(x∗, yk), we have

(3.4) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
F(xk, yk)−F(x∗, yk)

L

) 1
p

+ v2k.

(ii) If F(xk, yk) < F(xk, y
∗), we have

(3.5) ∥yk+1 − y∗∥2 ≤ ∥yk − y∗∥2 − 2vk

(
F(xk, y

∗)−F(xk, yk)

L

) 1
p

+ v2k.

Proof. (i) In view of Algorithm 3.1 (cf. (3.1)), for any k ≥ 0, it follows
from the nonexpansive property of projection operator that

(3.6)
∥xk+1 − x∗∥2 ≤ ∥xk − vkFx(xk, yk)− x∗∥2

= ∥xk − x∗∥2 − 2vk⟨Fx(xk, yk), xk − x∗⟩+ v2k.

Since F(xk, yk) > F(x∗, yk), Lemma 2.5(i) is applicable (to F(·, yk),
xk, Fx(xk, yk) in place of h, x, g) to concluding that

⟨Fx(xk, yk), xk − x∗⟩ ≥
(
F(xk, yk)−F(x∗, yk)

L

) 1
p

.

Hence, (3.6) is reduced to (3.4), and this completes the proof of (i).
(ii) Similarly, by (3.2) and the nonexpansive property of projection opera-

tor, for any k ≥ 0, we obtain that

(3.7)
∥yk+1 − y∗∥2 ≤ ∥yk + vkFy(xk, yk)− y∗∥2

= ∥yk − y∗∥2 + 2vk⟨Fy(xk, yk), yk − y∗⟩+ v2k.

By the assumption that F(xk, yk) < F(xk, y
∗), Lemma 2.5(i) is ap-

plicable (to −F(xk, ·), yk, −Fy(xk, yk) in place of h, x, g); hence it
follows that

⟨−Fy(xk, yk), yk − y∗⟩ ≥
(
F(xk, y

∗)−F(xk, yk)

L

) 1
p

.

Therefore, (3.7) is reduced to (3.5), and the proof of (ii) is complete.

1Due to the structure of saddle point problem (1.2), this assumption can be weakened
to be that F(·, y) and F(x, ·) satisfy the Hölder condition of order p > 0 with modulus
L > 0 on X for any y ∈ Y and on Y for any x ∈ X, respectively.
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�

By virtue of Lemma 3.1, we will provide the convergence results of Algo-
rithm 3.1 when using the constant and diminishing stepsize rules in Theo-
rems 3.2 and 3.3, respectively.

Theorem 3.2. Let {xk} and {yk} be sequences generated by Algorithm 3.1
with the constant stepsize rule. Then

lim inf
k→∞

F(xk, yk)− L
(v
2

)p
≤ F(x∗, y∗) ≤ lim sup

k→∞
F(xk, yk) + L

(v
2

)p
.

Proof. It is clear that the proofs of the above two inequalities follow a similar
analysis, we only show the proof of the first inequality and omit that of the
second one. To do this, we prove by contradiction, assuming to the contrary
that

lim inf
k→∞

F(xk, yk) > F(x∗, y∗) + L
(v
2

)p
.

Then there exist some δ > 0 and k0 ∈ N such that, for any k ≥ k0,

F(xk, yk) > F(x∗, y∗) + L
(v
2
+ δ

)p
≥ F(x∗, yk) + L

(v
2
+ δ

)p
.

Then Lemma 3.1(i) is applicable; hence, for any k ≥ k0, it follows from (3.4)
that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2v
(
F(xk,yk)−F(x∗,yk)

L

) 1
p
+ v2

≤ ∥xk − x∗∥2 − 2v
(
v
2 + δ

)
+ v2

= ∥xk − x∗∥2 − 2vδ.

Summing the above inequality over k = k0, . . . , n, we have that

∥xn+1 − x∗∥2 ≤ ∥xk0 − x∗∥2 − 2(n+ 1− k0)vδ,

which yields a contradiction for sufficiently large n. Then we obtain the first
inequality, and thus, the proof is complete. �

Using the diminishing stepsize rule, the tolerance in Theorem 3.2 vanishes
and the following theorem is obtained.

Theorem 3.3. Let {xk} and {yk} be sequences generated by Algorithm 3.1
with the diminishing stepsize rule. Then

(3.8) lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) ≤ lim sup
k→∞

F(xk, yk).

Proof. We only show the proof of the first inequality of (3.8) and omit that
of the second one. To do this, we prove by contradiction, assuming to the
contrary that

lim inf
k→∞

F(xk, yk) > F(x∗, y∗).

Then there exist some δ > 0 and k0 ∈ N such that, for any k ≥ k0,

F(xk, yk) > F(x∗, y∗) + Lδp ≥ F(x∗, yk) + Lδp.
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Then Lemma 3.1(i) is applicable; hence, for any k ≥ k0, it follows from (3.4)
that

(3.9) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
F(xk,yk)−F(x∗,yk)

L

) 1
p
+ v2k

≤ ∥xk − x∗∥2 − 2vkδ + v2k.

Since {vk} diminishes (cf. (3.3)), there exists some kδ ∈ N such that

vk ≤ δ for any k ≥ kδ.

Hence, for any k ≥ k̃ := max{k0, kδ}, (3.9) is reduced to

(3.10) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − vkδ.

Summing the above inequality over k = k̃, . . . , n, we have that

∥xn+1 − x∗∥2 ≤ ∥xk̃ − x∗∥2 − δ

n∑
k=k̃

vk,

which yields a contradiction for sufficiently large n (since
∑∞

k=0 vk = +∞).
Thus we obtain the first inequality of (3.8), and the proof is complete. �

Remark 3.4. Note in Algorithm 3.1 that we adopt the uniform stepsize
in the primal and dual subgradient approaches. More general, we can also
utilize the mixed stepsizes in the subgradient method for solving problem
(1.2), that is, (3.1) and (3.2) in Algorithm 3.1 are replaced by

xk+1 = PX(xk − αkFx(xk, yk)),(3.11)

yk+1 = PY (yk + βkFy(xk, yk)),(3.12)

where αk > 0 and βk > 0 are the primal and dual stepsizes, respectively.
Following the convergence analysis in Theorems 3.2 and 3.3, we can establish
the following convergence results for the subgradient method (3.11)-(3.12):

(i) Assume αk ≡ α > 0 and {βk} is the diminishing stepsize rule. Then it
hods that

lim inf
k→∞

F(xk, yk)− L
(α
2

)p
≤ F(x∗, y∗) ≤ lim sup

k→∞
F(xk, yk).

(ii) Assume {αk} is the diminishing stepsize rule and βk ≡ β > 0 . Then
it hods that

lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) ≤ lim sup
k→∞

F(xk, yk) + L

(
β

2

)p

.

4. Stochastic subgradient method

Due to errors in measurements or uncertainty in problem data, the direct
application of the exact subgradient may not be meaningful. In such situa-
tions, an alternative approach is to use a noisy estimate of the subgradient.
Adopting a random noisy estimate as the true subgradient, the stochastic
subgradient method was pioneered by Ermoliev [8, 9] and further developed
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by many scholars (e.g., [5, 25, 31]). Recently, Hu et al. [18] proposed a sto-
chastic subgradient method to solve constrained quasiconvex optimization
problems. Many convergence results of the stochastic subgradient method
have been established in which the generated sequence could achieve the
same convergence properties as that of the exact subgradient method with
probability 1, because the random behavior help “average out” the statisti-
cal noise in subgradient evaluations.

Inspired by the ideas in [18] and references therein, this section aims at the
study of the stochastic subgradient method for solving problem (1.2). The
only difference between the stochastic subgradient method of this section
and Algorithm 3.1 is that the stochastic noisy quasi-subgradients are em-
ployed in the subgradient approach in place of the exact quasi-subgradient.
The stochastic subgradient method for solving (1.2) is formally presented as
follows.

Algorithm 4.1. Select initial points x0 ∈ X and y0 ∈ Y , and a sequence
of stepsizes {vk} ⊆ (0,+∞). Having xk and yk, we calculate the unit noisy

quasi-subgradients F̃x(xk, yk) and F̃y(xk, yk) of F at (xk, yk) with respect
to x and y, and update xk+1 and yk+1, respectively, by

xk+1 = PX(xk − vkF̃x(xk, yk)),(4.1)

yk+1 = PY (yk + vkF̃y(xk, yk)).(4.2)

We recall the supermartingale convergence theorem (see [5, Proposition
4.2]), which is useful in the convergence analysis of the stochastic subgradient
method.

Lemma 4.1. Let {Yk}, {Zk} and {Wk} be three sequences of nonnegative
random variables, and let {Vk} be a sequence of sets of random variables
such that Vk ⊆ Vk+1 for any k ≥ 0. Suppose that the following conditions
are satisfied for each k ≥ 0:

(a) Yk, Zk and Wk are functions of the random variables in Vk;
(b) E {Yk+1 | Vk} ≤ Yk − Zk +Wk;
(c)

∑∞
k=0Wk < ∞.

Then
∑∞

k=0 Zk < ∞, and the sequence {Yk} converges to a nonnegative
random variable Y , with probability 1.

Now we provide in the following lemma some basic inequalities, which
show a significant property of a stochastic subgradient iteration.

Lemma 4.2. Let {xk} and {yk} be sequences generated by Algorithm 4.1.
Fix some n ∈ N, and let Vn := {x0, y0, x1, y1, . . . , xn, yn}. Then the following
two assertions are true:

(i) If F(xn, yn) > F(x∗, yn), we have

E
{
∥xn+1 − x∗∥2 | Vn

}
≤ ∥xn − x∗∥2 − 2vn

(
F(xn, yn)−F(x∗, yn)

L

) 1
p

+ v2n.
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(ii) If F(xn, yn) < F(xn, y
∗), we have

E
{
∥yn+1 − y∗∥2 | Vn

}
≤ ∥yn − y∗∥2 − 2vn

(
F(xn, y

∗)−F(xn, yn)

L

) 1
p

+ v2n.

Proof. In view of Algorithm 4.1 (cf. (4.1)) and by the nonexpansive property
of projection operator, we have that

∥xn+1 − x∗∥2 ≤ ∥xn − vnF̃x(xn, yn)− x∗∥2
= ∥xn − x∗∥2 − 2vn⟨F̃x(xn, yn), xn − x∗⟩+ v2n.

By taking the conditional expectation with respect to Vn, it follows that

E{∥xn+1 − x∗∥2 | Vn} ≤ ∥xn − x∗∥2 − 2vnE{⟨F̃x(xn, yn), xn − x∗⟩ | Vn}+ v2n

≤ ∥xn − x∗∥2 − 2vn

(
F(xn,yn)−F(x∗,yn)

L

) 1
p
+ v2n,

where the last inequality follows from Lemma 2.5(ii) (to F(·, yn), xn, F̃x(xn, yn)
in place of h, x, g̃(x)). Thus, we obtained (i) and can prove (ii) by taking
the similar analysis. �

By virtue of Lemma 4.2, we will establish in Theorems 4.3 and 4.4 the con-
vergence results of Algorithm 4.1 for the constant and diminishing stepsize
rules, respectively.

Theorem 4.3. Let {xk} and {yk} be sequences generated by Algorithm 4.1
with the constant stepsize rule. Then it holds, with probability 1, that

(4.3) lim inf
k→∞

F(xk, yk)−L
(v
2

)p
≤ F(x∗, y∗) ≤ lim sup

k→∞
F(xk, yk)+L

(v
2

)p
.

Proof. We only show the proof of the first inequality of (4.3) and omit that
of the second one. To do this, fix δ > 0 and define a feasible level set
(X ⊗ Y )δ by

(4.4) (X ⊗ Y )δ :=
{
(x, y) ∈ X × Y : F(x, y) < F(x∗, y∗) + L

(v
2
+ δ

)p}
,

and let (xδ, yδ) ∈ (X ⊗ Y )δ. We construct a new sequence {(x̂k, ŷk)} by
(x̂0, ŷ0) := (x0, y0), and{

x̂k+1 := PX(x̂k − vkF̃x(x̂k, ŷk))

ŷk+1 := PY (ŷk + vkF̃y(x̂k, ŷk))
if (x̂k, ŷk) /∈ (X ⊗ Y )δ;

otherwise, (x̂k+1, ŷk+1) := (xδ, yδ). Then the sequence {(x̂k, ŷk)} is identical
to {(xk, yk)}, except that once (x̂k, ŷk) enters (X ⊗ Y )δ and then {(x̂k, ŷk)}
terminates with (xδ, yδ) ∈ (X ⊗ Y )δ. Assume that (x̂k, ŷk) /∈ (X ⊗ Y )δ for

any k and let V̂k := {x̂0, ŷ0, x̂1, ŷ1, . . . , x̂k, ŷk}. It follows from (4.4) that

F(x̂k, ŷk) ≥ F(x∗, y∗) + L
(v
2
+ δ

)p
≥ F(x∗, ŷk) + L

(v
2
+ δ

)p
,
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and then Lemma 4.2(i) is applicable; hence, for any k, we obtain that

E
{
∥x̂k+1 − x∗∥2 | V̂k

}
≤ ∥x̂k − x∗∥2 − 2v

(
F(x̂k,ŷk)−F(x∗,ŷk)

L

) 1
p
+ v2

≤ ∥x̂k − x∗∥2 − 2vδ.

Then Lemma 4.1 is applicable; hence one concludes that
∑∞

k=0 2vδ < ∞
with probability 1, which is impossible. Therefore, (x̂k, ŷk) /∈ (X ⊗ Y )δ
only occurs finitely many times, and (x̂k, ŷk) ∈ (X ⊗ Y )δ for any k (≥ N).
Consequently, for the original sequence {xk}, it holds, with probability 1,
that

lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) + L
(v
2
+ δ

)p
.

Since δ > 0 is arbitrary, we arrive at the first inequality of (4.3), and the
proof is complete. �

Theorem 4.3 shows the convergence of Algorithm 4.1 to the optimal value
within some tolerance given in terms of the constant stepsize with probabili-
ty 1. This tolerance, L

(
v
2

)p
, is the same as the one obtained in Theorem 3.2,

and is smaller than the one reported in [17, Theorem 3.1] for the inexact sub-
gradient method that is expressed as L

(
Rd+ v

2 (1 +R)2
)p

+ ϵ. This shows
the advantage of adopting the randomized noise in subgradient methods.

Theorem 4.4. Let {xk} and {yk} be sequences generated by Algorithm 4.1
with the diminishing stepsize rule. Then

lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) ≤ lim sup
k→∞

F(xk, yk) with probability 1.

Proof. The proof of this theorem adopts the property of the diminishing
stepsize rule (cf. (3.3)) and a line of analysis similar to that of Theorem 4.3.
Hence we omit the details. �

Theorem 4.4 describes the exact convergence of the stochastic subgra-
dient method for solving (1.2) when using the diminishing stepsize rule,
which shares the same convergence property as that of the exact subgradi-
ent method (see Theorem 3.3) with probability 1.

Remark 4.5. Similar to Remark 3.4, we can also adopt the mixed stepsizes
in the stochastic subgradient method, that is, (4.1) and (4.2) in Algorithm
4.1 are replaced by

xk+1 = PX(xk − αkF̃x(xk, yk)),(4.5)

yk+1 = PY (yk + βkF̃y(xk, yk)).(4.6)

The following convergence results for the subgradient method (4.5)-(4.6)
follows form Theorems 4.3 and 4.4.

(i) Assume αk ≡ α > 0 and {βk} is the diminishing stepsize rule. Then it
hods, with probability 1, that

lim inf
k→∞

F(xk, yk)− L
(α
2

)p
≤ F(x∗, y∗) ≤ lim sup

k→∞
F(xk, yk).
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(ii) Assume {αk} is the diminishing stepsize rule and βk ≡ β > 0 . Then
it hods, with probability 1, that

lim inf
k→∞

F(xk, yk) ≤ F(x∗, y∗) ≤ lim sup
k→∞

F(xk, yk) + L

(
β

2

)p

.

5. Conclusion and future work

In this paper, we have proposed a subgradient method to solve a saddle
point problem or a minimax problem of a quasiconvex-quasiconcave function
over a closed convex set. The convergence theory to approach the saddle
value has been established under the assumption of the Hölder condition
of order p and by using the constant and diminishing stepsize rules. To
adjust the uncertain noise in applications, we have proposed a stochastic
subgradient method and provided its convergence analysis showing that the
stochastic subgradient method shares the same convergence behavior as that
of the exact subgradient method with probability 1.

Many questions maintain still open in the study of subgradient meth-
ods for solving saddle point problems of quasiconvex optimization. In our
convergence study, only the convergence of objective values is provided,
while the convergence of iterates is absent at this moment. Furthermore,
in many applications, the computation error stems from practical consider-
ations, and is inevitable in the computing process. The computation error
usually gives rise to the calculation of an approximate subgradient, and the
inexact subgradient method meets the requirement of applications. The con-
vergence study of the inexact subgradient method has a significant influence
in spreading applications of numerical optimization.

Acknowledgment. The authors are grateful to the anonymous reviewer
for his/her valuable suggestions and remarks that helped to improve the
quality of the paper.
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