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ABSTRACT
Quasi-convex optimization is fundamental to the modeling of many practical prob-
lems in various fields such as economics, finance and industrial organization. Subgra-
dient methods are practical iterative algorithms for solving large-scale quasi-convex
optimization problems. In the present paper, focusing on quasi-convex optimiza-
tion, we develop an abstract convergence theorem for a class of sequences, which
satisfy a general basic inequality, under some suitable assumptions on parameters.
The convergence properties in both function values and distances of iterates from
the optimal solution set are discussed. The abstract convergence theorem covers
relevant results of many types of subgradient methods studied in the literature, for
either convex or quasi-convex optimization. Furthermore, we propose a new sub-
gradient method, in which a perturbation of the successive direction is employed at
each iteration. As an application of the abstract convergence theorem, we obtain the
convergence results of the proposed subgradient method under the assumption of
the Hölder condition of order p and by using the constant, diminishing, or dynamic
stepsize rules, respectively. A preliminary numerical study shows that the proposed
method outperforms the standard, stochastic and primal-dual subgradient methods
in solving the Cobb-Douglas production efficiency problem.

KEYWORDS
Quasi-convex programming; subgradient method; basic inequality; abstract
convergence theorem; Cobb-Douglas production efficiency problem

1. Introduction

Mathematical optimization provides a unified framework for a wide variety of impor-
tant problems in many disciplines and application fields. Convex optimization plays
a central role in mathematical optimization; however, it is too restrictive for many
real-life problems encountered in economics, finance and management science. Quasi-
convex optimization usually provides a much more accurate representation of realities
than convex optimization does, while it still inherits some nice properties of convex
optimization. This leads to a significant increase of studies in quasi-convex optimiza-
tion; see [3,9,14,34] and references therein. However, the development of numerical
algorithms for quasi-convex optimization, in particular for large-scale problems, is still
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in its infancy. Hence, there is a great demand for developing efficient numerical algo-
rithms for solving large-scale quasi-convex optimization problems.

Subgradient methods form a class of popular and effective iterative algorithms used
to solve constrained optimization problems. The subgradient method was original-
ly introduced by Polyak [31] and Ermoliev [12] in the 1970s to solve a nondifferen-
tiable convex optimization problem. This technique was further developed by Shor
[33]. Over the past 40 years, various features of subgradient methods have been estab-
lished for convex optimization problems, and many extensions/generalizations have
been devised for this case; moreover, numerous applications have been proposed; see
[1,4–6,10,15,22,29,35] and references therein. For example, the conditional subgradi-
ent method [25] has been introduced to avoid the zig-zagging phenomenon of the
standard subgradient method and applied to solve the uncapacitated facility loca-
tion problem and the multicommodity network flow problem; incremental subgradient
methods [26,30] have been proposed to minimize the summation of a large number
of convex functions and widely applied to solve the distributed optimization problem
in large-scale sensor networks [32] and empirical risk minimization problem in online
machine learning [11]; the primal-dual subgradient methods [28,29] have been inves-
tigated to approach a saddle point of a convex-concave function and used with great
success in designing decentralized network control protocols [8]. Convergence proper-
ties of subgradient methods for convex optimization, in terms of function values and
distances of iterates from the optimal solution set, have been well studied by using the
constant, diminishing or dynamic stepsize rules.

In the last two decades, subgradient methods have been developed to solve con-
strained quasi-convex optimization problems; see [16–19,21,24] and references therein.
For example, Kiwiel [21] studied the convergence properties of the standard subgradi-
ent method for solving quasi-convex optimization problems by using the diminishing
stepsize rule. To handle more practical problems involving computational errors and
noise, Hu et al. [16] proposed a generic inexact subgradient method and investigated
the influence of the deterministic noise to the inexact subgradient method by adopting
the constant and diminishing stepsize rules. To avert the zig-zagging phenomenon and
improve the convergence behavior, Hu et al. [19] introduced a conditional subgradient
method as well as an inexact version, and presented the convergence results by further
using a dynamic stepsize rule. It is worth mentioning that the basic inequality of a
subgradient iteration is a key tool for convergence analysis of subgradient methods for
either convex or quasi-convex optimization.

The present paper is devoted to developing the convergence theory for a class of
iterative methods to solve quasi-convex optimization problems in a unified framework.
In particular, we consider a constrained quasi-convex optimization problem

min f(x)
s.t. x ∈ X,

(1)

where f : Rn → R is a quasi-convex and continuous (not necessarily differentiable)
function, and X ⊆ Rn is a nonempty, closed and convex set. We denote the set
of minima and the minimum value of problem (1) by X∗ and f∗, respectively. In
the following, we aim to investigate an abstract convergence theorem for a sequence
satisfying a general basic inequality. That is, we fix p > 0, and consider a sequence
{xk} ⊆ X, as well as a sequence of nonnegative scalars {vk}, that satisfy the following
two conditions:
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(H1) For each x∗ ∈ X∗ and each k ∈ {i ∈ N : xi /∈ X∗},

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 ≤ −αkvk(f(xk)− f∗)
1

p + βkv
2
k. (2)

(H2) {αk} and {βk} are two sequences of positive scalars such that

lim
k→∞

αk = α > 0 and lim
k→∞

βk = β > 0. (3)

Condition (H1) measures the difference of the distances of iterates from any solution by
the difference of function value and the minimum value, and condition (H2) character-
izes some assumptions on the parameters. The nature of subgradient methods forces
the generated sequence to comply with conditions (H1) and (H2) under some mild
assumptions, and thus, this study provides a unified framework for various subgra-
dient methods for either convex or quasi-convex optimization. For example, they are
satisfied for the sequence generated by subgradient methods for convex optimization
problems (with p = 1) under a bounded subgradient assumption, and for quasi-convex
optimization problems under the assumption of the Hölder condition of order p. More
specifically, for convex optimization problems, assuming that f has an upper bound
G on its subgradients (and so p = 1),

- the sequence generated by either the standard subgradient method [33] or the
primal-dual subgradient method [28] satisfies (H1) and (H2) with αk = 2 and
βk = G2;

- the sequence generated by the incremental subgradient method (for minimizing
the summation of a number of convex functions fi) [26] satisfies (H1) and (H2)
with αk = 2 and βk = (

∑m
i=1Gi)

2, where Gi is the upper bound of subgradients
of fi; and

- in the unified framework of subgradient methods studied in [30], (H1) and (H2)
are assumed to satisfy with αk being a positive constant and limk→∞ βkvk = 0.

For quasi-convex optimization problems, assuming the Hölder condition of order p
with modulus L,

- the sequence generated by either the standard subgradient method [21] or the

primal-dual subgradient method [17] satisfies (H1) and (H2) with αk = 2L− 1

p

and βk = 1;
- the sequence generated by the conditional subgradient method [19] satisfies (H1)

and (H2) with αk = 2L− 1

p and βk = 4.

One of the main contributions of the present paper is to establish an abstract con-
vergence theorem for any sequence satisfying conditions (H1) and (H2) under some
suitable assumptions on {vk}, in which the convergence properties in terms of func-
tion values and distances of iterates from the optimal solution set are discussed. The
abstract convergence theorem covers relevant results of many types of subgradient
methods studied in the literature, for either convex or quasi-convex optimization. An-
other contribution of the present paper is to propose a new subgradient method to
solve the constrained quasi-convex optimization problem (1). Note that the standard
subgradient method usually suffers from slow convergence rate in many applications.
To speed up its convergence rate, conditional subgradient methods were introduced in
[25] and [19] for solving constrained convex and quasi-convex optimization problems,
respectively. In these methods, the search direction consists of a subgradient and a
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normal vector to the constraint set. However, it might be computational expensive
to calculate the normal vector to the constraint set in general, especially for large-
scale problems. This hinders the application of conditional subgradient methods to
large-scale (quasi-convex) optimization problems. To tackle this obstacle, we propose
an implementable subgradient method, in which a perturbation of the successive di-
rection is employed in place of the normal vector, as in the conditional subgradient
method. Under the assumption of the Hölder condition of order p, we show that the
generated sequence satisfies conditions (H1) and (H2); consequently, as an application
of the abstract convergence theorem, we obtain the convergence results of the proposed
subgradient method by using the constant, diminishing, or dynamic stepsize rules.

Furthermore, we apply the proposed algorithm to solve the Cobb-Douglas produc-
tion efficiency problem [7] and compare it with the standard subgradient method [21],
stochastic subgradient method [18] and primal-dual subgradient method [17]. The nu-
merical results verify the established convergence theorem and show that the proposed
algorithm outperforms these subgradient-type methods in that it obtains a larger pro-
duction efficiency and converges faster by choosing a suitable algorithmic parameter.

The present paper is organized as follows. In section 2, we present the notations and
preliminary results that will be used in the present paper. In section 3, we establish
an abstract convergence theorem for any sequence satisfying conditions (H1) and (H2)
under some suitable assumptions on {vk}. In section 4, we propose an implementable
subgradient method to solve the constrained quasi-convex optimization problem (1),
establish its convergence results by applying the abstract convergence theorem, and
present its numerical simulation on solving the Cobb-Douglas production efficiency
problem.

2. Notations and preliminary results

The notations used in the present paper are standard; see, e.g., [5]. We consider the
n-dimensional Euclidean space Rn with inner product ⟨·, ·⟩ and norm ∥ · ∥. As usual,
S stands for the unit sphere centered at the origin. For x ∈ Rn and Z ⊆ Rn, we use
dist(x,Z) and PZ(x) to denote the Euclidean distance of x from Z and the Euclidean
projection of x onto Z, respectively, that is,

dist(x, Z) := inf
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

Two well-known properties of the Euclidean projection are recalled in the following
proposition. Part (i) of this result shows a nonexpansive property, while part (ii) is a
characterization of the projection; see [5].

Proposition 2.1. Let Z ⊆ Rn be a nonempty, closed and convex set and x, y ∈ Rn.
Then the following assertions hold:

(i) ∥PZ(x)− PZ(y)∥ ≤ ∥x− y∥.
(ii) ⟨PZ(x)− x, z − PZ(x)⟩ ≥ 0 for any z ∈ Z.

A function f : Rn → R is said to be quasi-convex if for any x, y ∈ Rn and any
α ∈ [0, 1], the following inequality holds

f((1− α)x+ αy) ≤ max{f(x), f(y)}.
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For α ∈ R, we denote the sublevel sets of f by

lev<αf := {x ∈ Rn : f(x) < α} and lev≤αf := {x ∈ Rn : f(x) ≤ α}.

It is well-known that f is quasi-convex if and only if lev<αf (and/or lev≤αf) is convex
for any α ∈ R. A function f : Rn → R is said to be coercive if lim∥x∥→∞ f(x) = ∞,
and so its sublevel set lev≤αf is bounded for any α ∈ R.

The subdifferential of a quasi-convex function plays an important role in the study
of quasi-convex optimization. Several different types of subdifferentials of quasi-convex
function have been introduced in the literature, see [2,13,16,21] and references therein.
In particular, Kiwiel [21] and Hu et al. [16] introduced a quasi-subdifferential defined
as a normal cone to the strict sublevel set of the quasi-convex function, and applied the
related quasi-subgradient in their proposed subgradient methods; see, e.g., [16,19,21].
In the following definition, we recall the notion of quasi-subdifferential taken from [16].

Definition 2.2. Let f : Rn → R be a quasi-convex function. The quasi-subdifferential
of f at x ∈ Rn is defined by

∂∗f(x) :=
{
g ∈ Rn : ⟨g, y − x⟩ ≤ 0, ∀y ∈ lev<f(x)f

}
.

Each vector g ∈ ∂∗f(x) is called a quasi-subgradient of f at x.

Definition 2.3. Let p > 0 and L > 0. The function f : Rn → R is said to satisfy the
Hölder condition (restricted to the set of minima X∗) of order p with modulus L on
Rn if

f(x)− f∗ ≤ Ldistp(x,X∗) for any x ∈ Rn.

The notion of the Hölder condition (restricted to the set of minima X∗) was in-
troduced in [23] to describe some properties of the quasi-subgradient, and it plays an
important role in the convergence analysis of subgradient methods in quasi-convex
optimization [16,18,19]. In fact, the Hölder condition (restricted to the set of minima
X∗) is weaker than the classical Hölder condition, which means that

|f(x)− f(y)| ≤ L∥x− y∥p for any x, y ∈ Rn. (4)

In fact, (4) implies the Hölder condition (restricted to the set of minima X∗) of order
p. The notion of Hölder condition has been widely studied in harmonic analysis [20]
and fractional analysis [34], and extensively applied in economics [34] and manage-
ment science [2]. It is worth noting that the classical Hölder condition of order 1 is
equivalent to the bounded subgradient assumption, always assumed in the literature
of subgradient methods (see, e.g., [5,22,26]), whenever f is convex.

Some examples of quasi-convex functions that satisfy the classical Hölder condition
(and so satisfy the the Hölder condition in Definition 2.3) and coercive property are
provided as follows. For the sake of simplicity, we use Q(p, L) to denote the set of
functions that are quasi-convex and coercive and satisfy the classical Hölder condition
of order p with modulus L.

Example 2.4. Let p ∈ (0, 1) and L > 0.
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(i) Let f : R → R be defined by

f(t) := |t|p for each t ∈ R.

Then f ∈ Q(p, 1). In fact, the quasi-convexity and coercive property of f are
trivial, and the Hölder condition of order p is satisfied because

|f(u)− f(v)| = |u|p − |v|p ≤ |u− v|p for any u, v ∈ R.

(ii) Let f : Rn → R be defined by

f(x) := ∥x∥p for each x ∈ Rn,

Similar to (i), we have f ∈ Q(p, 1).
(iii) Let gi : R → R be such that gi ∈ Q(p, L) for i = 1, . . . , n, and let f : Rn → R be

defined by

f(x) := max
i=1,...,n

gi(xi) for each x ∈ Rn.

Then f ∈ Q(p, 1). In fact, we can check the Hölder condition of f by gi ∈ Q(p, L)
that

|f(x)− f(y)| ≤ max
i=1,...,n

(gi(xi)− gi(yi)) ≤ max
i=1,...,n

L|xi − yi|p ≤ L∥x− y∥p.

(iv) Let gi : Rn → R be such that gi ∈ Q(p, L) for i = 1, . . . ,m, and let f : Rn → R
be defined by

f(x) := max
i=1,...,m

gi(x) for each x ∈ Rn.

Similar to (iii), we have f ∈ Q(p, L).

The following lemma describes an important property of a quasi-convex function
that satisfies the Hölder condition of order p. This property locally provides a con-
nection between the quasi-subgradient and function values, which is a key to establish
the basic inequality in convergence analysis of subgradient methods.

Lemma 2.5. Let p > 0 and L > 0, and let f : Rn → R be quasi-convex, continuous
and satisfy the Hölder condition of order p with modulus L on Rn. Let x ∈ X \ X∗,
and let g(x) be a unit quasi-subgradient of f at x, that is, g(x) ∈ ∂∗f(x) ∩ S. Then it
holds, for any x∗ ∈ X∗, that

⟨g(x), x− x∗⟩ ≥
(
f(x)− f∗

L

) 1

p

. (5)

Proof. Fix x ∈ X \X∗. The level set lev<f(x)f is nonempty open and convex because
f is quasi-convex and continuous on Rn. Given x∗ ∈ X∗, we define

r := inf
{
∥y − x∗∥ : y ∈ bd

(
lev<f(x)f

)}
, (6)
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where bd(Z) denotes the boundary of the set Z. It is clear that r > 0. By the assump-
tion of Hölder condition of order p, we have

f(y)− f∗ ≤ Ldistp(y,X∗) for any y ∈ Rn.

Taking the infimun over bd
(
lev<f(x)f

)
, we can show that

f(x)− f∗ ≤ L inf
{
distp(y,X∗) : y ∈ bd

(
lev<f(x)f

)}
≤ Lrp. (7)

Let δ ∈ (0, 1). Since g(x) ∈ ∂∗f(x)∩S, we obtain by (6) that x∗ + δrg(x) ∈ lev<f(x)f .
Hence, it follows from Definition 2.2 that

⟨g(x), x− x∗⟩ = ⟨g(x), x− (x∗ + δrg(x))⟩+ δr ≥ δr.

Since δ ∈ (0, 1) is arbitrary, one has ⟨g(x), x−x∗⟩ ≥ r. This, together with (7), implies
(5), as desired. The proof is complete.

We end this section by recalling the following lemma from [22, Lemma 2.1], which
is useful to establish an abstract convergence theorem.

Lemma 2.6. Let {ak} be a scalar sequence, and let {wk} be a sequence of nonnegative

scalars. Suppose that limk→∞
∑k

i=1wi = ∞. Then it holds that

lim inf
k→∞

ak ≤ lim inf
k→∞

∑k
i=1wiai∑k
i=1wi

≤ lim sup
k→∞

∑k
i=1wiai∑k
i=1wi

≤ lim sup
k→∞

ak.

3. Abstract convergence theorem

This section aims to investigate an abstract convergence theorem, in terms of function
values and distances of iterates from the optimal solution set, for the sequence that
satisfies conditions (H1) and (H2) and under some suitable assumptions on {vk}.

Theorem 3.1. Consider a sequence {xk} ⊆ X that satisfies (H1) and (H2). The
following assertions are true.

(i) Suppose that vk = v > 0 for any k ∈ N. Then

lim inf
k→∞

f(xk) ≤ f∗ +

(
βv

α

)p

. (8)

(ii) Suppose that {vk} satisfies

vk > 0, lim
k→∞

vk = 0 and

∞∑
k=0

vk = ∞. (9)

Then

lim inf
k→∞

f(xk) = f∗. (10)
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Moreover, suppose that f is coercive and that {xk} satisfies

dist(xk+1, X
∗) ≤ dist(xk, X

∗) + γkvk for any k ∈ N (11)

with limk→∞ γk = γ > 0. Then

lim
k→∞

dist(xk, X
∗) = 0 and lim

k→∞
f(xk) = f∗. (12)

(iii) Suppose that {vk} is given by

vk =
αkλk

2βk
(f(xk)− f∗)

1

p with 0 < λ ≤ λk ≤ λ < 2. (13)

Then, either xk ∈ X∗ for some k ∈ N or {xk} converges to a point in X∗.

Proof. We first claim the following assertion:

(A) Let N ∈ N. If (2) is satisfied for any k ≥ N , then it holds for any n > N that∑n−1
k=N αkvk(f(xk)− f∗)

1

p∑n−1
k=N αkvk

≤ ∥xN − x∗∥2∑n−1
k=N αkvk

+

∑n−1
k=N βkv

2
k∑n−1

k=N αkvk
. (14)

In fact, summing (2) over k = N, . . . , n− 1, we have

∥xn − x∗∥2 − ∥xN − x∗∥2 ≤ −
n−1∑
k=N

αkvk(f(xk)− f∗)
1

p +

n−1∑
k=N

βkv
2
k,

and then obtain (14). Next, we prove this theorem by virtue of this assertion.
(i) Without loss of generality, we assume that xk ∈ X∗ only occurs for finitely

many times; otherwise, (8) holds automatically. That is, there exists N ∈ N such that
xk /∈ X∗ for any k ≥ N . Then (H1) and (A) show that (14) holds for any n > N . By
(3) and the assumption that vk = v for any k ∈ N, one has

lim
n→∞

n−1∑
k=N

αkvk = ∞, (15)

and then Lemma 2.6 (with (f(xk)−f∗)
1

p and αkvk in place of ak and wk) is applicable
to concluding that

lim inf
k→∞

(f(xk)− f∗)
1

p ≤ lim inf
n→∞

∑n−1
k=N αkvk(f(xk)− f∗)

1

p∑n−1
k=N αkvk

≤ lim inf
n→∞

(
∥xN − x∗∥2∑n−1

k=N αkvk
+

∑n−1
k=N βkv

2
k∑n−1

k=N αkvk

)
(16)

(due to (14)). By (15), one has

lim
n→∞

∥xN − x∗∥2∑n−1
k=N αkvk

= 0. (17)
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On the other hand, by the assumption that vk = v > 0 for any k ∈ N, we obtain

lim
n→∞

∑n−1
k=N βkv

2
k∑n−1

k=N αkvk
= lim

n→∞

∑n−1
k=N βkv∑n−1
k=N αk

=
βv

α
,

where the second equality follows from Lemma 2.6 and (3) (with βk

αk
and αk in place

of ak and wk). Combining this with (17), we can reduce (16) to

lim inf
k→∞

(f(xk)− f∗)
1

p ≤ βv

α
,

and hence (8) is obtained.
(ii) Without loss of generality, we assume that there exists N ∈ N such that xk /∈ X∗

for any k ≥ N (otherwise, (10) holds automatically), and consequently, (14) holds for
any n > N . By (3) and (9) (in particular,

∑∞
k=N vk = ∞), one observes that (15) is

satisfied, and then (16) and (17) hold. We further obtain from Lemma 2.6 that

lim
n→∞

∑n−1
k=N βkv

2
k∑n−1

k=N αkvk
= lim

n→∞

βnvn
αn

= 0

by (3) and (9). This, together with (16) and (17), deduces (10).
Below, we prove (12) based on (10) and (11). By (3), there exists N ∈ N such that

βk < 2β and αk >
α

2
for any k ≥ N. (18)

Fix σ > 0. Noting that limn→∞ vn = 0 and limk→∞ γk = γ > 0, we can assume that

vk <
α

4β
σ

1

p and γk ≤ 2γ for any k ≥ N. (19)

Define

Xσ := X ∩ lev≤f∗+σf and ρ(σ) := max
x∈Xσ

dist(x,X∗). (20)

By the assumption that f is coercive, it follows that its sublevel set lev≤f∗+σf is
bounded, and so is Xσ. Therefore, by (20), one has ρ(σ) < ∞. Fix k ≥ N . We show

dist(xk+1, X
∗) < max{dist(xk, X∗), ρ(σ) + γ

α

2β
σ

1

p } (21)

by claiming the following two implications:

[f(xk) > f∗ + σ] ⇒ [dist(xk+1, X
∗) < dist(xk, X

∗)]; (22)

[f(xk) ≤ f∗ + σ] ⇒ [dist(xk+1, X
∗) < ρ(σ) + γ

α

2β
σ

1

p ]. (23)
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To prove (22), we suppose that f(xk) > f∗ + σ. Then xk /∈ X∗, and so (H1) gives, for
any x∗ ∈ X∗, that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − αkvkσ
1

p + βkv
2
k < ∥xk − x∗∥2

(due to (18) and (19)). Consequently, by letting x∗ := PX∗(xk), it follows that

dist2(xk+1, X
∗) ≤ ∥xk+1 − PX∗(xk)∥2 < ∥xk − PX∗(xk)∥2 = dist2(xk, X

∗),

i.e., (22) is proved. To show (23), we suppose that f(xk) ≤ f∗ + σ. Then, by the fact
that xk ∈ X, we conclude that xk ∈ Xσ, and so, (20) says that dist(xk, X

∗) ≤ ρ(σ).
This, together with (11) and (19), shows (23). Therefore, (21) is proved as desired.

By (10), we can assume, without loss of generality, that f(xN ) ≤ f∗+σ (otherwise,
we can choose a larger N); consequently, one has by (23) that dist(xN+1, X

∗) <

ρ(σ) + γ α
2βσ

1

p . Then, we inductively obtain by (21) that

dist(xk, X
∗) < ρ(σ) + γ

α

2β
σ

1

p for any k > N. (24)

Since f is continuous and coercive, its sublevel sets are compact, and so, it is trivial
to see that limσ→0 ρ(σ) = 0. Hence, we obtain by (24) that limk→∞ dist(xk, X

∗) = 0,
and thus limk→∞ f(xk) = f∗ (by the continuity of f).

(iii) Without loss of generality, we assume that xk /∈ X∗ for any k ∈ N; otherwise,
assertion (iii) of this theorem follows. Then, for any x∗ ∈ X∗, it follows from (2) and
(13) that

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 ≤ −αkvk(f(xk)− f∗)
1

p + βkv
2
k

= − α2
k

4βk
λk(2− λk)(f(xk)− f∗)

2

p

≤ − α2
k

4βk
λ(2− λ)(f(xk)− f∗)

2

p .

(25)

Note that f(xk) ≥ f∗ (as xk ∈ X) for each k ∈ N. Then, we can claim that

lim
k→∞

f(xk) = f∗. (26)

Fix σ > 0. Proving by contradiction, we assume that there exists a subsequence {xki
}

such that f(xki
) > f∗ + σ for any i ∈ N. Then, it follows from (25) and (18) that

∥xki+1
− x∗∥2 ≤ ∥xki+1 − x∗∥2 < ∥xki

− x∗∥2 − α2

32β
λ(2− λ)σ

2

p for any i ≥ N.

Write ∆ := α2

32βλ(2− λ)σ
2

p . Then one has

∥xki+1
− x∗∥2 < ∥xkN

− x∗∥2 − (i−N + 1)∆ < 0 for any i ≥ N +
∥xkN

− x∗∥2

∆
,

which yields a contradiction; hence (26) is proved.
It also follows from (25) that {∥xk−x∗∥} is decreasing, and hence, {xk} is bounded.

Let y be a cluster point of {xk}. Then, it follows from the decreasing property and

10



the continuity of f and (26) that

lim
k→∞

∥xk − x∗∥ = ∥y − x∗∥ and y ∈ X∗, (27)

respectively. Hence, for two cluster points of {xk}, namely x̄ and x̃, we obtain from
(27) that x̄ ∈ X∗, x̃ ∈ X∗, and ∥x̄− x∗∥ = ∥x̃− x∗∥ for any x∗ ∈ X∗; letting x∗ := x̃,
we conclude that x̄ = x̃. Therefore, {xk} converges to a point in X∗. The proof is
complete.

Remark 1. (i) In the literature of subgradient methods, the stepsize sequence {vk}
satisfying condition (9) or (13) is called the diminishing stepsize (see [5,16,21,26]) or
the dynamic stepsize (see [18,25,27,35]), respectively.

(ii) As mentioned in section 1, conditions (H1) and (H2) are satisfied for several vari-
ants of subgradient methods for either convex or quasi-convex optimization problems.
Hence, Theorem 3.1 provides a unified framework of convergence analysis for subgra-
dient methods, and it covers the convergence results of many types of subgradient
methods in the literature. For example, for convex optimization problems, Theorem
3.1 is applicable to concluding [33, Theorems 2.2 and 2.4] for the standard subgra-
dient method, [25, Theorems 2.6 and 2.9] for the conditional subgradient method,
and [26, Propositions 2.1-2.3 and 2.5] for the incremental subgradient method; for
quasi-convex optimization problems, Theorem 3.1 can be directly applied to estab-
lish [21, Theorem 1] for the standard subgradient method, [17, Theorems 3.2-3.3] for
the primal-dual subgradient method, and [19, Theorems 3.3-3.5] for the conditional
subgradient method.

4. A new subgradient method

The standard subgradient method usually suffers from a slow convergence rate in many
applications. Conditional subgradient methods were proposed in [19,25] to speed up
the convergence rate of the standard subgradient method. However, the conditional
subgradient method requires a normal vector to the constraint set at each iteration,
which might be computational expensive to calculate for large-scale optimization prob-
lems. To avert this difficulty, we propose an implementable subgradient method to solve
problem (1), in which a perturbation of the successive direction is employed in place
of the normal vector, as in the conditional subgradient method.

Algorithm 4.1. Select an initial point x0 ∈ Rn, a sequence of stepsizes {vk} ⊆
(0,+∞), and a sequence of parameters {sk} ⊆ (0,+∞). Having xk, we calculate a
unit quasi-subgradient gk ∈ ∂∗f(xk) ∩ S, and update xk+1 by

yk := PX(xk − vkgk), (28)

xk+1 := PX(xk + sk(yk − xk)). (29)

In this section, we will investigate its convergence properties by applying the ab-
stract convergence theorem. Moreover, we will conduct some numerical experiments to
demonstrate its efficiency in solving the Cobb-Douglas production efficiency problem.
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4.1. Convergence analysis

Under the assumption of the Hölder condition of order p, we establish a basic inequality
for Algorithm 4.1 to show that the generated sequence satisfies conditions (H1) and
(H2).

Lemma 4.1. Suppose that f satisfies the Hölder condition of order p with modulus L
on Rn. Let {xk} be a sequence generated by Algorithm 4.1. Fix k ∈ N and x∗ ∈ X∗. If
xk /∈ X∗, then it holds that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2skvk

(
f(xk)− f∗

L

) 1

p

+max{sk, s2k}v2k. (30)

Proof. Fix k ∈ N and x∗ ∈ X∗. In view of Algorithm 4.1 (cf. (28)), it follows from
Proposition 2.1(i) that

∥yk − x∗∥2 ≤ ∥xk − vkgk − x∗∥2 = ∥xk − x∗∥2 − 2vk ⟨gk, xk − x∗⟩+ v2k. (31)

Under the assumption that xk /∈ X∗, Lemma 2.5 is applicable (with xk and gk in place
of x and g(x)) to concluding that

⟨gk, xk − x∗⟩ ≥
(
f(xk)− f∗

L

) 1

p

. (32)

This, together with (31), implies that

∥yk − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
f(xk)− f∗

L

) 1

p

+ v2k. (33)

Below, we prove (30) in the following two cases.
Case 1 : Suppose that sk ∈ (0, 1]. By (29), it follows again from Proposition 2.1(i) that

∥xk+1 − x∗∥2 ≤ ∥xk + sk(yk − xk)− x∗∥2 = ∥sk(yk − x∗) + (1− sk)(xk − x∗)∥2. (34)

By the convexity of ∥ · −x∗∥2, we have

∥xk+1 − x∗∥2 ≤ sk∥yk − x∗∥2 + (1− sk)∥xk − x∗∥2

≤ ∥xk − x∗∥2 − 2skvk

(
f(xk)−f∗

L

) 1

p

+ skv
2
k

(due to (33)). Hence, (30) is obtained in this case.
Case 2 : Suppose that sk ∈ (1,+∞). It follows from the first inequality of (34) that

∥xk+1 − x∗∥2
≤ ∥xk + sk(yk − xk)− x∗∥2
= ∥(sk − 1)(yk − xk) + yk − x∗∥2
= ∥yk − x∗∥2 + (sk − 1)2∥yk − xk∥2 + 2(sk − 1)⟨yk − x∗, yk − xk⟩.

(35)
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Note that

⟨yk − x∗, yk − xk⟩ = ⟨yk − x∗, yk − xk + vkgk⟩ − vk⟨yk − xk, gk⟩ − vk⟨xk − x∗, gk⟩. (36)

By Proposition 2.1(ii) and (28) (with yk, xk − vkgk, x
∗ in place of PZ(x), x, z), we

have

⟨yk−x∗, yk−xk+vkgk⟩ = ⟨PX(xk−vkgk)−x∗, PX(xk−vkgk)−(xk−vkgk)⟩ ≤ 0. (37)

By Proposition 2.1(i), one has

∥yk − xk∥ ≤ ∥vkgk∥ = vk (38)

(noting that ∥gk∥ = 1), and accordingly,

⟨yk − xk, gk⟩ ≥ −∥yk − xk∥ ≥ −vk.

This, together with (36), (37) and (32), implies that

⟨yk − x∗, yk − xk⟩ ≤ v2k − vk

(
f(xk)− f∗

L

) 1

p

.

Combining this with (38), we can reduce (35) to

∥xk+1 − x∗∥2 ≤ ∥yk − x∗∥2 + (sk − 1)2v2k + 2(sk − 1)v2k − 2(sk − 1)vk

(
f(xk)−f∗

L

) 1

p

= ∥xk − x∗∥2 − 2skvk

(
f(xk)−f∗

L

) 1

p

+ s2kv
2
k

(by (33)). Thus, (30) is proved. The proof is complete.

Applying the abstract convergence theorem (i.e., Theorem 3.1), we obtain the con-
vergence results for Algorithm 4.1 when using the constant, diminishing or dynamic
stepsize rules.

Theorem 4.2. Suppose that f satisfies the Hölder condition of order p with modulus
L on Rn. Let {xk} be a sequence generated by Algorithm 4.1 with limk→∞ sk = s > 0.
The following assertions are true.

(i) If vk = v > 0 for any k ∈ N, then

lim inf
k→∞

f(xk) ≤ f∗ + L
(v
2
max{1, s}

)p
. (39)

(ii) If {vk} satisfies (9), then lim infk→∞ f(xk) = f∗. Moreover, suppose that f is
coercive. Then limk→∞ dist(xk, X

∗) = 0 and limk→∞ f(xk) = f∗.
(iii) If {vk} is given by

vk =
λk

max{1, sk}

(
f(xk)− f∗

L

) 1

p

with 0 < λ ≤ λk ≤ λ < 2, (40)

then {xk} converges to an optimal solution of problem (1).
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Proof. Define three sequences of positive scalars by

γk := sk, αk := 2skL
− 1

p and βk := max{sk, s2k}. (41)

By the assumption that limk→∞ sk = s > 0, one observes that

lim
k→∞

γk = s > 0, lim
k→∞

αk = 2sL− 1

p > 0 and lim
k→∞

βk = max{s, s2} > 0,

which verifies (H2).
By Lemma 4.1 and (41), we obtain that

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 ≤ −2skvkL
− 1

p (f(xk)− f∗)
1

p +max{sk, s2k}v2k
= −αkvk(f(xk)− f∗)

1

p + βkv
2
k

for each x∗ ∈ X∗ and k ∈ N with xk /∈ X∗. This shows that (H1) is satisfied.
Noting that gk ∈ S, it follows from (28) and Proposition 2.1(i) that

∥yk − xk∥ ≤ ∥xk − vkgk − xk∥ = vk.

Then, by (29), it follows from Proposition 2.1(i), for each x∗ ∈ N, that

∥xk+1 − x∗∥ ≤ ∥xk + sk(yk − xk)− x∗∥ ≤ ∥xk − x∗∥+ sk∥yk − xk∥ ≤ ∥xk − x∗∥+ skvk.

Since x∗ ∈ X∗ is arbitrary, we obtain that

dist(xk+1, x
∗) ≤ dist(xk+1, x

∗) + skvk = dist(xk+1, x
∗) + γkvk

(due to (41)). This verifies (11) with limk→∞ γk = s > 0. Furthermore, by (41), one
checks that {vk} given by (40) satisfies (13). Therefore, the assumptions of Theorem
3.1 are satisfied, and the assertions of this theorem follow directly (in particular for
(iii), one checks by (40) that vk = 0 whenever xk ∈ X∗, and so the generated sequence
stays at this optimal solution). The proof is complete.

4.2. Numerical experiments

This subsection presents an application of Algorithm 4.1 to the Cobb-Douglas produc-
tion efficiency problem, which was introduced by Bradley and Frey [7] and formulated
as

max f(x) := Profit
Cost =

a0

∏n
j=1 x

aj
j∑n

j=1 cjxj+c0

s.t.
∑n

j=1 bijxj ≥ pi, i = 1, . . . ,m,

x ≥ 0,

(42)

where x := (x1, . . . , xn)
⊤ is the variable designating the vector of production factors;

see [16] for details. It was shown in [16] that problem (42) is a quasi-concave maxi-
mization problem, and that the subgradient method is effective for problem (42), even
for large-scale problems.
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We compare Algorithm 4.1 with several existing subgradient-type methods, includ-
ing the standard subgradient method (in short, SG) [21], the stochastic subgradient
method (in short, StoSG) [18] and the primal-dual subgradient method (in short, PDS-
G) [17], in solving the Cobb-Douglas production efficiency problem (42). All numerical
experiments are implemented in MATLAB R2009a and executed on a personal lap-
top (Intel Core i7, 2.00 GHz, 8.00 GB of RAM). In the numerical experiments, the
parameters of problem (42) are randomly chosen from different intervals:

a0 ∈ [0, n], aj , bij , c0, cj ∈ [0, 1], and pi ∈ [0, n/2].

The diminishing stepsize is chosen as

vk = v/(1 + 0.1k),

where v is always chosen between [2, 5], while the constant stepsize is selected between
[0.5, 2]. The larger the problem size, the larger the stepsize.

We first compare the performance (in terms of the obtained optimal values) of Al-
gorithm 4.1 and the SG, StoSG, PDSG for problem (42) of different scales. Parameters
sk in Algorithm 4.1 are set to be a constant: s = 0.5, 1.2, 2 or 10, and the dimin-
ishing stepsize is adopted in all these subgradient-type methods. The maximal values
of problem (42) are obtained and displayed in Table 1. In this table, the columns of
Projects and Factors represent the numbers of projects (m) and factors (n) of problem
(42). It is observed from Table 1 that Algorithm 4.1 achieves a larger production effi-
ciency than the SG, StoSG and PDSG when s > 1, while a smaller value is obtained
when s < 1. We can also observe from the results of Algorithm 4.1 that the larger the
parameter s, the larger the obtained production efficiency, when using the diminishing
stepsize.

Table 1. Computation results for maximizing Cobb-Douglas production efficiency.
Circumstance of problem SG StoSG PDSG Algorithm 4.1
Projects Factors fopt fopt fopt s = 0.5 s = 1.2 s = 2 s = 10

50 50 2.5278 2.4429 2.4989 2.2786 2.5785 2.6084 2.6096
100 100 2.9054 2.8679 2.8887 2.8904 2.9265 2.9592 2.9766
200 200 2.8790 2.8648 2.8672 2.6756 2.8848 2.8922 2.8992
500 500 2.7535 2.6644 2.7385 2.4279 2.7712 2.7955 2.8354
1000 1000 2.5842 2.4556 2.5674 2.1383 2.6458 2.7738 2.8268
2000 2000 2.6967 2.6451 2.6801 2.4292 2.7190 2.7685 2.8235

The second experiment is to show the convergence behavior of Algorithm 4.1 by
choosing different parameters s and using the constant and diminishing stepsize rules,
respectively, where the problem scale is fixed to be (m,n) = (100, 100). Figure 1 plots
the estimated Cobb-Douglas production efficiency along the number of the iterations
in a random trial. Figure 1(a) illustrates that Algorithm 4.1 when s = 0.5, 1.2 or 2
achieve a larger production efficiency than Algorithm 4.1 with s = 10, when using a
constant stepsize. This observation is consistent with Theorem 4.2(i) that a smaller
tolerance from the optimal value is achieved for a smaller s (see (39)). It is also
observed from Figure 1(a) that the larger the parameter s, the faster convergence rate
Algorithm 4.1 does. Figure 1(b) demonstrates that when s = 1.2, 2 or 10, Algorithm 4.1
converges faster to the optimal value than that with s = 0.5, when using a diminishing
stepsize. These observations may be because a large (constant) perturbation may cause
the violation of convergence to the optimal solution, while a small one could lead to
slow convergence. With regard to the trade-off, we recommend a suitable selection of
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parameter sk in Algorithm 4.1, e.g., a constant in [1.5,3].
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(a) The constant stepsize rule.
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(b) The diminishing stepsize rule.

Figure 1. Convergence behavior of Algorithm 4.1 for different parameters s.

Under the same experimental setting with the second one, we further compare the
convergence behavior of Algorithm 4.1 (with s = 2) with SG, StoSG and PDSG.
Figure 2 shows that Algorithm 4.1 outperforms the SG, StoSG and PDSG in that it
converges faster to the optimal value and obtains a larger production efficiency.
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(a) The constant stepsize rule.
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Figure 2. Convergence behavior of Algorithm 4.1 and existing subgradient-type methods.

5. Conclusion

In the present paper, we considered the quasi-convex optimization problems and es-
tablished an abstract convergence theorem for a class of sequences, which satisfy con-
ditions (H1) and (H2), under some suitable assumptions on {vk}. The abstract conver-
gence theorem provided a unified framework for various subgradient methods for either
convex or quasi-convex optimization. Inspired by the ideas of conditional subgradient
methods [19,25], we proposed an implementable subgradient method and established
its convergence results by virtue of the abstract convergence theorem. The numerical
results showed that the proposed method outperforms the standard, stochastic and
primal-dual subgradient methods in solving the Cobb-Douglas production efficiency
problem.
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The standard subgradient method usually suffers from a zig-zagging phenomena
and sustains slow convergence rate in many applications. It is an interesting open
question how to avoid the zig-zagging phenomena of subgradient methods. Although
the numerical studies showed that the conditional subgradient methods and our pro-
posed method can speed up the convergence rate, there is still no theoretical study to
guarantee their advantage in avoiding the zig-zagging phenomena. In the future work,
we will contribute to investigate some subgradient methods avoiding the zig-zagging
phenomena by virtue of the special structures of optimization problems.
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