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Abstract 

We formulate a general bottom-up model for the joint optimization of maintenance, rehabilitation, and 

reconstruction (MR&R) schedules for a system of heterogeneous pavement segments under budget 

constraints. The objective is to minimize the total costs incurred to both the highway users and the 

pavement management agency. We propose a Lagrange multiplier approach together with 

derivative-free quasi-Newton algorithms to solve the problem for two scenarios: i) with a combined 

budget constraint for all the treatments; and ii) with one budget constraint for each treatment. The 

system-level solution approach has the following merits: i) it can be applied to problems with any 

forms of segment-level models for user and agency costs, deterioration process, and treatment 

effectiveness, given that the solution to the segment-level problem is available; ii) under the combined 

budget constraint, it ensures that the optimality gap of the system-level solution is bounded by a term 

that depends upon the optimality gap of the segment-level solutions; and iii) it exhibits linear 

complexity with the number of segments. 

 

At the segment level, a new maintenance effectiveness model fitted on empirical data is 

proposed and incorporated into the MR&R optimization program. A greedy heuristic algorithm is 

developed, which greatly reduces the computation time without compromising the solution quality. 

Combining the system-level and segment-level models and solution algorithms, we examine a batch 

of numerical cases. The results show considerable cost savings from the incorporation of maintenance, 

and from jointly optimizing the use of a combined agency budget. A number of managerial insights 

stemmed from the numerical case studies are discussed, which can help highway agencies formulate 

more cost-efficient MR&R plans and budget allocation. 
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1. Introduction 

1.1. Background 

Surface roads constitute the world’s largest transportation infrastructure network. For example, the 

United States alone has over 4 million miles of roads, which served over 3 trillion vehicle-miles in the 

year of 2015 (CBO, 2016; ASCE, 2017). The constantly increasing amount of vehicle-miles creates 

ever-growing pavement deterioration and aging in many regions over the world. The deteriorated 

pavements in turn incur higher costs for vehicle repair, traffic congestion, and extra fuel consumption 

and emission, among others. This imposes a great challenge for highway agencies to optimally plan 

MR&R activities for the road pavements, especially given that a large portion of the pavements are 

currently in poor conditions, and that the available annual budget rises consistently slower than the 

MR&R costs needed (ASCE, 2017). 

 

 Conventionally, a highway agency’s long-term planning decision considered only 

rehabilitation and reconstruction activities. However, in recent decades many studies have reported 

the sizable effects of preventive maintenance activities (e.g. chip seal, microsurfacing) on slowing 

down the pavement’s deterioration and extending its service life (Chong, 1989; Ponniah and 

Kennepohl, 1996; Labi and Sinha, 2003; Mamlouk and Dosa, 2014). These cheap maintenance 

treatments are particularly attractive for highway agencies under budget pressure. However, most 

highway agencies do not have well-established preventive maintenance planning mechanism (Peshkin 

et al., 2004). Hence, an optimization model for the joint planning of not only the rehabilitation and 

reconstruction activities, but also the preventive maintenance activities, is highly desired. 

Unfortunately such a model is missing in the literature to the best of our knowledge. We next examine 

the strength and deficiency of existing studies in the realm of MR&R planning optimization. 

 

1.2. Literature review 

Studies in this realm commenced by optimizing the rehabilitation planning of a single segment (Friesz 

and Fernandez, 1979; Fernandez and Friesz, 1981; Markow and Balta, 1985). A variety of 

segment-level optimization models have thenceforth been developed, which are characterized by the 

pavement deterioration process (memoryless or history-dependent), the number of treatments, and 

whether the time and/or pavement states are discrete or continuous variables. Table 1 summarizes the 

modeling features and solution approaches of select segment-level studies. Of note is that the table 

shows a general trend of evolution from simpler models (with memoryless deterioration process, 

single treatment, and discrete variables) to more complicated but realistic ones (with 

history-dependent deterioration process, multiple treatments, and continuous variables). This is partly 

thanks to the development of more sophisticated approaches for seeking global optimal solutions, e.g. 

calculus of variation (Ouyang and Madanat, 2006; Lee and Madanat, 2014b). The most complicated 

(and realistic) segment-level model so far seems to be Lee and Madanat (2014a), which optimized the 

planning of all the three treatments (maintenance, rehabilitation and reconstruction) with 
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history-dependent deterioration process. 1  However, the solution relied on the technique of 

approximate dynamic programming, which requires high computation time and thus may not be 

suitable for large-scale systems of pavements. Another finding is that the solution approaches in Table 

1 are usually problem-specific. This means a solution approach generally cannot be applied, without 

making substantial changes, to solve a different version of the segment-level optimization model (e.g. 

with different deterioration process, number of treatments, or treatment effectiveness models). Finally, 

the maintenance effectiveness models used in segment-level MR&R optimization are unrealistic. For 

example, the maintenance model used by Gu et al. (2012) and Lee and Madanat (2014a, b) was 

hypothesized with ungrounded parameter values. As a result, the optimal MR&R plan obtained by 

Lee and Madanat (2014a) showed greater deterioration rate reduction could occur when maintenance 

was applied to a pavement near the end of its lifecycle (see Fig. 4a of the cited work), which 

contradicts with the common understanding in practice. 

 

On the other hand, a highway agency often manages hundreds of pavement segments or more. 

Thus they are more interested in models that can jointly optimize for a system of pavement segments 

under certain budget constraints, which can be incorporated into their pavement management systems. 

However, the system-level problems are by nature more complicated than the segment-level ones. 

This is why a smaller number of studies were found in this category, including some works that relied 

on the highly idealized “top-down” approaches (Kuhn and Madanat, 2005; Durango-Cohen and 

Sarutipand, 2007). Those top-down models assumed homogeneous pavement segments in a system, 

and are thus unrealistic and unsuitable for real-world implementation. 

 

The more realistic, “bottom-up” approaches that appreciate the heterogeneity in pavement 

segments have also been applied to system-level MR&R planning optimization. A number of select 

bottom-up studies are summarized in Table 2. The table shows that many of the cited studies relied on 

metaheuristic methods (e.g. genetic algorithm and tabu search), especially for the models involving 

multiple treatments and history-dependent deterioration process. Metaheuristic methods are known to 

be unable to guarantee the global optimality of the solution (Blum and Roli, 2003). In fact they are 

often unable to assess how close the solution is to the global optimum.2 Some other works also 

sought to optimizing Lagrangian and Lagrangian dual functions of the original problem (Sathaye and 

Madanat, 2011; 2012; Lee et al., 2016). However, these works often relied on the convexity of the 

problem formulation to obtain optimal solutions. Unfortunately, the convexity is not always 

                                                      
1 Although Lee and Madanat (2014b) also optimized three treatments, it assumed a constant effectiveness of 

maintenance (in terms of the reduction in pavement deterioration rate), while Lee and Madanat (2014a) relaxed 

this assumption. 

2 Since the global optimum is not available, a common means to assess the quality of a heuristic solution is to 

compare that against a lower bound of the global optimum (for minimization problems). However, such a lower 

bound is often unavailable too. 
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guaranteed, given the fact that the empirical models for pavement deterioration and treatment 

effectiveness may vary from case to case. Another problem of most existing bottom-up studies is that 

the solution approaches are highly dependent upon the segment-level empirical models3; i.e., they 

cannot be directly applied to another system-level problem with different segment-level models. This 

is undesirable since there are many variants of segment-level models (see again Table 1), and new 

empirical models may arise in the future to replace the present ones. Finally, to the authors’ best 

knowledge, there is no system-level optimization model for the joint planning of three or more 

treatments (including preventive maintenance) with sufficient realistic features.4 This perhaps is 

because the existing approaches listed in Table 2 are insufficient to find optimal solutions within 

acceptable computation time when more treatments are considered. Note that incorporating preventive 

maintenance into the optimal MR&R planning would add much to the complexity of the problem, 

partly because the effect of maintenance on the pavements is very different from that of rehabilitation 

and reconstruction (Mamlouk and Dosa, 2014). 

 

1.3. The research question and rundown of the paper 

Given the research gap in the literature revealed above, in this paper we will develop a 

computationally efficient and not problem-specific approach to find globally-optimal or near-optimal 

MR&R policies for large-scale pavement systems. To this end, we first propose a general formulation 

of the system-level problem that is independent of any specific segment-level models. Two scenarios 

are considered in the formulation: i) where a combined budget constraint is applied to all the MR&R 

treatments; and ii) where each treatment is subject to a separate budget constraint. A general solution 

approach is then developed to decompose the system-level problem into a number of segment-level 

subproblems. This is done by relaxing the budget constraint(s) via Lagrange multiplier(s). The 

optimization program is then converted to a bi-level one where the lower level is the segment-level 

subproblems which are solved by model-specific algorithms, and the upper level is to find the value of 

the Lagrange multiplier. We show for the combined-budget-constraint scenario that global optimality 

is retained at the system level via certain derivative-free iterative methods; i.e., if the segment-level 

subproblems are solved at or near optimality, then the global optimality or near-optimality of the 

system-level problem is guaranteed. Note that this is true regardless of whether the original problem is 

convex or not. Also note that the system-level approach can be applied regardless of the form of 

                                                      
3 The only exception is the approach used by Lee et al. (2016), which does not rely on the segment-level model 

specifics. 

4 Lee and Madanat (2015) and Lee et al. (2016) optimized for rehabilitation and reconstruction treatments only. 

Although Chu and Chen (2012) considered three treatments (fog seal, overlay, and reconstruction), they 

assumed overly-simplified treatment effectiveness models and searched for suboptimal (threshold-based) 

MR&R policies. Note that the threshold-based policy, while optimal for the problems with the simple, 

memoryless deterioration process (Ouyang and Madanat, 2006), has been proved to be suboptimal at the 

segment level when the history-dependent deterioration process is used (Lee and Madanat, 2014b). 
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segment-level models. 

 

Table 1. Select studies on segment-level optimization of MR&R planning 

Model 
Deterioration 

process 

Number of 

treatments 

Discrete/Continu

ous time or 

pavement state 

Solution approach 

Golabi et al. (1982) memoryless 1 discrete linear programming 

Carnahan et al. (1987) memoryless 1 discrete dynamic programming 

Fwa et al. (1994) memoryless 1 discrete genetic algorithm 

Durango-Cohen (2007) memoryless 1 hybrid5 dynamic programming 

Friesz and Fernandez (1979) memoryless 1 continuous optimal control 

Fernandez and Friesz (1981) memoryless 1 continuous optimal control 

Tsunokawa and Schofer (1994) memoryless 1 continuous 
optimal control with trend curve 

approximation 

Li and Madanat (2002) memoryless 1 continuous using the memoryless property 

Ouyang and Madanat (2006) memoryless 1 continuous calculus of variation 

Madanat (1993) memoryless 3 discrete dynamic programming 

Madanat and Ben-Akiva (1994) memoryless 3 discrete dynamic programming 

Gu et al. (2012) memoryless 2 continuous 

numerical method based on 

Ouyang and Madanat (2006)’s 

result 

Rashid and Tsunokawa (2012) memoryless 3 continuous 
optimal control with trend curve 

approximation 

Tsunokawa and Ul-Isalm (2002) history-dependent 1 discrete exhaustive search 

Tsunokawa et al. (2006) history-dependent 1 discrete gradient search 

Deshpande et al. (2010) history-dependent 1 discrete 
multi-objective genetic algorithm 

(MOGA) 

Bai et al. (2015) history-dependent 1 hybrid dynamic programming 

Miyamoto et al. (2000) history-dependent 2 discrete genetic algorithm 

Lee and Madanat (2014a) history-dependent 3 hybrid dynamic programming 

Lee and Madanat (2014b) history-dependent 3 continuous calculus of variation 

 

We propose a segment-level model that incorporates the history-dependent deterioration 

process and all the three types of treatments (preventive maintenance, rehabilitation, and 

reconstruction). A realistic maintenance effectiveness model is developed using the recent empirical 

data reported in the literature (Mamlouk and Dosa, 2014) to replace the hypothetical, flawed one that 

was used previously, and the new model produces reasonable results in the optimal MR&R plans. We 

also propose a greedy heuristic algorithm that reduces the computation time by 97% without 

compromising the solution quality (as compared against the dynamic programming algorithm used in 

                                                      
5 The word “hybrid” in Tables 1 and 2 means “discrete time and continuous pavement state”. The “hybrid” 

models are essentially discrete models since the solution space is discretized by adopting a discrete time scale. 
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the literature). The segment-level model and the solution algorithm are integrated with the general 

system-level approach to obtain optimal MR&R policies for pavement systems. 

 

Table 2. Select studies on bottom-up system-level optimization of MR&R planning 

Study 
Deterioration 

process 

Number of 

treatments 

Discrete/Contin

uous time or 

pavement state 

Solution approach 

Chan et al. (1994) memoryless 1 discrete genetic algorithm 

Ouyang and Madanat (2004) memoryless 1 hybrid 
branch and bound; greedy 

heuristic 

Ouyang (2007) memoryless 1 hybrid 
approximate dynamic 

programming 

Hajibabai et al. (2014) memoryless 1 hybrid Lagrangian relaxation 

Sathaye and Madanat (2011) memoryless 1 continuous Lagrange method 

Sathaye and Madanat (2012) memoryless 1 continuous Lagrange dual method 

Fwa et al. (1996) memoryless 2 discrete genetic algorithm 

Chu and Chen (2012) history-dependent 3 hybrid tabu search 

Lee and Madanat (2015) history-dependent 2 hybrid genetic algorithm 

Lee et al. (2016) history-dependent 2 discrete Lagrange dual method 

     

 

The models and solution approach are tested through a large number of numerical 

experiments. The results unveil many useful insights regarding how budget and other key operating 

parameters affect the optimal system-level MR&R policy. The numerical experiments also manifest 

the computational efficiency of our solution approach. Particularly, the computation time increases 

linearly with the size of the pavement system. 

 

The rest of this paper is organized as follows: Section 2 presents the general formulation of 

the system-level problem and a general solution approach; Section 3 describes the details of the 

segment-level model and its solution approach; numerical case studies are furnished in Section 4; the 

insights, limitations, and future extensions of this paper are discussed in Section 5. 

 

2. General formulation and solution approach for the system-level optimization of MR&R 

planning 

A general formulation of the system-level MR&R planning problem, regardless of the segment-level 

models, is presented in Section 2.1. An iterative solution approach built upon the Lagrange Multiplier 

method is described in Section 2.2. 

 

2.1. A general formulation 

The objective of the problem is to minimize the sum of the discounted user and agency costs, 𝑍𝑘, for 
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all the pavement segments 𝑘 ∈ {1,2, … , 𝐾} over a given planning horizon 𝑇 (𝑇 = ∞ denotes an 

infinite-horizon problem), as shown in (1a) below. For each segment 𝑘, 𝑍𝑘 is a function of a vector 

of state variables (e.g. roughness level and age), denoted by 𝒒𝑘, and a vector of management decision 

variables (e.g., timing and intensities of MR&R activities), 𝒙𝑘. Note that the elements of 𝒒𝑘 and 𝒙𝑘 

can be discrete or continuous functions of time. The 𝑍𝑘 consists of the costs incurred to the users, 

𝐶𝑘
𝑈, and to the management agency, ∑ 𝐶𝑘𝑝

𝑃
𝑝=1 , where 𝑝 ∈ {1, … , 𝑃} is the index of a treatment to be 

planned (i.e., maintenance, rehabilitation, and reconstruction). 

 

Segment-specific constraints include the pavement deterioration model, treatment 

effectiveness models, initial pavement conditions, etc. These are divided into two classes: equality 

constraints (1b) and inequality constraints (1c), where 𝚽𝑘 and 𝚿𝑘 are again vectors of discrete or 

continuous functions of time. These constraints specify the pavements’ initial conditions, how each 

pavement’s state evolves over time (i.e. the deterioration process), and how each treatment may 

change the pavement’s state, depending on the type, time and intensity of the treatment (i.e. the 

treatment effectiveness models). Finally, we present two versions of budget constraints in (1d-e): i) a 

combined budget that applies to the sum of agency costs for all the treatments across all segments, 

and ii) a number of separate budgets that each applies to a specific treatment. Note that 𝐵 and 𝐵𝑝 

denote the annual combined budget and separate budget for treatment 𝑝, respectively; and 𝑟 is the 

annual discount factor. Note that here we assume the budget can be transferred across years over the 

planning horizon. This assumption was adopted by a number of previous studies (e.g. Sathaye and 

Madanat, 2011; 2012). 

 

min ∑ 𝑍𝑘(𝒒𝑘, 𝒙𝑘)𝐾
𝑘=1 = ∑ (𝐶𝑘

𝑈(𝒒𝑘, 𝒙𝑘) + ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃
𝑝=1 )𝐾

𝑘=1      (1a) 

subject to: 𝚽𝑘(𝒒𝑘, 𝒙𝑘) = 0, for 𝑘 = 1, … , 𝐾        (1b) 

𝚿𝑘(𝒒𝑘, 𝒙𝑘) ≤ 0, for 𝑘 = 1, … , 𝐾            (1c) 

{
combined budget:              

𝑟

1−𝑒−𝑟𝑇
∑ ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃

𝑝=1
𝐾
𝑘=1 ≤ 𝐵

separate budgets:    
𝑟

1−𝑒−𝑟𝑇
∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝐾

𝑘=1 ≤ 𝐵𝑝 for 𝑝 = 1, ⋯ , 𝑃
  

(1d) 

(1e) 

 

We next present an iterative approach for solving the above mathematical program. 

 

2.2. An iterative approach using Lagrange Multipliers 

The segment-level formulation corresponding to the above system-level formulation is given in (2a-c). 

In the following discussion of this section, we assume that the solution to this segment-level problem 

has been developed a priori. This segment-level solution will be used as a building block in our 

proposed approach. 

 

For each 𝑘 = 1, … , 𝐾 
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min 𝑍𝑘(𝒒𝑘, 𝒙𝑘) = 𝐶𝑘
𝑈(𝒒𝑘, 𝒙𝑘) + ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃

𝑝=1       (2a) 

subject to: 𝚽𝑘(𝒒𝑘, 𝒙𝑘) = 0          (2b) 

 𝚿𝑘(𝒒𝑘, 𝒙𝑘) ≤ 0           (2c) 

 

To be accurate, we describe the solution approach for the problems with the combined budget 

constraint (Section 2.2.1) and separate budget constraints (Section 2.2.2) one by one. However, they 

follow the same logic: first, the system-level problem is decomposed into 𝐾  segment-level 

subproblems, each having the form of (2a-c); and second, built upon the solutions to the 

segment-level subproblems, a gradient-free iterative algorithm is used to solve the system-level 

optimization problem. 

 

2.2.1. Combined-budget-constraint problem 

We introduce a Lagrange multiplier, 𝜆, to relax the combined budget constraint (1d). The relaxed 

optimization is presented as follows: 

min  𝐿(𝒒, 𝒙, 𝜆) = ∑ 𝑍𝑘(𝒒𝑘, 𝒙𝑘) + 𝜆 (∑ ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃
𝑝=1 −

𝐵

𝑟
(1 − 𝑒−𝑟𝑇)𝐾

𝑘=1 )𝐾
𝑘=1 =

∑ 𝐻𝑘(𝒒𝑘 , 𝒙𝑘 , 𝜆) − 𝜆
𝐵

𝑟
(1 − 𝑒−𝑟𝑇)𝐾

𝑘=1          (3a) 

subject to: 𝚽𝑘(𝒒𝑘, 𝒙𝑘) = 0, for 𝑘 = 1, … , 𝐾        (3b) 

𝚿𝑘(𝒒𝑘, 𝒙𝑘) ≤ 0, for 𝑘 = 1, … , 𝐾         (3c) 

{
either: 𝜆 = 0 and 𝑉(0) = ∑ ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃

𝑝=1 −
𝐵

𝑟
(1 − 𝑒−𝑟𝑇)𝐾

𝑘=1 ≤ 0

or:    𝜆 > 0 and 𝑉(𝜆) = ∑ ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃
𝑝=1 −

𝐵

𝑟
(1 − 𝑒−𝑟𝑇)𝐾

𝑘=1 = 0
  (3d) 

where 𝐿 is the partial Lagrange function, and 𝐻𝑘(𝒒𝑘, 𝒙𝑘 , 𝜆) ≡ 𝑍𝑘(𝒒𝑘 , 𝒙𝑘) + 𝜆 ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃
𝑝=1 . 

Constraint (3d) is the complementary slackness condition of optimality: 𝜆 > 0 when the budget 

constraint is binding, and 𝜆 = 0 otherwise. One can easily verify that the optimal solution of (3a-d) 

is always optimal to (1a-d); i.e., the relaxed program (3a-d) constructs a sufficient condition for the 

optimality of (1a-d).  

 

Without constraint (3d), the remaining mathematical program (3a-c) can be decomposed by 

segment number 𝑘 as follows: 

For each 𝑘 = 1, … , 𝐾, 

min 𝐻𝑘(𝒒𝑘, 𝒙𝑘 , 𝜆) = 𝑍𝑘(𝒒𝑘, 𝒙𝑘) + 𝜆 ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃
𝑝=1   

= 𝐶𝑘
𝑈(𝒒𝑘, 𝒙𝑘) + (1 + 𝜆) ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃

𝑝=1   

= 𝐶𝑘
𝑈(𝒒𝑘, 𝒙𝑘) + ∑ 𝐶𝑘̅𝑝(𝒒𝑘, 𝒙𝑘 , 𝜆)𝑃

𝑝=1          (4a) 

subject to: 𝚽𝑘(𝒒𝑘, 𝒙𝑘) = 0          (4b) 

 𝚿𝑘(𝒒𝑘, 𝒙𝑘) ≤ 0           (4c) 

where 𝐶𝑘̅𝑝(𝒒𝑘 , 𝒙𝑘 , 𝜆) = (1 + 𝜆)𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘) can be considered as a “weighted” agency cost for 
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treatment 𝑝 applied to segment 𝑘 (where the weight is 1 + 𝜆). Note that for a given 𝜆, 𝐻𝑘 has the 

same form as 𝑍𝑘  with only a different weight for agency costs. Thus the solution to the 

segment-level problem (2a-c) can be readily applied to (4a-c) for each 𝑘 with a given 𝜆. Note that if 

the global optimality of segment-level solutions is guaranteed, then the global optimality of the 

system-level problem is attained if a 𝜆 is found to satisfy the complementary slackness condition 

(3d). Further, the following lemma ensures that if the segment-level solution is near-optimal (i.e., its 

relative cost gap from the optimal solution is bounded by a small fraction), then the resulting 

system-level solution is also near-optimal. 

 

Lemma 1. For a given 𝜆, suppose 𝒙𝑘
∗ (𝜆) is the exact optimal solution to the subproblem of segment 

𝑘 (𝑘 = 1,2, ⋯ , 𝐾), and 𝒙𝑘
𝐻(𝜆) is a heuristic solution that satisfies: 

{
|𝐶𝑘(𝒙𝑘

∗ (𝜆)) − 𝐶𝑘 (𝒙𝑘
𝐻(𝜆))| ≤ 𝛿1

|𝑍𝑘(𝒙𝑘
∗ (𝜆)) − 𝑍𝑘 (𝒙𝑘

𝐻(𝜆))| ≤ 𝛿2

, ∀𝑘 = 1,2, ⋯ , 𝐾, 𝜆 ≥ 0      (5) 

where 𝐶𝑘(𝒙𝑘) = ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃
𝑝=1 . Further assume 𝜆∗ and 𝜆𝐻 are the Lagrange multiplier values 

when the exact and the heuristic solutions are used, respectively; i.e., 

𝜆∗ ∙ (∑ 𝐶𝑘(𝒙𝑘
∗ (𝜆∗))𝐾

𝑘=1 − 𝐵) = 0          (6a) 

𝜆𝐻 ∙ (∑ 𝐶𝑘 (𝒙𝑘
𝐻(𝜆𝐻))𝐾

𝑘=1 − 𝐵) = 0          (6b) 

Then we have: 

|∑ 𝑍𝑘(𝒙𝑘
∗ (𝜆∗))𝐾

𝑘=1 − ∑ 𝑍𝑘 (𝒙𝑘
𝐻(𝜆𝐻))𝐾

𝑘=1 | ≤ 𝐾 ∙ (max{𝜆∗, 𝜆𝐻} 𝛿1 + 𝛿2)     (7) 

 

A sketched proof of Lemma 1 is furnished in Appendix A. Note (7) ensures that the 

percentage cost gap of the system-level problem is in the same magnitude of the percentage cost gaps 

of the segment-level heuristics, given that 𝜆∗ and 𝜆𝐻 are small.6 

 

Finally, the following lemma specifies that as long as such a 𝜆 exists, we are always able to 

find it via a properly designed Quasi-Newton algorithm. The proof of this lemma is furnished in 

Appendix B. 

 

Lemma 2. 𝑉(𝜆) is a (strictly) decreasing function of 𝜆 if each segment-level problem furnishes a 

unique optimal solution. 

 

An immediate corollary of this lemma is that there exists a unique solution of 𝜆 to (3d) (as 

                                                      
6 In our numerical case studies, 𝜆𝐻  is always less than 3. The 𝜆∗ is comparable to 𝜆𝐻  in most cases since 

|𝑉(𝜆𝐻) − 𝑉(𝜆∗)| ≤ 𝐾𝛿1. Exception may arise only when 𝐵 is near the maximum annual budget needed, where 

𝑉(𝜆) becomes flat. 
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long as program (3a-d) is feasible), and this solution can be attained by a number of iterative methods, 

including Newton’s and Quasi-Newton methods (which presumably converge much faster than the 

methods of bisection, golden-section, etc.). Since the calculation of derivatives is often difficult and 

computationally inefficient due to the complicated mathematical forms of MR&R cost and 

effectiveness models, we next present an algorithm using a derivative-free method (modified secant 

method). In the following algorithm, 𝛿 denotes the tolerance level that is sufficiently small to 

guarantee the algorithm converges. The convergence of the algorithm is proved in Appendix C.7 

 

Algorithm 1: 

Step 1. Set 𝜆 = 𝜆0 = 0; solve the segment-level subproblems (4a-c) for each 𝑘. Evaluate 𝑉(𝜆0). If 

𝑉(𝜆0) ≤ 0, end; otherwise go to Step 2. 

Step 2. Select another initial value 𝜆 = 𝜆1 > 0, solve (4a-c) for each 𝑘 and evaluate 𝑉(𝜆1). If 

|𝑉(𝜆1)| < 𝛿, end; otherwise set 𝑛 = 1 and go to Step 3. 

Step 3. Set 𝜆 = 𝜆𝑛+1 = 𝜆𝑛 − 𝑉(𝜆𝑛)
𝜆𝑛−𝜆𝑛−1

𝑉(𝜆𝑛)−𝑉(𝜆𝑛−1)
. Solve (4a-c) for each 𝑘 and evaluate 𝑉(𝜆𝑛+1). If 

|𝑉(𝜆𝑛+1)| < 𝛿, end; otherwise, go to Step 4. 

Step 4. If 𝑉(𝜆𝑛) ∙ 𝑉(𝜆𝑛+1) > 0 and 𝑉(𝜆𝑛−1) ∙ 𝑉(𝜆𝑛+1) < 0, set 𝜆𝑛 = 𝜆𝑛−1 . Set 𝑛 = 𝑛 + 1 and 

repeat Step 3. 

 

2.2.2. Separate-budget-constraint problem 

Similarly, we use a Lagrange multiplier, 𝜆𝑝, to relax each of the 𝑃 budget constraints in (1e). The 

Lagrange function becomes: 

min  𝐿(𝒒, 𝒙, 𝜆) = ∑ 𝑍𝑘(𝒒𝑘, 𝒙𝑘) + ∑ 𝜆𝑝 (∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘) −
𝐵𝑝

𝑟
(1 − 𝑒−𝑟𝑇)𝐾

𝑘=1 )𝑃
𝑝=1

𝐾
𝑘=1 =

∑ 𝐻𝑘(𝒒𝑘 , 𝒙𝑘 , 𝝀) − ∑ 𝜆𝑝
𝐵𝑝

𝑟
(1 − 𝑒−𝑟𝑇)𝑃

𝑝=1
𝐾
𝑘=1         (8) 

where 𝐻𝑘(𝒒𝑘, 𝒙𝑘 , 𝝀) ≡ 𝐶𝑘
𝑈(𝒒𝑘, 𝒙𝑘) + ∑ (1 + 𝜆𝑝)𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃

𝑝=1 , and 𝝀 = [𝜆1, ⋯ , 𝜆𝑃]𝑇 . The 

corresponding segment-level problem can be written as follows: 

For each 𝑘 = 1, … , 𝐾 

min 𝐻𝑘(𝒒𝑘, 𝒙𝑘 , 𝝀) = 𝐶𝑘
𝑈(𝒒𝑘 , 𝒙𝑘) + ∑ (1 + 𝜆𝑝)𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)𝑃

𝑝=1       (9a) 

subject to: 𝚽𝑘(𝒒𝑘, 𝒙𝑘) = 0          (9b) 

 𝚿𝑘(𝒒𝑘, 𝒙𝑘) ≤ 0           (9c) 

 

The complementary slackness conditions are: 

For 𝑝 = 1, ⋯ , 𝑃, {
either: 𝜆𝑝 = 0 and 𝑉𝑝(𝝀) = ∑ 𝐶𝑘𝑝(𝒒𝑘 , 𝒙𝑘) −

𝐵𝑝

𝑟
(1 − 𝑒−𝑟𝑇)𝐾

𝑘=1 ≤ 0

or:    𝜆𝑝 > 0 and 𝑉𝑝(𝝀) = ∑ 𝐶𝑘𝑝(𝒒𝑘 , 𝒙𝑘) −
𝐵𝑝

𝑟
(1 − 𝑒−𝑟𝑇) = 0𝐾

𝑘=1

 (10) 

                                                      
7 Note that the original secant method cannot guarantee the convergence to the global optimum. 
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Similar to the combined-budget-constraint problem, the optimal solution of the relaxed 

program above is also optimal to the original problem under separate budget constraints. Here we 

propose a modified Broyden’s method to formulate the following algorithm for solving the relaxed 

program.8 

 

Algorithm 2: 

Step 1. Set 𝝀 = 𝝀0 ≡ [𝜆1
0, 𝜆2

0, … , 𝜆𝑃
0 ]𝑇 = 𝟎 ≡ [0,0, … ,0]𝑇; solve the segment-level subproblems (9a-c) 

for each 𝑘. Evaluate 𝑽(𝝀0) = [𝑉1, … , 𝑉𝑃]𝑇. If 𝑽(𝝀0) ≤ 𝟎, end; otherwise go to Step 2. 

Step 2. Calculate the initial 𝑃 × 𝑃 Jacobian matrix 𝐽0. For each 𝑝 = 1, … , 𝑃, define 𝝀𝑝,0 as a 

𝑃-dimensional vector whose 𝑝-th element is a small positive number 𝛿𝑝 and all the other elements 

are 0. The 𝐽0 is calculated by setting its element on the 𝑖-th row and the 𝑗-th column as: 𝐽𝑖,𝑗
0 =

𝑉𝑖(𝝀𝑗,0)−𝑉𝑖(𝟎)

𝛿𝑗
. 

Step 3. Set 𝝀1 = 𝝀0 − (𝐽0)−1𝑽(𝝀0). End the search if 𝑽(𝝀1) satisfies the complementary slackness 

conditions (10); i.e., for each 𝑝 = 1, … , 𝑃, 𝑉𝑝(𝝀1) ≤ 0 if 𝜆𝑝
1 = 0, and |𝑉𝑝(𝝀1)| < 𝛿  if 𝜆𝑝

1 > 0. 

Otherwise set 𝑛 = 1 and go to Step 4. 

Step 4. Set (𝐽𝑛)−1 = (𝐽𝑛−1)−1 +
(𝝀𝑛−𝝀𝑛−1)−(𝐽𝑛−1)

−1
∗(𝑽(𝝀𝑛)−𝑽(𝝀𝑛−1))

(𝝀𝑛−𝝀𝑛−1)𝑇∗(𝐽𝑛−1)−1∗(𝑽(𝝀𝑛)−𝑽(𝝀𝑛−1))
∗ (𝝀𝑛 − 𝝀𝑛−1)𝑇 ∗ (𝐽𝑛−1)−1 and 

𝝀 = 𝝀𝑛+1 = 𝝀𝑛 − (𝐽𝑛)−1𝑽(𝝀𝑛). End the search if 𝑽(𝝀𝑛+1) satisfies the complementary slackness 

conditions (10). Otherwise go to Step 5. 

Step 5. Define vector operator ⨂ as [

𝑎1

𝑎2

𝑎3

] ⨂ [

𝑏1

𝑏2

𝑏3

] = [

𝑎1𝑏1

𝑎2𝑏2

𝑎3𝑏3

] for any [

𝑎1

𝑎2

𝑎3

]  and [

𝑏1

𝑏2

𝑏3

]. If the 

number of negative elements in vector 𝑉(𝜆𝑛−1)⨂𝑉(𝜆𝑛+1) is larger than that in 𝑉(𝜆𝑛)⨂𝑉(𝜆𝑛+1), 

set 𝜆𝑛 = 𝜆𝑛−1. Set 𝑛 = 𝑛 + 1 and return to Step 4. 

 

3. Segment-level MR&R models and solution approaches 

This section presents the formulation and solution approaches of the segment-level subproblem that 

jointly optimizes all the three treatments, i.e. preventive maintenance (chip seal), rehabilitation and 

reconstruction. While the framework in Section 2 applies to almost all segment level subproblems, to 

stay focused, we present here only a segment-level formulation that is discrete in time but continuous 

in the pavement condition (i.e., the roughness index) for an infinite planning horizon. Most of the 

problem formulation, except for the maintenance model, is similar to the one presented in Lee and 

                                                      
8 The Broyden’s method is the multivariate version of the secant method; see an introduction of the original 

Broyden’s method in Jorge and Stephen, 2006. One can also show that the relaxed program has a unique 

optimum given that each segment-level problem has a unique optimal solution (similar to Lemma 2). However, 

unlike the combined-budget case, Algorithm 2 cannot guarantee the global convergence to the optimum. 
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Madanat (2014a), and is presented in Section 3.1. Regarding the solution approach, an efficient 

greedy heuristic is developed together with a conventional dynamic programming algorithm, which 

serves as the benchmark for examining the solution quality (Section 3.2). 

 

3.1. General formulation 

The state variables are 𝒒𝑘 = (𝑞𝑘𝑡|𝑡 = 0,1,2, ⋯ ) = (𝑠𝑘(𝑡), ℎ𝑘𝑡|𝑡 = 0,1,2, ⋯ ), where 𝑠𝑘(𝑡) and ℎ𝑘𝑡 

are the pavement roughness index and the pavement’s age (number of years since the last 

reconstruction), respectively, for segment 𝑘  in year 𝑡.  The decision variables are 𝒙𝑘 =

(𝑣𝑘𝑡, 𝜔𝑘𝑡, 𝑥𝑘𝑡,1, 𝑥𝑘𝑡,2, 𝑥𝑘𝑡,3|𝑡 = 0,1,2, ⋯ ), where the binary variable 𝑥𝑘𝑡𝑝 (𝑝 = 1,2,3) is equal to 1 

if a maintenance (corresponding to 𝑝 = 1), rehabilitation (𝑝 = 2) or reconstruction (𝑝 = 3) activity is 

executed in year 𝑡  for segment 𝑘 , respectively, and 0  otherwise; 𝑣𝑘𝑡  and 𝜔𝑘𝑡  represent the 

maintenance and rehabilitation intensities in year 𝑡 for segment 𝑘, respectively. The full formulation 

is presented as follows: 

 

min 𝑍𝑘(𝒒𝑘, 𝒙𝑘) = 𝐶𝑘
𝑈(𝒒𝑘, 𝒙𝑘) + ∑ 𝐶𝑘𝑝(𝒒𝑘, 𝒙𝑘)3

𝑝=1       (11a) 

subject to: 𝐶𝑘
𝑈(𝒒𝑘, 𝒙𝑘) = ∑ ∫ 𝑙𝑘(𝑐𝑘

1𝑠𝑘(𝑢) + 𝑐𝑘
2)

𝑡+1

𝑡
𝑒−𝑟𝑢𝑑𝑢∞

𝑡=0      (11b) 

𝐶𝑘,1(𝒒𝑘, 𝒙𝑘) = ∑ 𝑥𝑘𝑡,1
∞
𝑡=0 (𝛾𝑘

1𝑣𝑘𝑡 + 𝛾𝑘
2)𝑒−𝑟𝑡      (11c) 

𝐶𝑘,2(𝒒𝑘, 𝒙𝑘) = ∑ 𝑥𝑘𝑡,2
∞
𝑡=0 (𝑚𝑘

1𝜔𝑘𝑡 + 𝑚𝑘
2)𝑒−𝑟𝑡      (11d) 

𝐶𝑘,3(𝒒𝑘, 𝒙𝑘) = ∑ 𝑥𝑘𝑡,3(∞
𝑡=0 𝑧𝑘

1 + 𝑧𝑘
2𝑙𝑘)𝑒−𝑟𝑡      (11e) 

𝑏̅𝑘 − 𝑏𝑘𝑡 = 𝑥𝑘𝑡,1𝐸𝑘(𝑣𝑘𝑡, 𝑠𝑘(𝑡)), ∀𝑡       (11f) 

𝐸𝑘(𝑣𝑘𝑡, 𝑠𝑘(𝑡)) = 
𝛼𝑘𝑣𝑘𝑡

(𝑠𝑘(𝑡))
𝛽𝑘

        (11g) 

0 ≤ 𝑣𝑘𝑡 ≤ 𝐷𝑘𝑡 = min {𝑣̅𝑘 ,
(𝑏̅𝑘−𝑏𝑘

∗ )(𝑠𝑘(𝑡))
𝛽𝑘

𝛼𝑘
} , ∀𝑡     (11h) 

𝑠𝑘(𝑡) − 𝑠𝑘
+(𝑡) = 𝑥𝑘𝑡,2𝐺𝑘(𝜔𝑘𝑡, 𝑠𝑘(𝑡)) + 𝑥𝑘𝑡,3(𝑠𝑘(𝑡) − 𝑠𝑘

𝑛𝑒𝑤), ∀𝑡   (11i) 

𝐺𝑘(𝜔𝑘𝑡, 𝑠𝑘(𝑡)) = 
𝑔𝑘

1𝑠𝑘(𝑡)

𝑔𝑘
2𝑠𝑘(𝑡)+𝑔𝑘

3 𝜔𝑘𝑡       (11j) 

0 ≤ 𝜔𝑘𝑡 ≤ 𝑅𝑘𝑡 = (
𝑔𝑘

2

𝑔𝑘
1 +

𝑔𝑘
3

𝑔𝑘
1𝑠𝑘(𝑡)

) max(0, min{𝑠𝑘(𝑡) − 𝑠𝑘
∗ , 𝑔𝑘

1𝑠𝑘(𝑡)}) , ∀𝑡   (11k) 

𝑠𝑘(𝑢) = 𝐹𝑘(𝑠𝑘
+(𝑡), 𝑢 − 𝑡, ℎ𝑘𝑡

+ , 𝑏𝑘𝑡), ∀𝑢 ∈ (𝑡, 𝑡 + 1], ∀𝑡     (11l) 

𝐹𝑘(𝑠𝑘
+(𝑡), 𝑢 − 𝑡, ℎ𝑘𝑡

+ , 𝑏𝑘𝑡) = 𝑠𝑘
+(𝑡)𝑒𝑏𝑘𝑡(𝑢−𝑡) + 𝑓𝑘𝑙𝑘(𝑢 − 𝑡)𝑒𝑏𝑘𝑡(ℎ𝑘𝑡

+ +𝑢−𝑡)   (11m) 

∑ 𝑥𝑘𝑡𝑝 ≤ 1, ∀𝑡3
𝑝=1          (11n) 

ℎ𝑘𝑡
+ = ℎ𝑘𝑡(1 − 𝑥𝑘𝑡,3), ∀𝑡        (11o) 

𝑠𝑘
𝑛𝑒𝑤 ≤ 𝑠𝑘(𝑡) ≤ 𝑠𝑘

𝑚𝑎𝑥 , ∀𝑡        (11p) 

𝑇𝑘
𝑚𝑖𝑛𝑥𝑘𝑡,3 ≤ ℎ𝑘𝑡𝑥𝑘𝑡,3 ≤ 𝑇𝑘

𝑚𝑎𝑥𝑥𝑘𝑡,3, ∀𝑡      (11q) 

𝑞𝑘0 = (𝑠𝑘(0), ℎ𝑘0)         (11r) 

 

The models for the user cost 𝐶𝑘
𝑈 , maintenance cost 𝐶𝑘,1 , rehabilitation cost 𝐶𝑘,2  and 
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reconstruction cost 𝐶𝑘,3 are described in (11b-e), respectively, where 𝑙𝑘 is the annual traffic loading 

on segment 𝑘; and 𝑐𝑘
1, 𝑐𝑘

2, 𝛾𝑘
1, 𝛾𝑘

2, 𝑚𝑘
1 , 𝑚𝑘

2 , 𝑧𝑘
1 and 𝑧𝑘

2 are (non-negative) cost coefficients. 

 

Of note is that the maintenance cost model (11c) is for chip seal only, which is one of the 

most commonly used preventive maintenance activities (Labi and Sinha, 2003). Here the maintenance 

intensity variable 𝑣𝑘𝑡 is defined as the average least dimension (ALD) of chip seal in year 𝑡 for 

segment 𝑘. The non-negative cost coefficients 𝛾𝑘
1 and 𝛾𝑘

2 depend upon the oil price, geographical 

location of the pavement, labor cost, etc. Our maintenance effectiveness model is shown by (11f-g). 

The model is built upon the following two facts: i) the pavement roughness before and after the chip 

seal are approximately the same but the deterioration rate diminishes, which is consistent with the 

findings of Mamlouk and Dosa (2014) among others; and ii) the reduction in deterioration rate is a 

non-increasing function of the pavement roughness level (see Table 2 and Figures 4-7 of Mamlouk 

and Dosa, 2014)10. The 𝑏̅𝑘 and 𝑏𝑘𝑡 in (11f) are the deterioration rates before and after applying chip 

seal. The mathematical form of (11g) is selected to fit the real test data of chip seal from Mamlouk 

and Dosa (2014), where parameters 𝛼𝑘 > 0, 𝛽𝑘 ≥ 1. In addition, there should be a technical upper 

bound for the ALD, 𝑣̅𝑘. Also, the deterioration rate has a lower bound 𝑏𝑘
∗ , at which any additional 

maintenance has no effect. Thus, the effective maintenance intensity is bounded by 𝐷𝑘𝑡, which is 

defined in (11h). 

 

Other parts of the segment-level formulation are borrowed from previous studies, mostly from 

Ouyang and Madanat (2004; 2006) and Lee and Madanat (2014a). Constraints (11i) indicate the 

roughness index reduction caused by a rehabilitation or reconstruction activity, where function 𝐺𝑘 

represents the rehabilitation effectiveness as defined in (11j); 𝑠𝑘(𝑡) and 𝑠𝑘
+(𝑡) denote the roughness 

indices right before and after the activity, respectively; 𝑠𝑘
𝑛𝑒𝑤 is the roughness index immediately 

after a reconstruction; and 𝑔𝑘
1, 𝑔𝑘

2, and 𝑔𝑘
3 are coefficients. Constraints (11k) stipulate the upper 

bound, 𝑅𝑘𝑡, for the rehabilitation intensity, where 𝑠𝑘
∗ is the best possible roughness level after a 

rehabilitation. Constraints (11l) indicate how the pavement state is updated at moment 𝑢 ∈ (𝑡, 𝑡 + 1], 

where 𝐹𝑘 is a history-dependent deterioration model shown in (11m); and ℎ𝑘𝑡
+  is the pavement age 

after the activity. Constraints (11n) ensure that at most one activity is performed every year. 

Constraints (11o) reset the pavement age to 0 after a reconstruction. Constraints (11p-q) specify the 

upper and lower bounds of the roughness level and the pavement’s lifecycle length. Constraint (11r) 

                                                      
10 This means maintenance (e.g. chip seal) is less effective when being applied to a pavement in worse 

condition. However, a previous maintenance cost and effectiveness model (Gu et al., 2012; Lee and Madanat, 

2014a, b) resulted in predictions that were at odds with this simple fact. For example, Lee and Madanat (2014a) 

observed a complicated, non-monotonic trend between deterioration rate reduction and the pavement’s 

roughness level (see Fig. 4a of that paper). In their results, a larger deterioration rate reduction may occur when 

the roughness level is high. Numerical analysis has verified that this mistake was corrected by using our 

maintenance model. 
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defines the initial pavement state. 

 

3.2. Solution method 

We first decompose the infinite-horizon optimization problem (11a-r) into two finite-horizon 

subproblems (Section 3.2.1).11 Each subproblem has fewer decision variables and is thus easier to 

solve. We present in Section 3.2.2 two algorithms to solve the subproblems: a dynamic programming 

algorithm similar to the one used by Lee and Madanat (2014a) and a greedy heuristic. The heuristic 

can achieve the same solution accuracy as the dynamic programming approach with only a small 

fraction of the computation time, as is validated later in Section 4.2. 

 

3.2.1. Problem decomposition 

With the augmented state 𝑞𝑘𝑡 = (𝑠𝑘(𝑡), ℎ𝑘𝑡), the infinite horizon problem still follows a Markov 

Decision Process (Li and Madanat, 2002; Lee and Madanat, 2015); i.e., the optimal MR&R decisions 

from year 𝑡 onwards (and the future pavement states) depend only on the present state 𝑞𝑘𝑡. Based on 

the Principle of Optimality (Bellman, 1957), the optimal roughness trajectory after the first 

reconstruction enters a periodic steady state, since every reconstruction will reset the pavement to 

(𝑠𝑘
𝑛𝑒𝑤, 0). The steady-state solution is thus characterized by a fixed lifecycle duration denoted by 𝑇𝑘. 

The period prior to the first reconstruction is termed as the transient period, which will be optimized 

separately. Therefore, the objective function (11a) is reformulated as follows: 

min 𝑍𝑘(𝒒𝑘, 𝒙𝑘) = 𝑍𝑘
𝑇(𝒒𝑘, 𝒙𝑘) +

𝑒−𝑟𝑡𝑘
𝑇

1−𝑒−𝑟𝑇𝑘
𝑍𝑘

𝑆 (𝒒𝑘, 𝒙𝑘)        (12) 

where 𝑍𝑘
𝑇 is the discounted cost for the transient period, and 𝑍𝑘

𝑆 is the cost for one steady-state 

cycle (with a reconstruction activity at the beginning) discounted to the beginning of the cycle, and 

𝑡𝑘
𝑇 is the time of the first reconstruction. The 𝑍𝑘

𝑇 and 𝑍𝑘
𝑆 are given by the following equations. 

𝑍𝑘
𝑇(𝒒𝑘, 𝒙𝑘) = ∑ (∫ 𝑙𝑘(𝑐𝑘

1𝑠𝑘(𝑢) + 𝑐𝑘
2)

𝑡+1

𝑡
𝑒−𝑟𝑢𝑑𝑢 + 𝑥𝑘𝑡,1(𝛾𝑘

1𝑣𝑘𝑡 + 𝛾𝑘
2)𝑒−𝑟𝑡 + 𝑥𝑘𝑡,2(𝑚𝑘

1𝜔𝑘𝑡 +
𝑡𝑘

𝑇−1
𝑡=0

𝑚𝑘
2)𝑒−𝑟𝑡)             (13) 

𝑍𝑘
𝑆(𝒒𝑘 , 𝒙𝑘) = ∑ (∫ 𝑙𝑘(𝑐𝑘

1𝑠𝑘(𝑢) + 𝑐𝑘
2)

𝜏+1

𝜏
𝑒−𝑟𝑢𝑑𝑢 + 𝑥𝑘𝜏,1(𝛾𝑘

1𝑣𝑘𝜏 + 𝛾𝑘
2)𝑒−𝑟𝜏 + 𝑥𝑘𝜏,2(𝑚𝑘

1𝜔𝑘𝜏 +
𝑇𝑘−1
𝜏=0

𝑚𝑘
2)𝑒−𝑟𝜏) + 𝑧𝑘

1 + 𝑧𝑘
2𝑙𝑘           (14) 

In equation (14) we use 𝜏 to denote the “age” in a steady-state lifecycle (counted from 0 starting 

from the last reconstruction), and 𝑞𝑘0 = (𝑠𝑘
𝑛𝑒𝑤, 0). 

 

Note that 𝑍𝑘
𝑆 is independent of the transient period duration 𝑡𝑘

𝑇 and the MR&R schedule 

during that period. We can thus decompose this problem into two subproblems: the first subproblem 

                                                      
11 It shall be straightforward that finite-horizon problems can be solved similarly. 
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for optimizing 
𝑍𝑘

𝑆

1−𝑒−𝑟𝑇𝑘
, and the second for optimizing 𝑍𝑘 given the optimal solution of the first one. 

Further note that Lee and Madanat (2014a) proved 𝜔𝑘𝑡 is either 0 or 𝑅𝑘𝑡 at optimality. One can 

easily verify by applying Lee and Madanat’s method that the same optimality condition is true for our 

model. Thus, 𝜔𝑘𝑡 can be eliminated from the list of decision variables. Now the two subproblems are 

summarized as follows: 

Subproblem 1: Minimize 
𝑍𝑘

𝑆

1−𝑒−𝑟𝑇𝑘
 subject to constraints (11f-r) with decision variables 

𝑣𝑘𝜏, 𝑥𝑘𝜏,1, 𝑥𝑘𝜏,2 (𝜏 = 0,1,2, … , 𝑇𝑘 − 1) and 𝑇𝑘. 

Subproblem 2: Minimize 𝑍𝑘 = 𝑍𝑘
𝑇 + 𝑒−𝑟𝑡𝑘

𝑇
(

𝑍𝑘
𝑆

1−𝑒−𝑟𝑇𝑘
)

∗

 subject to constraints (11f-r) with decision 

variables 𝑣𝑘𝑡, 𝑥𝑘𝑡,1, 𝑥𝑘𝑡,2 (𝑡 = 0,1,2, … , 𝑡𝑘
𝑇 − 1)  and 𝑡𝑘

𝑇 , where (
𝑍𝑘

𝑆

1−𝑒−𝑟𝑇𝑘
)

∗

 is the optimal value 

found in subproblem 1. 

 

3.2.2. Algorithms for the subproblems 

we first use a dynamic programming algorithm modified from the one developed by Lee and Madanat 

(2014a, 2015). The algorithm is relegated to Appendix D in the interest of brevity. To apply the 

algorithm, we discretize both the maintenance intensity 𝑣𝑘𝜏 and the pavement roughness level 𝑠𝑘(𝜏) 

into 𝑑 + 1 and 𝑁 + 1 points, respectively, where 𝑑 and 𝑁 are integers. As 𝑑 and 𝑁 approach to 

infinity, the dynamic programming solution converges to the global optimum. Thus, solutions of the 

dynamic programming approach can be used as benchmarks for verifying the solution quality of a 

much faster greedy heuristic. We next describe the details of this heuristic algorithm. 

 

The heuristic is based upon the assumption that preventive maintenance is much cheaper than 

rehabilitation, which is true for most prevailing preventive maintenance treatments including chip seal 

(Labi and Sinha, 2003). Thus, we start by seeking solutions where maintenance is performed more 

frequently, while rehabilitation is adopted only when that becomes a must. For the same reason, we 

also postulate that a maintenance activity is always executed with the maximum intensity 𝐷𝑘𝜏. (This 

postulation was verified by our extensive numerical tests.) To further avoid solutions with high 

frequency of rehabilitation, we specify a lower bound of roughness level, 𝑊𝑘 , below which 

rehabilitation should not be executed. Different values of 𝑊𝑘 were used in the algorithm to balance 

off the solution quality and the computational efficiency. The algorithm for subproblem 1 is presented 

as follows: 

 

Algorithm 3: 

For each 𝑊𝑘, do the following and record the least-cost solution: 

Step 1. Initialize 𝜏 = 1, 𝑐𝑜𝑠𝑡2 = ∞. 
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Step 2. If  𝜏 < 𝑇𝑘
𝑚𝑎𝑥, find the action in year 𝜏 from the action set: {𝐷𝑜-𝑛𝑜𝑡ℎ𝑖𝑛𝑔 (𝑥𝑘𝜏,1 =

𝑥𝑘𝜏,2 = 0), 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 (𝑥𝑘𝜏,1 = 1, 𝑥𝑘𝜏,2 = 0), 𝑅𝑒ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑥𝑘𝜏,1 = 0, 𝑥𝑘𝜏,2 = 1)} , 

which minimizes the objective function 
𝑍𝑘

𝑆

1−𝑒−𝑟𝑇𝑘
 for the MR&R plan generated by the 

following steps 2.1-2.3. Record the minimum objective value as 𝑐𝑜𝑠𝑡1:  

Step 2.1. Keep the recorded MR&R plan before year 𝜏 and execute the selected 

action in year 𝜏. 

Step 2.2. For each year 𝑦 > 𝜏, execute a maintenance with the maximum intensity 

𝐷𝑘𝑦 ; and if 𝑠𝑘(𝑦 + 1) > 𝑠𝑘
𝑚𝑎𝑥 , replace this maintenance in year 𝑦  by a 

rehabilitation. 

Step 2.3. Among year 𝑇𝑘
𝑚𝑎𝑥 and all those year of rehabilitation between 𝑇𝑘

𝑚𝑖𝑛 and 

𝑇𝑘
𝑚𝑎𝑥, find the year in which a reconstruction minimizes the objective function 

𝑍𝑘
𝑆

1−𝑒−𝑟𝑇𝑘
. 

The selected action of year 𝜏 should also satisfy the following conditions: 𝑠𝑘(𝜏) > 𝑊𝑘 if 

the selected action is rehabilitation; and 𝑠𝑘(𝜏 + 1) < 𝑠𝑘
𝑚𝑎𝑥 if the selected action is executed 

in year 𝜏. 

Step 3. If 𝑇𝑘
𝑚𝑖𝑛 ≤ 𝜏 ≤ 𝑇𝑘

𝑚𝑎𝑥, calculate the objective function 
𝑍𝑘

𝑆

1−𝑒−𝑟𝑇𝑘
 associated with the 

following MR&R plan: keep the recorded plan before year 𝜏 and execute reconstruction in 

year 𝜏. Set 𝑐𝑜𝑠𝑡2 =
𝑍𝑘

𝑆

1−𝑒−𝑟𝑇𝑘
. 

Step 4. If 𝜏 = 𝑇𝑘
𝑚𝑎𝑥 or 𝑐𝑜𝑠𝑡2 < 𝑐𝑜𝑠𝑡1, record the reconstruction in year 𝜏, end; otherwise, 

set 𝜏 = 𝜏 + 1 and go to Step 2. 

 

Only minor changes are made to the above algorithm when it is applied to subproblem 2. 

Particularly, 𝜏 is initialized by 0 instead of 1; the objective function is changed to 𝑍𝑘 = 𝑍𝑘
𝑇 +

𝑒−𝑟𝑡𝑘
𝑇

(
𝑍𝑘

𝑆

1−𝑒−𝑟𝑇𝑘
)

∗

; and finally, the time range for reconstruction is replaced by [𝑇𝑘
𝑚𝑖𝑛′

, 𝑇𝑘
𝑚𝑎𝑥′

], where 

𝑇𝑘
𝑚𝑖𝑛′

= max{0, 𝑇𝑘
𝑚𝑖𝑛 − ℎ𝑘0} and 𝑇𝑘

𝑚𝑎𝑥′
= max{0, 𝑇𝑘

𝑚𝑎𝑥 − ℎ𝑘0}. 

 

4. Numerical case studies 

Most of the numerical experiments presented in this section are for a pavement system with 100 

heterogeneous segments. Although our approach is able to optimize for pavement systems that are 10 

times larger within reasonable computation time (see Section 4.5), we choose this medium-size 

system for analysis simply because it is easier to run for a large batch of numerical experiments with 

various parameter values. We are thus able to discuss the general findings and insights unveiled by 

these results. Section 4.1 describes the parameter values. Section 4.2 examines the solution quality 
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and computation efficiency of the segment-level greedy heuristic. The system-level case studies under 

the combined and separate budget constraints are discussed in Sections 4.3 and 4.4, respectively. The 

computational efficiency of our solution method is examined in Section 4.5. 

 

4.1. Parameter values 

Most parameter values used in our numerical cases are summarized in Table 3. The cost parameters 

𝛾𝑘
1, 𝛾𝑘

2 are derived from the empirical cost model of chip seal in Labi and Sinha (2003); the 

parameters for the chip seal effectiveness model (𝛼𝑘 , 𝛽𝑘 , 𝑣̅𝑘) are obtained by fitting the model to the 

data in Mamlouk and Dosa (2014); the other parameter values are borrowed from Lee and Madanat 

(2014a). To account for heterogeneous segments, we specify that the initial pavement states, traffic 

loading, and some cost coefficients follow certain uniform distributions, which are denoted by the 

form of 𝑈[𝑎, 𝑏] in the table. 

 

Table 3. Parameter values 

Parameter Value Unit Parameter Value Unit 

𝑐𝑘
1 𝑈[20500,22500] $/IRI/km/lane/ 

million ESAL 

𝑏̅𝑘 0.04 - 

𝑐𝑘
2 0 - 𝑏𝑘

∗  0.025 - 

𝑚𝑘
1  𝑈[10000,12000] $/mm/km/lane 𝑧𝑘

1 900000 $/km/lane 

𝑚𝑘
2 𝑈[140000, 

170000] 

$/km/lane 𝑧𝑘
2 917000 $·year/km/ 

million ESAL 

𝑔𝑘
1 0.66 - 𝑠𝑘

∗ 0.8 IRI 

𝑔𝑘
2 7.15 mm/IRI 𝑠𝑘

𝑛𝑒𝑤 0.75 IRI 

𝑔𝑘
3 18.3 mm 𝑠𝑘

𝑚𝑎𝑥 6 IRI 

𝛾𝑘
1 130 $/mm/lane/km 𝑓𝑘

∗ 0.093 IRI·lane·year/ 

million ESAL 

𝛾𝑘
2 300 $/lane/km 𝑇𝑘

𝑚𝑖𝑛 20 year 

𝛼𝑘 0.002 - 𝑇𝑘
𝑚𝑎𝑥 60 year 

𝛽𝑘 1.483 - 𝑠𝑘
0 𝑈[1,3] IRI 

𝑣̅𝑘 14 mm 𝑙𝑘 𝑈[0.4,0.9] million 

ESAL/year/lane 

𝑟 0.07 -    

 

4.2. Validation of the segment-level greedy heuristic algorithm 

To verify the quality of the segment-level greedy heuristic, we test 216 numerical cases with varying 

values of 𝜆𝑝 (𝑝 = 1,2,3), 𝑞𝑘0, 𝑙𝑘, and 𝑟: 𝜆𝑝 ∈ {0,4}, 𝑞𝑘0 = (𝑠𝑘(0), ℎ𝑘0) ∈ {(1,3), (2,8), (4,15)}, 

𝑙𝑘 ∈ {0.5,0.8,1.2}, 𝑟 ∈ {0.05,0.07,0.1}. Note that the agency cost of treatment 𝑝 in the objective 

function is multiplied by the weight 1 + 𝜆𝑝. The other parameters take values as in Table 3. The 
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numerical case studies are carried out via Matlab R2014a on a PC with Inter® Xeon® 3.60GHz CPU, 

32.0GB RAM, and Windows 10 Pro 64-bit. 

 

We compare the greedy heuristic against two instances of the dynamic programming 

algorithm: where 𝑁 = 𝑑 = 3 (denoted as DP1), and where 𝑁 = 300, 𝑑 = 5 (denoted as DP2). The 

solutions generated from DP2 is treated as the global optima because no meaningful improvement of 

the solutions was observed by further increasing 𝑁 or 𝑑. The runtimes and the cost gaps of the 

heuristic and the DP algorithms are summarized in Table 4, where the cost gaps are defined as: 

cost of the greedy heuristic or DP1 − cost of DP2

cost of DP2
 

Both the averages and the maxima of all the 216 cases are presented. 

 

Table 4. Runtimes and cost gaps for the greedy heuristic and the dynamic programming algorithms 

 Greedy heuristic DP1 DP2 

Average runtime (second) 1.20 49.21 1439.31 

Maximum runtime (second) 1.47 73.43 1981.32 

Average total cost gap 0.37% 0.41% - 

Maximum total cost gap 3.56% 2.05% - 

Average maintenance cost gap 0.29% 0.28% - 

Maximum maintenance cost gap 4.17% 3.83% - 

Average rehabilitation cost gap 0.36% 0.52% - 

Maximum rehabilitation cost gap 4.35% 2.69% - 

Average reconstruction cost gap 0.42% 0.40% - 

Maximum reconstruction cost gap 3.98% 2.46% - 

 

The tabulated values confirm that our heuristic algorithm produces solutions that are very 

close to the global optima. Note that the average gap in the total cost is only 0.37%. Comparison 

between the greedy heuristic and DP1 shows that both algorithms furnished solutions of similar 

quality, but our heuristic took much shorter (about 97% less) runtimes. We will thus use the greedy 

heuristic in the following sections to ensure the system-level optimization is solved in reasonable 

runtimes. Recall that our system-level approach preserves the solution quality as long as the 

segment-level subproblems are solved near the optimality. 

 

4.3. Under the combined budget constraint 

First, we randomly generate a 100-segment pavement system, and optimize the total discounted cost 

for a range of combined annual budget: 𝐵 ∈ [4 × 106, 5 × 106] $/year. The optimal total discounted 

cost and the cost components are plotted against 𝐵 as the solid curves in Fig. 1. These curves start 

from 𝐵 = 4.02 × 106 $/year on the left because this value of 𝐵 represents the minimum budget 
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required to find a feasible MR&R plan. This minimum required budget can be calculated by 

optimizing the decomposed problems (4a-c) with a sufficiently large 𝜆. The figure shows that the 

optimal total cost (the solid curve with dot markers) decreases as 𝐵 grows, until it reaches a 

threshold of 4.61 × 106 $/year as marked by the arrow. This threshold represents the maximum 

budget needed for the pavement system; i.e., any additional budget would be redundant, and the 

optimal total cost would stay the same (11.73 × 107$). 

 

The figure also shows that the user cost (the triangle-marked solid curve) also decreases as 𝐵 

increases, which is as expected. Meanwhile, the rehabilitation cost (the “x”-marked solid curve) 

generally diminishes, while the reconstruction cost (the square-marked solid curve) increases with 𝐵. 

This means with more budget to spend, the agency should apply more reconstruction but less 

rehabilitation to reduce the user cost. On the other hand, when the budget is highly limited, more 

rehabilitation activities should be performed to extend the pavements’ service life. The maintenance 

cost (the diamond-marked curve near the bottom of the figure) is much lower than the other cost 

components, and is insensitive to 𝐵. This is because there is no incentive to trade off the maintenance 

activities: they are very cheap, but have considerable effects on the pavements. 

 

To examine how adding maintenance affects the optimal MR&R plan, we compare the above 

total cost and cost components against those for the optimal R&R plans (i.e., no maintenance). The 

R&R costs are plotted as the dashed curves in Fig. 1. Comparison reveals a total cost saving of 

6.3~7.5% from applying maintenance for 𝐵 ∈ [4.43 × 106, 5 × 106] $/year. The minimum annual 

budget required is also reduced by 9.3% (from 4.43 to 4.02 × 106 $/year). Comparison between 

the cost components reveals that adding maintenance usually results in a lower reconstruction cost but 

a higher rehabilitation cost. This means maintenance extends the pavements’ service life, which in 

turn entails more rehabilitation activities. 
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Fig. 1. Effects of the combined agency budget on the system-level optimal costs 

 

One may wonder how the initial pavement conditions may affect the optimal MR&R plans for 

individual segments. Here we plot against the budget constraint the distributions of i) steady-state 

lifecycle duration (Fig. 2a and b) and ii) number of rehabilitations per steady-state lifecycle (Fig. 3a 

and b) of the 100 segments. Fig. 2a and 3a are for a system with good initial conditions 

(𝑠𝑘(0)~𝑈[0,1], ∀𝑘), and Fig. 2b and 3b are for the same system but with poor initial conditions 

(𝑠𝑘(0)~𝑈[2,3], ∀𝑘). In each figure, a black dot indicates the mean value (lifecycle duration or 

rehabilitation count) of all the pavement segments for a specific 𝐵, and the associated error bar 

describes the range of two standard deviations centered at the mean. As expected, both the mean 

lifecycle duration and the mean rehabilitation count decrease as 𝐵 increases until the constraint 

becomes unbinding, which is consistent with the findings from Fig. 1. Smaller standard deviations are 

observed for smaller 𝐵, indicating that a tighter budget tends to “homogenize” the segment-level 

MR&R plans. 

 

Comparison between Fig. 2a and b unveils that the mean and standard deviation of lifecycle 

durations vary along very similar paths as 𝐵 increases, despite the largely different initial pavement 

conditions. A high similarity is also observed between Fig. 3a and b for the distribution of 

rehabilitation counts per lifecycle. This means the steady-state MR&R plans of individual segments 

are almost independent on the initial conditions of those segments. Scrutinization of the numerical 

results shows that most of the pavement segments have nearly (but not exactly) the same steady-state 
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MR&R plans between the two cases. 

 

 (a)                                     (b) 

Fig. 2. Distribution of steady-state lifecycle durations versus the budget constraint: (a) the case with 

good initial conditions; (b) the case with poor initial conditions 

 

On the other hand, the initial pavement conditions do have a significant effect on the optimal 

MR&R plans for each segment’s transient period; see the large differences between the distributions 

of the transient period durations (Fig. 4a and b), and between the distributions of the rehabilitation 

counts in the transient periods (Fig. 5a and b), for the cases with good and poor initial conditions. 

Worse initial conditions entail earlier first reconstruction and more rehabilitation activities during the 

transient periods. Note that the same findings have been observed for other instances of pavement 

systems of various sizes. 

 

 (a)                                          (b) 

Fig. 3. Distribution of rehabilitation counts per steady-state lifecycle versus the budget constraint: (a) 

good initial conditions; (b) poor initial conditions 
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 (a)                                          (b) 

Fig. 4. Distribution of the first lifecycle’s duration versus the budget constraint: (a) good initial 

conditions; (b) poor initial conditions 

 

 (a)                                          (b) 

Fig. 5. Distribution of rehabilitation counts in the first lifecycle versus the budget constraint: (a) good 

initial conditions; (b) poor initial conditions 

 

 One may also wonder what the optimal MR&R plan and the minimum total cost would be if 

the annual budget cannot be transferred across the years. Although solving a problem with budget 

transfers prohibited is out of the scope of this paper, we can get a rough idea by looking at the actual 

annual expenditures for our optimal MR&R plan, in which budget transfers across years are allowed. 

We plot the actual annual agency cost from year 1 to year 150 under the optimal MR&R plan for a 

100-segment system with 𝐵 = 4.42 × 106 $/year (Fig. 6a) and a 1000-segment system with 𝐵 =

4.38 × 107 $/year (Fig. 6b). Both figures show large variations in the annual agency expenditures. 

The variation is especially large for a smaller-sized pavement system, and during the transient period 

of the pavement system (note the much larger variation before the dashed vertical line in both figures, 

which marks the time when the last segment enters a steady state). This implies that, if a constant, 

non-transferable budget is set in each year, the resulting MR&R plan would be suboptimal, and the 

optimal cost would likely be much larger than what we obtain in this paper. To optimally utilize the 

budget, the agency should always seek to borrow and lend money over the years (e.g., via some 

financial tools).  
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      (a) 

 

      (b) 

Fig. 6. Annual agency costs under optimal MR&R plans with budget transfers allowed: (a) a system 

of 100 segments; (b) a system of 1000 segments 

 

 

4.4. Under the separate budget constraints 

In reality, an agency often manages separate budgets for different treatments, as discussed in Lee and 

Madanat (2015). In this section we revisit how this suboptimal practice affects the performance of the 

optimal MR&R plan. We examine the same 100-segment pavement system analyzed in Fig. 1, but 

now under the separate budget constraints. For the clarity of illustration, we here present the results of 

a reduced problem with two budget constraints only: one for reconstruction and the other for 

maintenance and rehabilitation combined.12 Fig. 7a plots a contour map of the optimal total cost for 

                                                      
12 We choose to present the results of this reduced problem simply for the sake of clarity. Note now the effects 

of the two budget constraints can be clearly illustrated by two-dimensional contour maps (like Fig. 7a-d). A 

three-budget-constraint problem can also be solved by our approach, but the effects of the three budget 

constraints cannot be presented in a similar way in the paper. The analysis of the reduced problem does not 
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the annual reconstruction budget ranging in [0, 5.5 × 106] $/year, and the annual maintenance and 

rehabilitation budget in [0, 5 × 106] $/year. Each thin, solid curve in the figure represents a contour 

line with the total discounted cost marked on the curve (in the unit of 107 $). Examination of this 

figure unveils interesting findings that complement those in the literature. 

 

First of all, no contour line is present in the region in the lower-left part of Fig. 7a (labeled 

“INF”), because the MR&R optimization problem is infeasible in this region due to insufficient 

budgets. Note that the area on the left side of the vertical dashed line at 0.36 × 106 $/year (the 

minimum reconstruction budget associated with 𝑇𝑘
𝑚𝑎𝑥) all belongs to region INF, regardless of the 

maintenance and rehabilitation budget. On the other hand, no contour line exists in the rectangular 

region in the upper-right corner of Fig. 7a (labeled “A”), because in this region both budget 

constraints are unbinding and the optimal total cost remains constant at 11.73 × 107 $. Note the 

bottom-left corner of region A indicates the maximum budgets needed: 2.51 × 106  $/year for 

reconstruction and 2.10 × 106 $/year for maintenance and rehabilitation combined. 

 

The remaining part of the figure is divided into three regions: B, C, and D, as demarcated by 

the thick solid lines in the figure. Region B refers to the set of cases where the reconstruction budget 

constraint is unbinding and the maintenance and rehabilitation budget constraint is binding. Hence the 

contours in this region are horizontal lines. Region C, on the other hand, is where the maintenance and 

rehabilitation budget constraint is unbinding but the reconstruction one is binding. Finally, region D is 

where both budget constraints are binding. Note that each unbroken contour line is tangent to a line 

with slope -1, and the tangent point indicates the optimal solution under the combined budget 

constraint. Some of these combined-budget-constraint problem solutions are shown as black dots on 

the contour lines of 11.90, 11.80, and 11.75× 107 $. The lower boundary of 𝑫 is also tangent to a 

line with slope -1 (the dashed line shown in Fig. 7a); this dash line specifies the minimum budget 

required for the combined budget scenario (4.02 × 106), which is consistent with Fig. 1. This is also 

intuitive: if a feasible MR&R plan is found for a given pair of separate budget constraints, then the 

corresponding problem when all the budgets are combined is also feasible. 

 

Fig. 7b shows the contour map of the percentage of cost savings by comparing the 

combined-budget-constraint scenario against the separate-budget-constraint one. The figure shows a 

cost saving of up to 4% when the reconstruction budget is small. On the other hand, if only the 

maintenance and rehabilitation budget is small, the cost saving is below 2%. The dashed line with 

slope -1 indicates the maximum required combined budget, and the contour lines above the dashed 

line should overlap with the contours of the optimal total cost. 

 

To further illustrate the effectiveness of maintenance, Fig. 7c compares the five solution 

                                                                                                                                                                     

compromise our findings since the maintenance cost is always small and easy to accommodate; see again Fig. 1. 
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regions defined above (A, B, C, D, and INF) against the regions for the optimal R&R plan (i.e. 

without preventive maintenance). The solution regions for the R&R case are demarcated by thick, 

dashed lines in the figure. The figure shows that when preventive maintenance is included, region D 

expands and moves downward, while region INF diminishes. This means including maintenance can 

largely reduce the budget needed to keep the pavements workable. 

 

 

(a) 
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(b) 

 

(c) 
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(d) 

Fig. 7. Results of the case under separate budget constraints: (a) contours of optimal total cost and the 

solution regions; (b) percentage of cost savings from optimally allocating the budget for different 

treatments; (c) comparison of the solution regions with and without maintenance; (d) percentage of 

cost savings from adding maintenance. 

 

Finally, the percentage of cost saving between MR&R and R&R is plotted in Fig. 7d. It shows 

that including maintenance can bring an over 5% reduction in the optimal total cost for most of the 

cases. Highest cost savings (almost 8%) are achieved when the reconstruction budget is small, 

because maintenance can extend the pavements’ lifecycles and thus reduce the need for 

reconstruction. 

 

The solution regions shown in Fig. 7c are different from those presented by Lee and Madanat 

(2015). Specifically, in Lee and Madanat the right boundary of region INF is a vertical line, and the 

lower boundary of region D is the horizontal axis; see Fig. 4 in their paper. The difference is due to 

the different input parameters used in our case studies. In general, there are seven patterns of the 

solution regions that may arise from real-life pavement systems, which are illustrated in Fig. 8a-g. 

 

The result in Lee and Madanat belongs to the pattern shown by Fig. 8a, where 𝑅𝐶𝑚𝑖𝑛 and 𝑅𝐶𝑚𝑎𝑥 

denote the minimum and maximum reconstruction costs that are required when the lifecycle duration 

is 𝑇𝑘
𝑚𝑎𝑥 and 𝑇𝑘

𝑚𝑖𝑛, respectively. (Note that this is the only pattern described in Lee and Madanat, 
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2015.) This pattern occurs if: i) a feasible solution exists when no maintenance or rehabilitation is 

applied, and only the minimum reconstruction is executed; and ii) the maximum reconstruction 

budget 𝑅𝐶𝑚𝑎𝑥 will be binding when no maintenance or rehabilitation is applied. If only condition ii) 

is false, i.e., 𝑅𝐶𝑚𝑎𝑥 is unbinding even if no maintenance or rehabilitation is applied, then the upper 

boundary of region D would hit the horizontal axis before crossing the vertical line at 𝑅𝐶𝑚𝑎𝑥. This 

will render the pattern shown by Fig. 8b. 

 

On the other hand, if the above condition i) is false, then the lower boundary of region D will 

decline as the reconstruction budget increases. This oblique lower boundary may end by: I) hitting the 

horizontal axis (before reaching 𝑅𝐶𝑚𝑎𝑥); II) crossing the upper boundary of D (before reaching 

𝑅𝐶𝑚𝑎𝑥); and III) crossing the vertical line at 𝑅𝐶𝑚𝑎𝑥. Case I) can be further divided into two patterns: 

when the upper boundary of D ends at the vertical line at 𝑅𝐶𝑚𝑎𝑥 (Fig. 8c), and when that boundary 

also ends at the horizontal axis (Fig. 8d). In case II), the two boundaries of region D merge to a single 

line which is decreasing as reconstruction budget increases. This line will cross the horizontal axis 

(Fig. 8e) or the vertical line at 𝑅𝐶𝑚𝑎𝑥 (Fig. 8f). Finally, case III) will render the patterns described 

by Fig. 8g. Note any interface that appears on the right of 𝑅𝐶𝑚𝑎𝑥 has to be horizontal. The results 

shown in Fig. 7a-d belong to the pattern in Fig. 8e. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



 

 29 

 

(e) 

 

(f) 

 

(g) 

 

Fig. 8. Patterns for the solution regions A, B, C, D, and INF 

 

4.5. Computational efficiency 

The solid dots in Fig. 9 present the computation times of 110 randomly generated numerical instances 

under the combined budget constraint against the number of pavement segments (ranging 50 to 1000). 

They were carried out via Matlab R2014a on a PC with Inter® Xeon® 3.60GHz CPU, 32.0GB RAM, 

and Windows 10 Pro 64-bit. These dots exhibit a clear linear relationship between the computational 

time and the size of the problem. Similar linear relationship is found for the cases with separate 

budget constraints. This is because the number of iterations needed for the Lagrange multiplier(s) 𝜆 

(or 𝜆𝑝) to converge is uncorrelated with the size of the system. With our selected error tolerance level 

(1% of the budget), this number of iterations is usually 4-5 under the combined budget constraint, and 

20-28 under three separate budget constraints. Note too that a 1000-segment system takes about 1.5 

hours to solve under the combined budget constraint, and about 8-10 hours under three separate 

budget constraints. The runtime is very reasonable for real-world implementation. 

 

In comparison, the GA algorithm developed by Lee and Madanat (2015) for solving the joint 

R&R optimization (i.e. without maintenance) seems to exhibit a polynomial complexity (see Fig. 6 of 

the cited work); i.e. the computation time increases much faster than the linear trend. Thus our 

approach is more computationally efficient than the GA algorithm especially for larger-scale systems. 
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Fig. 9. Computation times for the numerical instances under the combined budget constraint 

 

5. Conclusions 

We formulate a general mathematical model for the joint optimization of MR&R planning for a 

system of heterogeneous pavement segments under budget constraints. We propose a Lagrange 

multiplier approach combined with derivative-free quasi-Newton methods to solve the system-level 

program. The approach relaxes the budget constraints and decomposes the system-level problem into 

multiple segment-level subproblems, whose solutions can be more easily derived. Hence, our 

approach can be applied to segment-level models that take any specific forms. 

 

 Our work has extended the literature in the realm of pavement MR&R optimization in 

multiple aspects. We are, to our best knowledge, the first to formulate and solve a full version of 

system-level MR&R optimization problem that incorporates preventive maintenance activities, which 

are modeled by a more realistic formulation fitted on the real data. The inclusion of maintenance adds 

another dimension to the solution space, as compared to the previous system-level studies (e.g. Lee 

and Madanat, 2015). Despite the added complexity, however, the problem is solved within only 

moderate runtimes, thanks in part to the derivative-free quasi-Newton methods used to search for the 

𝜆′s, and in part to the efficient segment-level heuristic. More importantly, the runtime increases 

linearly with the number of segments in a system, which ensures the applicability of our solution 

approach to large-scale systems. Further, note that the computational efficiency is achieved without 

compromising the solution quality. Particularly, for the problem under the combined budget constraint, 

our approach guarantees the global optimality or near-optimality at the system level as long as the 

segment-level subproblems are solved at or near the optima. High-quality solutions are always 

preferred because even one additional percent of reduction in the total cost would mean a saving of 

millions of dollars. 
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Our numerical case studies reveal a number of useful findings. For example, the results show 

that by optimally allocating a combined agency budget among the treatments, the minimum total cost 

can be reduced by up to 4% (see again Fig. 7b). Incorporating maintenance in the optimal MR&R 

planning will result in a total cost saving of over 6% (see Fig. 7d), and more importantly, it can 

significantly lower the minimum budget required to keep the pavement system workable (by over 9% 

in our numerical case; see Fig. 1). Highway agencies can obtain the optimal allocation of the budget 

for each treatment, and the minimum total budget required from our model. These types of 

information are very useful for them to prepare for future budget proposals. Managerial insights are 

also unveiled, including: i) that the agency should perform fewer reconstructions but more 

rehabilitations when the budget is more limited; ii) that incorporating maintenance will reduce the 

need for reconstruction but not for rehabilitation (actually the rehabilitation frequency would increase) 

in the optimal MR&R plan; and iii) that the pavements’ initial conditions have a significant effect on 

the optimal MR&R plans during the transient periods and the minimum total budget required, but 

have almost no effect on the optimal steady-state MR&R plans. These insights are helpful for 

agencies to plan for future pavement management activities. 

 

To be sure, our work still has several limitations. For example, some findings and insights 

summarized from the numerical case studies might be dependent on the specific parameter values we 

used. In particular, we find the maximum allowable roughness index, 𝑠𝑘
𝑚𝑎𝑥 (which defines the worst 

acceptable condition for a workable pavement), has a significant impact on the cost savings stemmed 

from optimally allocating the treatment budgets and from incorporating maintenance. Larger 𝑠𝑘
𝑚𝑎𝑥 

(i.e. higher tolerance for poor pavements) would result in more savings. 

 

The present segment-level models are also limited in that: i) the cost and effectiveness models 

for a variety of other preventive maintenance treatments (e.g. fog seal and microsurfacing) are not 

included; ii) the present models for chip seal and rehabilitation fail to account for the influence of a 

number of factors including the environmental conditions; iii) the roughness index is not a perfect 

indicator of pavement conditions; and iv) the present user cost model and the assumption of constant 

traffic loading are also strong simplifications of the reality. However, our system-level approach can 

still be applied to the more complicated scenarios that address the above practical concerns, should 

more realistic segment-level models be made available. Work in this regard is underway. 

 

Potential extensions of our work also include: modeling and solving the problem with annual 

budget constraints that are not transferable across the years; modeling the uncertainties in the 

deterioration process and MR&R effectiveness; and accounting for other operational and practical 

constraints like the greenhouse gas emissions, network connectivity, etc. These extensions would 

require not only a revised formulation of the problem, but also more efficient search algorithms to 
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ensure convergence within reasonable runtimes. Some of these extensions are currently under 

investigation too. 
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Appendix A. Sketch of proof of Lemma 1 

First note that the case of 𝜆∗ = 0 is trivial. In the following proof we assume that 𝜆∗ ≠ 0 and 𝜆𝐻 ≠

0 (note it is unlikely that 𝜆∗ ≠ 0 and 𝜆𝐻 = 0 when 𝛿1 and 𝛿2 are both small). So from (6a-b), we 

have:  

∑ 𝐶𝑘(𝒙𝑘
∗ (𝜆∗))𝐾

𝑘=1 = ∑ 𝐶𝑘 (𝒙𝑘
𝐻(𝜆𝐻))𝐾

𝑘=1 = 𝐵       (A1) 

Then, 

|∑ (𝐶𝑘(𝒙𝑘
∗ (𝜆𝐻)) − 𝐶𝑘(𝒙𝑘

∗ (𝜆∗)))𝐾
𝑘=1 | = |∑ (𝐶𝑘(𝒙𝑘

∗ (𝜆𝐻)) − 𝐶𝑘 (𝒙𝑘
𝐻(𝜆𝐻)))𝐾

𝑘=1 | ≤

∑ |𝐶𝑘(𝒙𝑘
∗ (𝜆𝐻)) − 𝐶𝑘 (𝒙𝑘

𝐻(𝜆𝐻))|𝐾
𝑘=1 ≤ 𝐾 ∙ 𝛿1       (A2) 

 

On the other hand, since 𝒙𝑘
∗ (𝜆) minimizes 𝑍𝑘(𝒙𝑘) + 𝜆𝐶𝑘(𝒙𝑘), we have: 

𝑍𝑘(𝒙𝑘
∗ (𝜆∗)) + 𝜆∗ ∙ 𝐶𝑘(𝒙𝑘

∗ (𝜆∗)) ≤ 𝑍𝑘(𝒙𝑘
∗ (𝜆𝐻)) + 𝜆∗ ∙ 𝐶𝑘(𝒙𝑘

∗ (𝜆𝐻))    (A3) 

and, 

𝑍𝑘(𝒙𝑘
∗ (𝜆𝐻)) + 𝜆𝐻 ∙ 𝐶𝑘(𝒙𝑘

∗ (𝜆𝐻)) ≤ 𝑍𝑘(𝒙𝑘
∗ (𝜆∗)) + 𝜆𝐻 ∙ 𝐶𝑘(𝒙𝑘

∗ (𝜆∗))    (A4) 

 

The (A3) and (A4) can be combined into: 

𝜆∗ ∙ (𝐶𝑘(𝒙𝑘
∗ (𝜆∗)) − 𝐶𝑘(𝒙𝑘

∗ (𝜆𝐻))) ≤ 𝑍𝑘(𝒙𝑘
∗ (𝜆𝐻)) − 𝑍𝑘(𝒙𝑘

∗ (𝜆∗)) ≤ 𝜆𝐻 ∙ (𝐶𝑘(𝒙𝑘
∗ (𝜆∗)) − 𝐶𝑘(𝒙𝑘

∗ (𝜆𝐻))) 

        (A5) 

 

Hence, 

|∑ (𝑍𝑘(𝒙𝑘
∗ (𝜆∗)) − 𝑍𝑘(𝒙𝑘

∗ (𝜆𝐻)))𝐾
𝑘=1 | ≤ max{𝜆∗, 𝜆𝐻} ∙ |∑ (𝐶𝑘(𝒙𝑘

∗ (𝜆∗)) − 𝐶𝑘(𝒙𝑘
∗ (𝜆𝐻)))𝐾

𝑘=1 | ≤

max{𝜆∗, 𝜆𝐻} ∙ 𝐾𝛿1         (A6) 

 

Now we have: 

|∑ 𝑍𝑘(𝒙𝑘
∗ (𝜆∗))𝐾

𝑘=1 − ∑ 𝑍𝑘 (𝒙𝑘
𝐻(𝜆𝐻))𝐾

𝑘=1 | ≤ |∑ 𝑍𝑘(𝒙𝑘
∗ (𝜆∗))𝐾

𝑘=1 − ∑ 𝑍𝑘(𝒙𝑘
∗ (𝜆𝐻))𝐾

𝑘=1 | +

|∑ 𝑍𝑘(𝒙𝑘
∗ (𝜆𝐻))𝐾

𝑘=1 − ∑ 𝑍𝑘 (𝒙𝑘
𝐻(𝜆𝐻))𝐾

𝑘=1 | ≤ max{𝜆∗, 𝜆𝐻} ∙ 𝐾𝛿1 + ∑ |𝑍𝑘(𝒙𝑘
∗ (𝜆𝐻)) −𝐾

𝑘=1
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𝑍𝑘 (𝒙𝑘
𝐻(𝜆𝐻))| ≤ 𝐾 ∙ (max{𝜆∗, 𝜆𝐻} 𝛿1 + 𝛿2)       (A7) 

 

Note in a real pavement system that 𝐶𝑘(𝒙𝑘
∗ (𝜆𝐻)) − 𝐶𝑘(𝒙𝑘

∗ (𝜆∗)) can be either positive or negative for 

any 𝑘; and the positive and negative components of the sum ∑ (𝐶𝑘(𝒙𝑘
∗ (𝜆𝐻)) − 𝐶𝑘(𝒙𝑘

∗ (𝜆∗)))𝐾
𝑘=1  will 

cancel out. Thus inequality (A2) may be a very weak one, and as a result, (A7) may be weak too. ■ 

 

Appendix B. Proof of Lemma 2 

We prove Lemma 2 by contradiction. Suppose there exists 𝜆1 > 𝜆2 ≥ 0, such that 𝑉(𝜆1) ≥ 𝑉(𝜆2). 

We denote 𝒙1 and 𝒙2 as the solutions associated with 𝜆1 and 𝜆2, respectively; i.e., for each 𝑘 =

1,2, … , 𝐾, 𝒙𝑘
1  is the unique minimizer of 𝐻𝑘(𝒙𝑘, 𝜆1) ≡ 𝐶𝑘

𝑈(𝒙𝑘) + (1 + 𝜆1)𝐶𝑘(𝒙𝑘), and 𝒙𝑘
2  is the 

unique minimizer of 𝐻𝑘(𝒙𝑘 , 𝜆2) ≡ 𝐶𝑘
𝑈(𝒙𝑘) + (1 + 𝜆2)𝐶𝑘(𝑥𝑘). 

 

We then have: 

0 > ∑ [𝐻𝑘(𝒙𝑘
1 , 𝜆1) − 𝐻𝑘(𝒙𝑘

2 , 𝜆1)]𝐾
𝑘=1   

= ∑ {[𝐶𝑘
𝑈(𝒙𝑘

1 ) + (1 + 𝜆1)𝐶𝑘(𝒙𝑘
1 )] − [𝐶𝑘

𝑈(𝒙𝑘
2) + (1 + 𝜆1)𝐶𝑘(𝑥𝑘

2)]}𝐾
𝑘=1   

= ∑ [𝐶𝑘
𝑈(𝒙𝑘

1 ) − 𝐶𝑘
𝑈(𝒙𝑘

2)]𝐾
𝑘=1 + (1 + 𝜆1)(𝑉(𝜆1) − 𝑉(𝜆2))  

≥ ∑ [𝐶𝑘
𝑈(𝒙𝑘

1 ) − 𝐶𝑘
𝑈(𝒙𝑘

2)]𝐾
𝑘=1 + (1 + 𝜆2)(𝑉(𝜆1) − 𝑉(𝜆2))  

= ∑ [𝐻𝑘(𝒙𝑘
1 , 𝜆2) − 𝐻𝑘(𝒙𝑘

2 , 𝜆2)]𝐾
𝑘=1 > 0  

Contradiction!           ■ 

 

Appendix C. Sketch of proof of the convergence of Algorithm 1 

We assume that 𝑉(𝜆) is continuously differentiable everywhere and the unique root of 𝑉(𝜆) is 𝜆∗ 

(since 𝑉(𝜆)  is a decreasing function of 𝜆 ). We prove the convergence of Algorithm 1 by 

contradiction. Suppose the stop criterion cannot be attained as 𝑛 increases. Initially, we have 𝜆0 <

𝜆1 and 𝑉(𝜆0) > 0. According to Lemma 2, we have 𝑉(𝜆1) < 𝑉(𝜆0). One of the following two cases 

will occur. 

 

Case 1: 𝑉(𝜆𝑛) > 0 for all 𝑛 ≥ 1 

In this case 𝜆𝑛+1 = 𝜆𝑛 − 𝑉(𝜆𝑛)
𝜆𝑛−𝜆𝑛−1

𝑉(𝜆𝑛)−𝑉(𝜆𝑛−1)
> 𝜆𝑛 for all the 𝑛; i.e., the sequence {𝜆𝑛} is strictly 

increasing. Thus {𝜆𝑛} should be bounded above, because otherwise 𝑉(𝜆𝑛) would be 0 or negative 

for sufficiently large 𝑛. That means {𝜆𝑛} has a supremum: 𝜆̃ = sup {𝜆𝑛}. Let 𝑉(𝜆̃) = 𝜅 as shown 

in Fig. C1a. We have: 

lim
𝑛→∞

𝑉(𝜆𝑛) = 𝜅 > 0          (C1) 

lim
𝑛→∞

𝜆𝑛 = 𝜆̃           (C2) 
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However, 

𝜆̃ = lim
𝑛→∞

𝜆𝑛+1 = lim
𝑛→∞

(𝜆𝑛 − 𝑉(𝜆𝑛)
𝜆𝑛−𝜆𝑛−1

𝑉(𝜆𝑛)−𝑉(𝜆𝑛−1)
) = 𝜆̃ − 𝜅 ∙ 𝑉′(𝜆̃) > 𝜆̃    (C3) 

Contradiction! 

 

Case 2: 𝑉(𝜆𝑛) < 0 for some 𝑛 ≥ 1. 

According to Algorithm 1, we have 𝑉(𝜆𝑛−1) ∙ 𝑉(𝜆𝑛) < 0  for all 𝑛 ≥ 𝑛′ , where 𝑛′ =

min {𝑛|𝑉(𝜆𝑛) < 0}; i.e., {𝜆𝑛} oscillates on both sides of 𝜆∗. Then there must be infinite number of 

𝜆𝑛’s on at least one side of 𝜆∗. There are two subcases: 

(1) Infinite number of 𝜆𝑛’s occur only on one side of 𝜆∗. The contradiction can be shown using the 

same method presented in Case 1. 

(2) Infinite numbers of 𝜆𝑛’s occur on both sides of 𝜆∗. We denote {𝜆𝐿
𝑛} as the 𝜆𝑛’s on the left side 

of 𝜆∗  and {𝜆𝑅
𝑛} as those on the right side. We define 𝜆̃𝐿 = sup{𝜆𝐿

𝑛} and 𝜆̃𝑅 = inf{𝜆𝑅
𝑛} as 

shown in Fig. C1b, where 𝑉(𝜆̃𝐿) = 𝜅𝐿 and 𝑉(𝜆̃𝑅) = 𝜅𝑅. We have: 

lim
𝑛→∞

𝑉(𝜆𝐿
𝑛) = 𝜅𝐿 > 0          (C4) 

lim
𝑛→∞

𝜆𝐿
𝑛 = 𝜆̃𝐿           (C5) 

lim
𝑛→∞

𝑉(𝜆𝑅
𝑛) = 𝜅𝑅 < 0          (C6) 

lim
𝑛→∞

𝜆𝑅
𝑛 = 𝜆̃𝑅           (C7) 

And,  

lim
𝑛→∞

𝜆𝑛+1 = lim
𝑛→∞

(𝜆𝑛 − 𝑉(𝜆𝑛)
𝜆𝑛−𝜆𝑛−1

𝑉(𝜆𝑛)−𝑉(𝜆𝑛−1)
) ∈ (𝜆̃𝐿 , 𝜆̃𝑅)     (C8) 

Contradiction!                                                                   ■ 

 

 

(a) 

 

(b) 

Fig. C1 Illustrations of the two cases of contradiction: (a) case 1; (b) case 2. 

 

Appendix D. The dynamic programming approach to the segment-level problem 

We first reproduced the dynamic programming method used by Lee and Madanat (2014a, 2015) with 

only minor modifications to solve subproblem 1. To this end, we assume that the maintenance 
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intensity 𝑣𝑘𝜏 and the pavement roughness level 𝑠𝑘(𝜏) take values form predefined discrete sets, i.e., 

𝑣𝑘𝜏 ∈ {0,
1

𝑑
𝐷𝑘𝜏,

2

𝑑
𝐷𝑘𝜏, ⋯ , 𝐷𝑘𝜏}  for 𝜏 ∈ {1, ⋯ , 𝑇𝑘} , and 𝑠𝑘(𝜏) ∈ 𝑀𝑘𝜏 = {𝑠𝑘

𝑛𝑒𝑤, 𝑠𝑘
𝑛𝑒𝑤 +

𝑠𝑘̅(𝜏)−𝑠𝑘
𝑛𝑒𝑤

𝑁
,

𝑠𝑘
𝑛𝑒𝑤 + 2

𝑠̅𝑘(𝜏)−𝑠𝑘
𝑛𝑒𝑤

𝑁
, ⋯ , 𝑠̅𝑘(𝜏)}  for 𝜏 ∈ {0, ⋯ , 𝑇𝑘} , where 𝑠̅𝑘(𝜏)  is the maximum allowed 

roughness for segment 𝑘 in year 𝜏; i.e., if 𝑠𝑘(𝜏) > 𝑠̅𝑘(𝜏), the roughness level would exceed 𝑠𝑘
𝑚𝑎𝑥 

in the following year 𝜏 + 1. There are 𝑑 + 2 decision options in each year 𝜏 ∈ {1, ⋯ , 𝑇𝑘}: do 

nothing; rehabilitation only; and maintenance only with intensity 
1

𝑑
𝐷𝑘𝜏,

2

𝑑
𝐷𝑘𝜏, ⋯ , 𝐷𝑘𝜏, respectively. 

Let 𝑌𝑘(𝑞𝑘𝜏) denote the cost-to-go in year 𝜏 (i.e. the minimum total discounted cost from year 𝜏 to 

𝑇𝑘), the algorithm is described as follows: 

 

Step 1. For each 𝑇𝑘 ∈ {𝑇𝑘
𝑚𝑖𝑛, ⋯ , 𝑇𝑘

𝑚𝑎𝑥}, set the boundary condition as 𝑌𝑘(𝑞𝑘,𝑇𝑘
) = 0, ∀ 𝑞𝑘,𝑇𝑘

. For 

each year 𝜏 = 𝑇𝑘 − 1, 𝑇𝑘 − 2, ⋯ ,0, 𝑠𝑘(𝜏) ∈ 𝑀𝑘𝜏 and ℎ𝑘𝜏 = ℎ𝑘0 + 𝜏, we generate 𝑌𝑘(𝑞𝑘𝜏) in the 

backward direction by the Bellman equation: 

𝑌𝑘(𝑞𝑘𝜏) = min
𝑥𝑘𝜏,1,𝑥𝑘𝜏,2,𝑣𝑘𝜏

{∫ 𝑙𝑘(𝑐𝑘
1𝑠𝑘(𝑢) + 𝑐𝑘

2)
𝜏+1

𝜏
𝑒−𝑟𝑢𝑑𝑢 + 𝑥𝑘𝜏,1(𝛾𝑘

1𝑣𝑘𝜏 + 𝛾𝑘
2)𝑒−𝑟𝜏 + 𝑥𝑘𝜏,2(𝑚𝑘

1𝑅𝑘𝜏 +

𝑚𝑘
2)𝑒−𝑟𝜏 + 𝑌𝑘(𝑞𝑘,𝜏+1)}         (D1) 

where  

𝑞𝑘,𝜏+1 = {𝑠𝑘(𝜏 + 1), ℎ𝑘,𝜏+1} = {𝐹𝑘 (𝑠𝑘(𝜏) − 𝑥𝑘𝜏,2𝐺𝑘(𝑅𝑘𝜏, 𝑠𝑘(𝜏)), 1, ℎ𝑘𝜏, 𝑏̅𝑘 −

𝑥𝑘𝜏,1𝐸𝑘(𝑣𝑘𝜏, 𝑠𝑘(𝜏))) , ℎ𝑘𝜏 + 1}         (D2) 

𝑌𝑘(𝑞𝑘,𝜏+1) =
𝑠𝑘−𝑠𝑘(𝜏+1)

𝑠𝑘−𝑠𝑘
′ 𝑌𝑘(𝑠𝑘

′ , ℎ𝑘,𝜏+1) +
𝑠𝑘(𝜏+1)−𝑠𝑘

′

𝑠𝑘−𝑠𝑘
′ 𝑌𝑘(𝑠𝑘, ℎ𝑘,𝜏+1)    (D3) 

𝑠𝑘
′  and 𝑠𝑘 are the two consecutive roughness indices in 𝑀𝑘,𝜏+1 that satisfy 𝑠𝑘

′ ≤ 𝑠𝑘(𝜏 + 1) ≤ 𝑠𝑘. 

 

Step 2. For each year 𝜏 = 0,1, ⋯ , 𝑇𝑘 − 1, record the optimal decision in the forward direction: 

(𝑥𝑘𝜏,1
∗ , 𝑥𝑘𝜏,2

∗ , 𝑣𝑘𝜏
∗ ) = argmin

𝑥𝑘𝜏,1,𝑥𝑘𝜏,2,𝑣𝑘𝜏

{∫ 𝑙𝑘(𝑐𝑘
1𝑠𝑘(𝑢) + 𝑐𝑘

2)
𝜏+1

𝜏
𝑒−𝑟𝑢𝑑𝑢 + 𝑥𝑘𝜏,1(𝛾𝑘

1𝑣𝑘𝜏 + 𝛾𝑘
2)𝑒−𝑟𝜏 +

𝑥𝑘𝜏,2(𝑚𝑘
1𝑅𝑘𝜏 + 𝑚𝑘

2)𝑒−𝑟𝜏 + 𝑌𝑘(𝑞𝑘,𝜏+1)}        (D4) 

where 𝑞𝑘0 = {𝑠𝑘(0), ℎ𝑘0}. 

 

Step 3. Find the 𝑇𝑘 that minimizes 
𝑍𝑘

𝑆

1−𝑒−𝑟𝑇𝑘
. 
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In the first step, we apply the Bellman equation (D1) recursively to generate 𝑌𝑘(𝑞𝑘𝜏) for all 

𝜏 ∈ {0, ⋯ , 𝑇𝑘 − 1}, 𝑠𝑘(𝜏) ∈ 𝑀𝑘𝜏 and ℎ𝑘𝜏 = ℎ𝑘0 + 𝜏. The pavement state in year 𝜏 + 1 is calculated 

by equation (D2). The cost-to-go 𝑌𝑘(𝑞𝑘,𝜏+1) is approximately by linear interpolation between 

𝑌𝑘(𝑠𝑘
′ , ℎ𝑘,𝜏+1) and 𝑌𝑘(𝑠𝑘, ℎ𝑘,𝜏+1); see equation (D3). The optimal decision (𝑥𝑘𝜏,1

∗ , 𝑥𝑘𝜏,2
∗ , 𝑣𝑘𝜏

∗ ) that 

minimizes 𝑌𝑘(𝑞𝑘𝜏) in each year 𝜏 is obtained and recorded in step 2 with the initial state 𝑞𝑘0. 

 

To solve subproblem 2, we make the following changes to the above algorithm: i) in year 0 

there are 𝑑 + 2  decisions as in other years; and ii) 𝑇𝑘  is replaced by 𝑡𝑘
𝑇 , whose range is 

[𝑇𝑘
𝑚𝑖𝑛′

, 𝑇𝑘
𝑚𝑎𝑥′

] , where 𝑇𝑘
𝑚𝑖𝑛′

= max{0, 𝑇𝑘
𝑚𝑖𝑛 − ℎ𝑘0}  and 𝑇𝑘

𝑚𝑎𝑥′
= max{0, 𝑇𝑘

𝑚𝑎𝑥 − ℎ𝑘0} . Finally, 

we choose the 𝑡𝑘
𝑇 that minimizes equation (12). 
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