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Abstract Quasi-convex optimization acts a pivotal part in many fields including economics

and finance; the subgradient method is an effective iterative algorithm for solving large-scale

quasi-convex optimization problems. In this paper, we investigate the quantitative conver-

gence theory, including the iteration complexity and convergence rates, of various subgradient

methods for solving quasi-convex optimization problems in a unified framework. In partic-

ular, we consider a sequence satisfying a general (inexact) basic inequality, and investigate

the global convergence theorem and the iteration complexity when using the constant, di-

minishing or dynamic stepsize rules. More importantly, we establish the linear (or sublinear)

convergence rates of the sequence under an additional assumption of weak sharp minima of

Hölderian order and upper bounded noise. These convergence theorems are applied to estab-

lish the iteration complexity and convergence rates of several subgradient methods, including

the standard/inexact/conditional subgradient methods, for solving quasi-convex optimization

problems under the assumptions of the Hölder condition and/or the weak sharp minima of

Hölderian order.
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1 Introduction

Mathematical optimization is a fundamental tool for solving decision-making problems in

many disciplines. Convex optimization plays a key role in mathematical optimization, but
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may not be applicable to some problems encountered in economics, finance and management

science. In contrast to convex optimization, quasi-convex optimization usually provides a

much more accurate representation of realities and still possesses some desirable properties

of convex optimization. In recent decades, more and more attention has been drawn to

quasi-convex optimization; see [1, 4, 11, 19, 32, 44, 45, 46, 47, 50] and references therein.

It is essential to develop efficient numerical algorithms for solving quasi-convex opti-

mization problems. Subgradient methods form a class of practical and effective iterative

algorithms for solving constrained (convex or quasi-convex) optimization problems. The sub-

gradient method was originally introduced by Polyak [41] and Ermoliev [12] in the 1970s to

solve nondifferentiable convex optimization problems. Over the past 40 years, various features

of subgradient methods have been established for convex optimization problems and many

extensions/generalizations have been devised for structured convex optimization problems;

see [2, 6, 20, 27, 30, 31, 35, 37, 38, 49, 52] and references therein. Moreover, subgradient meth-

ods have also been extended and developed to solve constrained quasi-convex optimization

problems; see [21, 23, 26, 29, 48, 55] and references therein. The global convergence prop-

erties of subgradient methods, in terms of function values and distances of iterates from the

optimal solution set, have been well studied for either convex or quasi-convex optimization

problems by using several typical stepsize rules.

In addition to the global convergence property, the establishment of convergence rates is

important in analyzing the numerical performance of relevant algorithms. The convergence

rates of subgradient methods for solving convex optimization problems have been investigated

under the assumption of weak sharp minima [10]. For example, employing a geometrically

decaying stepsize, Shor [49, Theorem 2.7] and Goffin [16, Theorem 4.4] provided a linear

convergence analysis (but not necessarily converge to an optimal solution) of the subgradient

method under a notion of condition number that is a stronger condition than the weak sharp

minima. This work was extended by Polyak [40, Theorem 4] to the case when the subgradients

are corrupted by deterministic noise. When using a dynamic stepsize rule, Brannlund [8,

Theorem 2.5] established the linear convergence rate of the subgradient method under the

assumption of weak sharp minima, which was generalized by Robinson [43, Theorem 3] to the

inexact subgradient method. Recently, for vast applications of distributed optimization, an

incremental subgradient method was proposed to solve the convex sum-minimization problem

and was shown to converge linearly under the assumption of weak sharp minima (see [34,

Proposition 2.11]); the linear convergence analysis has also been extended to various variant

incremental subgradient methods; see [18, 33] and references therein. It is worth noting that

all convergence rates of subgradient methods are measured in terms of distances of iterates

from the optimal solution set. Moreover, Freund and Lu [15] and Xu et al. [54] investigated

the iteration complexity (for achieving an approximate optimal value) of subgradient methods

and stochastic subgradient methods under the assumption of weak sharp minima or weak

sharp minima of Hölderian order, respectively. However, to the best of our knowledge, there

is limited study devoted to establishing convergence rates of subgradient methods in the

scenario of quasi-convex optimization.
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Motivated by the wide applications of quasi-convex optimization, we contribute to the

further development of subgradient methods for solving quasi-convex optimization problems,

particularly concentrating on the iteration complexity and convergence rate analysis. In the

present paper, we consider the following constrained quasi-convex optimization problem

min f(x)

s.t. x ∈ X,
(1.1)

where f : Rn → R is a quasi-convex and continuous function, and X ⊆ Rn is a nonempty,

closed and convex set. In 2001, Kiwiel [26] proposed a (standard) subgradient method to

solve problem (1.1), which is formally stated as follows, where ∂∗f , S and PX(·) denote the

quasi-subdifferential of f , the unit sphere centered at the origin and the Euclidean projection

onto X, respectively.

Algorithm 1.1. Select an initial point x1 ∈ Rn and a sequence of stepsizes {vk} ⊆ (0,+∞).

For each k ∈ N, having xk, we select gk ∈ ∂∗f(xk) ∩ S and update xk+1 by

xk+1 := PX(xk − vkgk).

Note that the basic inequality of a subgradient iteration is a key tool for the convergence

analysis of subgradient methods for either convex or quasi-convex optimization. Yu et al.

[55] developed a unified framework of convergence analysis for various subgradient methods,

in which the global convergence theorem was established for a certain class of sequences sat-

isfying a general basic inequality and using several typical stepsize rules. In real applications,

the computation error stems from practical considerations and is inevitable in the computing

process. To meet the requirements of practical applications, Hu et al. [21] introduced an

inexact subgradient method to solve problem (1.1) and investigated the influence of the de-

terministic noise on the inexact subgradient method. In the present paper, motivated by the

practical applications, we consider a more general unified framework for subgradient meth-

ods, in which a general (inexact) basic inequality is assumed to be satisfied; see conditions

(H1) and (H2) in Section 3. The more general unified framework covers various subgradient

methods (see [55]) and inexact subgradient methods (see Section 4.2) for either convex or

quasi-convex optimization problems.

The main contribution of the present paper is to investigate the iteration complexity and

convergence rates of several subgradient methods for solving quasi-convex optimization prob-

lem (1.1) via a unified framework. The stepsize rules adopted in this paper are the constant,

diminishing and dynamic stepsizes. Here, we first consider a general sequence satisfying con-

ditions (H1) and (H2), (as a by-product) establish the global convergence theorem in terms of

function values and distances of iterates from the optimal solution set (see Theorem 3.1), and

then derive the iteration complexity to obtain an approximate optimal solution (see Theorem

3.2 and Remark 3.2). More importantly, we explore the linear (or sublinear) convergence

rates of the sequence under an additional assumption of weak sharp minima of Hölderian

order and upper bounded noise; see Theorems 3.3-3.5 for details. Meanwhile, we will apply
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the established theorems on iteration complexity and convergence rates to investigate that

of several subgradient methods for solving the quasi-convex optimization problem (1.1) when

using the typical stepsize rules and under the assumptions of the Hölder condition and/or the

weak sharp minima of Hölderian order. As far as we know, the study of iteration complexity

and convergence rates theorems of subgradient methods are new in the literature of quasi-

convex optimization. Moreover, the finite convergence property of the subgradient methods

are established under an interior point assumption of the solution set.

In a very recent study by Johnstone and Moulin [25], by virtue of the weak sharp minima

of Hölderian order, they derived the convergence rates of the standard subgradient method for

solving convex optimization problems when using the constant-type stepsize rules (including

the constant and “descending stairs” stepsize rules). Our work extends [25] to more general

settings with quasi-convex optimization, inexact setting, diminishing and dynamic stepsize

rules.

The present paper is organized as follows. In Section 2, we present the notations and

preliminary results which will be used in this paper. In Section 3, we provide a unified

framework of convergence analysis for (inexact) subgradient methods, in which the global

convergence theorem, iteration complexity and convergence rates are established for a certain

class of sequences satisfying a general (inexact) basic inequality under the assumption of weak

sharp minima of Hölderian order. In Section 4, the convergence analysis framework is applied

to establish the iteration complexity and convergence rates for the standard subgradient

method, the inexact subgradient method and the conditional subgradient method for solving

quasi-convex optimization problems.

2 Notations and preliminary results

The notations used in the present paper are standard; see, e.g., [6]. We consider the n-

dimensional Euclidean space Rn with inner product ⟨·, ·⟩ and norm ∥ · ∥. For x ∈ Rn and

r > 0, we use B(x, r) to denote the closed ball centered at x with radius r, and use S to denote

the unit sphere centered at the origin. For x ∈ Rn and Z ⊆ Rn, the Euclidean distance of x

from Z and the Euclidean projection of x onto Z are respectively defined by

dist(x,Z) := min
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

A function f : Rn → R is said to be quasi-convex if for each x, y ∈ Rn and each α ∈ [0, 1],

the following inequality holds

f((1− α)x+ αy) ≤ max{f(x), f(y)}.

For α ∈ R, the sublevel sets of f are denoted by

lev<αf := {x ∈ Rn : f(x) < α} and lev≤αf := {x ∈ Rn : f(x) ≤ α}.

4



It is well-known that f is quasi-convex if and only if lev<αf (and/or lev≤αf) is convex for

each α ∈ R. A function f : Rn → R is said to be coercive if lim∥x∥→∞ f(x) = ∞, and so its

sublevel set lev≤αf is bounded for each α ∈ R.
The convex subdifferential ∂f(x) := {g ∈ Rn : f(y) ≥ f(x) + ⟨g, y − x⟩, ∀y ∈ Rn} might

be empty for the quasi-convex functions. Hence, the introduction of (nonempty) subdifferen-

tial of quasi-convex functions plays an important role in quasi-convex optimization. Several

different types of subdifferentials of quasi-convex functions have been introduced in the lit-

erature, see [3, 17, 21, 26] and references therein. In particular, Kiwiel [26] and Hu et al.

[21] introduced a quasi-subdifferential and applied this quasi-subgradient in their proposed

subgradient methods; see, e.g., [21, 23, 26].

Definition 2.1. Let f : Rn → R be a quasi-convex function and let ϵ > 0. The quasi-

subdifferential and ϵ-quasi-subdifferential of f at x ∈ Rn are respectively defined by

∂∗f(x) :=
{
g ∈ Rn : ⟨g, y − x⟩ ≤ 0, ∀y ∈ lev<f(x)f

}
,

and

∂∗
ϵ f(x) :=

{
g ∈ Rn : ⟨g, y − x⟩ ≤ 0,∀y ∈ lev<f(x)−ϵf

}
.

Any vector g ∈ ∂∗f(x) or g ∈ ∂∗
ϵ f(x) is called a quasi-subgradient or an ϵ-quasi-subgradient

of f at x, respectively.

It is clear from definition that the quasi-subdifferential is a normal cone to the stric-

t sublevel set of the quasi-convex function, and it was shown in [21, Lemma 2.1] that

∂∗f(x) \ {0} ̸= ∅ whenever f is quasi-convex. Hence, the quasi-subdifferential of a quasi-

convex function contains at least a unit vector. This is a special property that the convex sub-

differential does not share. In particular, it was claimed in [21] that the quasi-subdifferential

coincides with the convex cone hull of the convex subdifferential whenever f is convex.

The Hölder condition (restricted to the set of minima) was used in [28] to describe some

properties of the quasi-subgradient, and it plays a critical role in the study of convergence

analysis in quasi-convex optimization; see, e.g., [21, 55]. The notion of Hölder condition has

been widely studied and applied in harmonic analysis, fractional analysis and management

science; see, e.g., [3, 50]. It is worth noting that the classical Lipschitz condition (i.e., Hölder

condition of order 1) is equivalent to the bounded subgradient assumption, which is always

assumed in the literature of subgradient methods (see, e.g., [6, 27, 49]), whenever f is convex.

f∗ and X∗ denote the optimal value and the solution set of problem (1.1), respectively.

Definition 2.2. Let p ∈ (0, 1] and L > 0. The function f : Rn → R is said to satisfy the

Hölder condition (restricted to X∗) of order p with modulus L on Rn if

f(x)− f∗ ≤ Ldistp(x,X∗) for each x ∈ Rn.

We end this section by the following lemmas, which are useful to establish the unified

framework of convergence analysis. In particular, Lemmas 2.1 is taken from [27, Lemma 2.1].
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Lemma 2.1. Let {ak} be a scalar sequence and let {wk} be a sequence of nonnegative scalars.

Suppose that limk→∞
∑k

i=1wi = ∞. Then, it holds that

lim inf
k→∞

ak ≤ lim inf
k→∞

∑k
i=1wiai∑k
i=1wi

≤ lim sup
k→∞

∑k
i=1wiai∑k
i=1wi

≤ lim sup
k→∞

ak.

Lemma 2.2. Let r > 0, a > 0, b ≥ 0, and let {uk} be a sequence of nonnegative scalars such

that

uk+1 ≤ uk − au1+r
k + b for each k ∈ N. (2.1)

(i) If b = 0, then

uk+1 ≤ u1 (1 + raur1k)
− 1

r for each k ∈ N.

(ii) If 0 < b < a−
1
r (1 + r)−

1+r
r , then there exists τ ∈ (0, 1) such that

uk+1 ≤ u1τ
k +

(
b

a

) 1
1+r

for each k ∈ N.

Proof. Assertion (i) of this lemma is taken from [42, pp. 46, Lemma 6], then it remains to

prove assertion (ii). For this purpose, let u :=
(
b
a

) 1
1+r . Then, (2.1) is reduced to

uk+1 − u ≤ uk − u− a
(
u1+r
k − u1+r

)
for each k ∈ N. (2.2)

As r > 0, by the convexity of h(t) := t1+r, one has that u1+r
k − u1+r ≥ (1 + r)ur(uk − u).

Then (2.2) implies that

uk+1 − u ≤ (1− a(1 + r)ur) (uk − u) for each k ∈ N.

Let τ := 1− a(1 + r)ur. It follows from the assumption that τ ∈ (0, 1), and thus,

uk+1 − u ≤ τk(u1 − u) for each k ∈ N.

The conclusion follows and the proof is complete.

Lemma 2.3. Let a > 0, b > 0, s ∈ (0, 1) and t ≥ s, and let {uk} be a sequence of nonnegative

scalars such that

uk+1 ≤
(
1− ak−s

)
uk + bk−t for each k ∈ N. (2.3)

(i) If t > s, then

uk+1 ≤
b

a
ks−t + o(ks−t).

(ii) If t = s, then there exists τ ∈ (0, 1) such that

uk+1 ≤ u1e
as
1−s τk +

b

a
for each k ∈ N.
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Proof. Assertion (i) of this lemma is taken from [42, pp. 46, Lemma 5], then it remains to

prove assertion (ii). To this end, we derive by (2.3) (when t = s) that, for each k ∈ N,

uk+1 −
b

a
≤

(
1− ak−s

)(
uk −

b

a

)
≤

(
u1 −

b

a

) k∏
i=1

(1− ai−s). (2.4)

Note that

k∏
i=1

(1− ai−s) = e
∑k

i=1 ln(1−ai−s) < e
∫ k+1
1 ln(1−at−s)dt < e

∫ k+1
1 −at−sdt ≤ e

as
1−s τk,

where τ := e−a ∈ (0, 1). This, together with (2.4), yields the conclusion.

3 A unified framework for subgradient methods

In the present paper, we discuss subgradient methods for solving the quasi-convex optimiza-

tion problem (1.1), in which the solution set and the optimal value are denoted by X∗ and

f∗, respectively. The class of subgradient methods is one of the most popular numerical

algorithms for solving constrained optimization problems. In view of the procedure of sub-

gradient methods, the basic inequality of a subgradient iteration is an important property

and plays as a key tool for convergence analysis of subgradient methods for either convex or

quasi-convex optimization problems.

This section aims to investigate the iteration complexity and convergence rates of sub-

gradient methods via a unified framework, in which a general (inexact) basic inequality is

assumed to be satisfied. In particular, we fix ϵ ≥ 0 and p ∈ (0, 1], and consider a sequence

{xk} ⊆ X that satisfies the following two conditions:

(H1) For each x∗ ∈ X∗ and each k ∈ {i ∈ N : f(xi) > f∗ + ϵ},

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 ≤ −αkvk(f(xk)− f∗ − ϵ)
1
p + βkv

2
k. (3.1)

(H2) {αk} and {βk} are two sequences of positive scalars such that

lim
k→∞

αk = α > 0 and lim
k→∞

βk = β > 0. (3.2)

Condition (H1) measures the difference between two distances of iterates from a possible

solution by calculating the difference between the function value and the optimal value with

a noise, and condition (H2) characterizes some assumptions on the parameters. In the special

case when ϵ = 0, conditions (H1) and (H2) are reduced to the unified framework studied in

[55], where the global convergence theorem was established, but no convergence rate analysis.

The nature of subgradient methods forces the generated sequence to comply with conditions

(H1) and (H2) under some mild assumptions, and thus, this study provides a unified frame-

work for various subgradient methods for either convex or quasi-convex optimization problems

(one can also refer to [55] for details).
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- For convex optimization problems and under a bounded subgradient assumption, condi-

tion (H1) with p = 1 and (H2) are satisfied for the subgradient-type methods, including

the standard subgradient method [49], the approximate subgradient method [27], the

primal-dual subgradient method [36], the incremental subgradient method [35], the

conditional subgradient method [30] and a unified framework of subgradient methods

[39].

- For quasi-convex optimization problems and under the assumption of Hölder condition

of order p, conditions (H1) and (H2) are satisfied for several types of subgradient meth-

ods, such as the standard subgradient method [26], the inexact subgradient method

[21], the primal-dual subgradient method [22] and the conditional subgradient method

[23].

3.1 Convergence theorem

As by-products, this subsection aims to establish the convergence theorem of the sequence

satisfying conditions (H1) and (H2) for some suitable stepsize rules {vk}. The stepsize rule

has a critical impact on the convergence behavior and numerical performance of subgradient

methods. In the present paper, we consider three typical stepsize rules: (i) the constant

stepsize rule is the most popular in applications but only guarantees the convergence to the

optimal value/solution set within some tolerance; (ii) the diminishing stepsize rule guaran-

tees the convergence to the exact optimal value/solution set but suffers a slow convergence

rate; (iii) the dynamic stepsize rule enjoys the best convergence property but requires prior

information of the approximate optimal value f∗ + ϵ; see [35, 52, 55] and references therein.

Theorem 3.1 extends [55, Theorem 3.1] (considering the special case when ϵ = 0) to the in-

exact setting, while the skeleton of the proof is similar to that of [55, Theorem 3.1]. To make

this paper more self-contained, we provide a proof of the convergence theorem as follows. We

write X∗
ϵ := X ∩ lev≤f∗+ϵf for the sake of simplicity, and particularly, X∗

0 = X∗.

Theorem 3.1. Let {xk} ⊆ X satisfy (H1) and (H2). Then, the following assertions are true.

(i) If vk ≡ v > 0, then lim infk→∞ f(xk) ≤ f∗ +
(
βv
α

)p
+ ϵ.

(ii) If {vk} is given by

vk := ck−s, where c > 0, s ∈ (0, 1), (3.3)

then lim infk→∞ f(xk) ≤ f∗ + ϵ.

(iii) If {vk} is given by

vk :=
αkλk

2βk
[f(xk)− f∗ − ϵ]

1
p

+, where 0 < λ ≤ λk ≤ λ < 2, (3.4)

then either xk ∈ X∗
ϵ for some k ∈ N or limk→∞ f(xk) ≤ f∗ + ϵ.
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Proof. Without loss of generality, we assume that f(xk) ≤ f∗ + ϵ only occurs for finitely

many times; otherwise, assertions (i) and (ii) of this theorem hold automatically. That is,

there exists N ∈ N such that f(xk) > f∗ + ϵ for each k ≥ N ; consequently, letting x∗ ∈ X∗,

(H1) indicates that

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 ≤ −αkvk(f(xk)− f∗ − ϵ)
1
p + βkv

2
k

for each k ≥ N . Summing the above inequality over k = N, . . . , n, we have

∥xn+1 − x∗∥2 − ∥xN − x∗∥2 ≤ −
n∑

k=N

αkvk(f(xk)− f∗ − ϵ)
1
p +

n∑
k=N

βkv
2
k,

that is, ∑n
k=N αkvk(f(xk)− f∗ − ϵ)

1
p∑n

k=N αkvk
≤ ∥xN − x∗∥2∑n

k=N αkvk
+

∑n
k=N βkv

2
k∑n

k=N αkvk
. (3.5)

(i) By the constant stepsize rule and (3.2), one has limn→∞
∑n

k=N αkvk = ∞. Then, by

(3.5), Lemma 2.1 is applicable (with (f(xk) − f∗ − ϵ)
1
p and αkvk in place of ak and wk) to

concluding that

lim inf
k→∞

(f(xk)− f∗ − ϵ)
1
p ≤ lim inf

n→∞

∑n
k=N αkvk(f(xk)− f∗ − ϵ)

1
p∑n

k=N αkvk

≤ lim inf
n→∞

(
∥xN − x∗∥2∑n

k=N αkvk
+

∑n
k=N βkv

2
k∑n

k=N αkvk

)
. (3.6)

Note by (3.2) and Lemma 2.1 that

lim
n→∞

∥xN − x∗∥2∑n
k=N αkvk

= 0 and lim
n→∞

∑n
k=N βkv

2
k∑n

k=N αkvk
=

βv

α
.

This, together with (3.6), shows that lim infk→∞ (f(xk)− f∗− ϵ)
1
p ≤ βv

α , and hence assertion

(i) of this theorem is proved.

(ii) By (3.2) and (3.3), one has limn→∞
∑n

k=N αkvk = ∞; consequently, (3.6) holds. Note

by (3.2), (3.3) and Lemma 2.1 that

lim
n→∞

∥xN − x∗∥2∑n
k=N αkvk

= 0 and lim
n→∞

∑n
k=N βkv

2
k∑n

k=N αkvk
= 0.

This, together with (3.6), yields that lim infk→∞ f(xk) ≤ f∗ + ϵ, as desired.

(iii) Without loss of generality, we assume that f(xk) > f∗ + ϵ for each k ∈ N; otherwise,
assertion (iii) of this theorem follows. By (3.2), there exists N ∈ N such that

βk < 2β and αk >
α

2
for each k ≥ N.
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Then, for each x∗ ∈ X∗, it follows from (3.1) and (3.4) that, for each k ≥ N ,

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 ≤ −
α2
k

4βk
λk(2− λk)(f(xk)− f∗ − ϵ)

2
p

≤ − α2

32β
λ(2− λ)(f(xk)− f∗ − ϵ)

2
p . (3.7)

This shows that limk→∞ f(xk) ≤ f∗ + ϵ; otherwise, it follows from (3.7) that there exists

σ > 0 such that ∥xk+1−x∗∥2 ≤ ∥xk−x∗∥2−σ for infinitely many k ≥ N , which is impossible

(as {∥xk − x∗∥} is nonnegative).

Remark 3.1. It is worth noting that the conclusion of Theorem 3.1(ii) is also true for the

general diminishing stepsize rule, i.e., satisfying

vk > 0, lim
k→∞

vk = 0,

∞∑
k=0

vk = ∞. (3.8)

3.2 Iteration complexity

This subsection is devoted to the complexity issue of the sequence satisfying conditions (H1)

and (H2) when using the typical stepsize rules. Given δ > 0, the iteration complexity of a

particular algorithm is to estimate the number of iterations K required by the algorithm to

obtain an approximate solution, at which the function value is within δ of the optimal, i.e.,

min
1≤k≤K

f(xk) ≤ f∗ + δ.

We write

αinf := inf
k∈N

αk and βsup := sup
k∈N

βk

for simplicity. It is clear that αinf ∈ (0,+∞) and βsup ∈ (0,+∞) under the assumption (H2).

Theorem 3.2. Let δ > 0, and let {xk} ⊆ X satisfy (H1) and (H2).

(i) Let K1 :=
dist2(x1,X∗)

αinfvδ
and vk ≡ v > 0. Then

min
1≤k≤K1

f(xk) ≤ f∗ +

(
βsup
αinf

v + δ

)p

+ ϵ.

(ii) Let K2 :=
(
(1−s)dist2(x1,X∗)

αinfcδ

) 1
1−s

and {vk} be given by (3.3). Then

min
1≤k≤K2

f(xk) ≤ f∗ +

(
βsup
αinf

ck−s + δ

)p

+ ϵ.

(iii) Let K3 :=
4βsupdist

2(x1,X∗)

α2
infλ(2−λ)δ2

and {vk} be given by (3.4). Then

min
1≤k≤K3

f(xk) ≤ f∗ + δp + ϵ.

10



Proof. (i) We prove by contradiction, assuming for each 1 ≤ k ≤ K1 that

f(xk) > f∗ +

(
βsup
αinf

v + δ

)p

+ ϵ;

hence, by (H1), we obtain by (3.1) (with PX∗(xk) in place of x∗) that

dist2(xk+1, X
∗) < dist2(xk, X

∗)− αinfv

(
βsup
αinf

v + δ

)
+ βsupv

2 = dist2(xk, X
∗)− αinfvδ.

Summing the above inequality over k = 1, . . . ,K1, we obtain that

dist2(xK1+1, X
∗) < dist2(x1, X

∗)−K1αinfvδ,

which yields a contradiction with the definition of K1. Assertion (i) of this theorem is proved.

(ii) Proving by contradiction, we assume that

f(xk) > f∗ +

(
βsup
αinf

ck−s + δ

)p

+ ϵ for each 1 ≤ k ≤ K2.

Then, we obtain by (3.1) and (3.3) that

dist2(xk+1, X
∗) < dist2(xk, X

∗)− αinfvk

(
βsup
αinf

vk + δ

)
+ βsupv

2
k = dist2(xk, X

∗)− αinfcδk
−s,

and thus,

dist2(xK2+1, X
∗) < dist2(x1, X

∗)− αinfcδ
∑K2

k=1 k
−s

≤ dist2(x1, X
∗)− αinfcδ

∫K2+1
1 t−sdt

= dist2(x1, X
∗)− αinf

cδ
1−s((K2 + 1)1−s − 1),

which is negative by the definition of K2. This contradiction yields assertion (ii) of this

theorem.

(iii) Proving by contradiction, we assume that

f(xk) > f∗ + δp + ϵ for each 1 ≤ k ≤ K3.

Then, it follows from (3.1) and (3.4) that

dist2(xk+1, X
∗) ≤ dist2(xk, X

∗)−
α2
k

4βk
λk(2− λk)(f(xk)− f∗ − ϵ)

2
p

< dist2(xk, X
∗)−

α2
inf

4βsup
λ(2− λ)δ2.

Summing the above inequality over k = 1, . . . ,K3, we derive that

dist2(xK3+1, X
∗) < dist2(x1, X

∗)−K3
α2
inf

4βsup
λ(2− λ)δ2,

which yields a contradiction with the definition of K3. The proof is complete.

11



Remark 3.2. Theorem 3.2 shows that the sequence satisfying conditions (H1) and (H2)

possesses the computational complexity of O(1/kp), O(1/kpmin{s,1−s}) and O(1/k
p
2 ) to fall

within a certain region (expressed by an additive form of the stepsize and noise) of the optimal

value when the constant, diminishing or dynamic stepsize rules are used, respectively. In

particular, in the cases of the diminishing stepsize rule, the optimal complexity is gained

when s = 1
2 , and thus, vk = ck−

1
2 is the best choice among the type of (3.3).

3.3 Convergence rate analysis

The establishment of convergence rates is significant in guaranteeing the numerical perfor-

mance of relevant algorithms. The aim of this section is to establish the convergence rates

for the sequence satisfying conditions (H1) and (H2) under the assumptions of weak sharp

minima and/or some suitable assumptions on the noise.

The concept of weak sharp minima was introduced by Burke and Ferris [10], and has been

extensively studied and widely used to analyze the convergence rates of many optimization

algorithms; see [7, 20, 52, 56] and references therein. One natural extension of this concept

is the weak sharp minima of Hölderian order; see [5, 21, 51, 56] and references therein.

Definition 3.1. Let f : Rn → R, X ⊆ Rn and X∗ := argmin{f(x) : x ∈ X}. Let x∗ ∈ X∗,

S ⊆ Rn, η > 0 and q ≥ 1. X∗ is said to be

(a) the set of weak sharp minima of order q for f on S over X with modulus η if

f(y)− f(x∗) ≥ η distq(y,X∗) for each y ∈ S ∩X;

(b) the set of (global) weak sharp minima of order q for f over X with modulus η if X∗ is

the set of weak sharp minima of order q for f on Rn over X with modulus η;

(c) the set of boundedly weak sharp minima of order q for f over X if, for each r > 0 such

that X∗ ∩B(0, r) ̸= ∅, there exists ηr > 0 such that X∗ is the set of weak sharp minima

of order q for f on B(0, r) over X with modulus ηr.

Remark 3.3. It is clear that the global weak sharp minima of order q implies the boundedly

weak sharp minima of order q. Moreover, the larger the q, the less restrictive the global (resp.

boundedly) weak sharp minima of order q. In particular, when q = 1, this concept is reduced

to the global (resp. boundedly) weak sharp minima; see, e.g., [9, 10].

The following theorems present the linear (or sublinear) convergence rates of the sequence

{xk} satisfying (H1) and (H2) to a certain neighborhood of the solution set when using dif-

ferent stepsize rules and under the assumption of boundedly weak sharp minima of Hölderian

order. To this end, we further require the following condition to ensure the bounded property

of {xk} when the constant or diminishing stepsize rule is adopted.

(H3) For each k ∈ N,
∥xk+1 − xk∥ ≤ γkvk, (3.9)

where {γk} is a sequence of positive scalars such that limk→∞ γk = γ > 0.
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Condition (H3) characterizes an upper bound (related to the stepsize) of the distance between

the successive two iterates, which is always satisfied for various subgradient methods for either

convex or quasi-convex optimization problems; see, e.g., Section 4 and [55].

Theorem 3.3. Let {xk} ⊆ X satisfy (H1)-(H3) and vk ≡ v > 0. Suppose that f is coercive

and that X∗ is the set of boundedly weak sharp minima of order q for f over X with modulus

η. Then, the following assertions are true.

(i) If q = 2p, then either xk ∈ X∗
ϵ for some k ∈ N or there exist τ ∈ [0, 1) and N ∈ N such

that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
1
p
−1

η
− 1

p

(
ϵ
1
p +

βv

α

)
for each k ∈ N.

(ii) If q > 2p and ϵ
1
p + βv

α < η
− 2

q−2p ( 2p
αvq )

q
q−2p , then either xk ∈ X∗

ϵ for some k ∈ N or there

exist τ ∈ (0, 1) and N ∈ N such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
2
q
− 2p

q η
− 2

q

(
ϵ
1
p +

βv

α

) 2p
q

for each k ∈ N.

Proof. Without loss of generality, we assume that f(xk) > f∗ + ϵ for each k ∈ N; otherwise,
this theorem holds automatically. Consequently, (H1) says that, for each x∗ ∈ X∗ and k ∈ N,

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − αkv(f(xk)− f∗ − ϵ)
1
p + βkv

2. (3.10)

We first claim that {xk} is bounded. To this end, we fix κ > 1 and define

σ := κ

(
βv

α

)p

+ ϵ, X∗
σ := X ∩ lev≤f∗+σf and ρ(σ) := max

x∈X∗
σ

dist(x,X∗). (3.11)

By the coercive assumption, it follows that its sublevel set lev≤f∗+σf is bounded, and so is

X∗
σ. Then, one has by (3.11) that ρ(σ) < ∞. By (H2) and (H3), there exists N ∈ N such

that

ακ
− 1

2p < αk < ακ
1
2p , βκ

− 1
2p < βk < βκ

1
2p and γk < 2γ for each k ≥ N. (3.12)

Fix k ≥ N . Below, we show

dist(xk+1, X
∗) < max{dist(xk, X∗), ρ(σ) + 2γv} (3.13)

by claiming the following two implications:

[f(xk) > f∗ + σ] ⇒ [dist(xk+1, X
∗) < dist(xk, X

∗)]; (3.14)

[f(xk) ≤ f∗ + σ] ⇒ [dist(xk+1, X
∗) < ρ(σ) + 2γv]. (3.15)
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To prove (3.14), we suppose that f(xk) > f∗ + σ. Then, for each x∗ ∈ X∗, one has by (3.10)

that

∥xk+1 − x∗∥2 < ∥xk − x∗∥2 − αkv(σ − ϵ)
1
p + βkv

2 < ∥xk − x∗∥2

(due to (3.11) and (3.12)). Consequently, (3.14) can be proved by selecting x∗ = PX∗(xk).

To show (3.15), we assume that f(xk) ≤ f∗ + σ. Then xk ∈ X∗
σ, and so (3.11) says that

dist(xk, X
∗) ≤ ρ(σ). This, together with (3.9) and (3.12), shows (3.15). Therefore, (3.13) is

proved, as desired.

Note by Theorem 3.1(i) that lim infk→∞ f(xk) ≤ f∗ + (βvα )p + ϵ, and note by κ > 1 and

(3.11) that σ > (βvα )p+ϵ. Then, we can assume, without loss of generality, that f(xN ) ≤ f∗+σ

(otherwise, we can choose a largerN). Consequently, we have by (3.15) that dist(xN+1, X
∗) <

ρ(σ) + 2γv, and inductively obtain by (3.13) that

dist(xk, X
∗) < ρ(σ) + 2γv for each k > N. (3.16)

Hence, {xk} is proved to be bounded (since X∗ ⊆ X∗
σ is bounded), as desired. That is, there

exists r > 0 such that X∗ ⊆ B(0, r) and {xk} ⊆ B(0, r) for each k ∈ N. Then, by assumption

of boundedly weak sharp minima property of order q, there exists η > 0 such that

f(xk)− f∗ ≥ η distq(xk, X
∗) for each k ∈ N. (3.17)

Selecting x∗ = PX∗(xk), we deduce by (3.10) and (3.12) that, for each k ≥ N ,

dist2(xk+1, X
∗)

≤ dist2(xk, X
∗)− αvκ

− 1
2p (f(xk)− f∗ − ϵ)

1
p + βκ

1
2p v2

≤ dist2(xk, X
∗)− 2

1− 1
pαvκ

− 1
2p (f(xk)− f∗)

1
p + αvκ

− 1
2p ϵ

1
p + βκ

1
2p v2,

(3.18)

where the last inequality holds because

(a− b)γ ≥ 21−γaγ − bγ whenever a ≥ b ≥ 0 and γ ≥ 1 (3.19)

(cf. [24, Lemma 4.1]). Below, we prove this theorem in the following two cases.

(i) Suppose that q = 2p. Setting τ := (1 − 2
1− 1

pαvκ
− 1

2p η
1
p )+ ∈ [0, 1) and substituting

(3.17) into (3.18), we achieve that

dist2(xk+1, X
∗) ≤ τdist2(xk, X

∗) + αvκ
− 1

2p ϵ
1
p + βκ

1
2p v2 for each k ≥ N.

Then, we inductively obtain that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) +
1

1− τ
(αvκ

− 1
2p ϵ

1
p + βκ

1
2p v2) for each k ∈ N;

consequently, the conclusion follows (noting that κ > 1 is arbitrary).

(ii) Suppose that q > 2p and αϵ
1
p +βv < (αpη)

− 2
q−2p (v q

2p)
− q

q−2p . We obtain by (3.17) and

(3.18) that, for each k ≥ N ,

dist2(xk+1, X
∗) ≤ dist2(xk, X

∗)− 2
1− 1

pαvκ
− 1

2p η
1
pdist

q
p (xk, X

∗) + αvκ
− 1

2p ϵ
1
p + βκ

1
2p v2.
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Then, Lemma 2.2(ii) is applicable (with dist2(xk, X
∗), q

2p − 1, 2
1− 1

pαvκ
− 1

2p η
1
p , αvκ

− 1
2p ϵ

1
p +

βκ
1
2p v2 in place of uk, r, a, b) to obtaining the conclusion.

Theorem 3.4. Let {xk} ⊆ X satisfy (H1) and (H2), and {vk} be given by (3.4). Suppose

that X∗ is the set of boundedly weak sharp minima of order q for f over X with modulus η.

Then, the following assertions are true.

(i) If q = p and ϵ ≥ 0, then either xk ∈ X∗
ϵ for some k ∈ N or there exist τ ∈ [0, 1) and

N ∈ N such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
2
p
−1

η
− 2

p ϵ
2
p for each k ∈ N. (3.20)

(ii) If q > p and ϵ = 0, then either xk ∈ X∗ for some k ∈ N or there exist γ > 0 and N ∈ N
such that

dist2(xk+N , X∗) ≤ dist2(xN , X∗)

(1 + γk)
p

q−p

for each k ∈ N. (3.21)

(iii) If q > p and 0 < ϵ <
(
α2q
4βpλ(2− λ)

)− pq
2(q−p)

η
− p

q−p , then either xk ∈ X∗
ϵ for some k ∈ N

or there exist τ ∈ (0, 1) and N ∈ N such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
2
q
− p

q η
− 2

q ϵ
2
q for each k ∈ N. (3.22)

Proof. Without loss of generality, we assume that f(xk) > f∗ + ϵ for each k ∈ N; otherwise,
this theorem holds automatically. Combining (3.1) with (3.4), we obtain that there exists

N ∈ N such that, for each k ≥ N ,

dist2(xk+1, X
∗)− dist2(xk, X

∗)

≤ −
α2
k

4βk
λk(2− λk)(f(xk)− f∗ − ϵ)

2
p (3.23)

≤ −2
1− 2

pκ
− 3

2p
α2

4β
λ(2− λ)(f(xk)− f∗)

2
p + κ

− 3
2p
α2

4β
λ(2− λ)ϵ

2
p

(due to (3.12) and (3.19)). It follows from the proof of Theorem 3.1(iii) (cf. (3.7)) that {xk}
is bounded. Then, there exists r > 0 such that X∗ ∩B(0, r) ̸= ∅ and {xk} ⊆ B(0, r) for each

k ∈ N. By the assumption of boundedly weak sharp minima property of order q, there exists

η > 0 such that

f(xk)− f∗ ≥ η distq(xk, X
∗) for each k ∈ N. (3.24)

(i) Suppose that q = p. Setting τ := (1− 2
1− 2

pκ
− 3

2p α2

4βλ(2− λ)η
2
p )+ ∈ [0, 1), we obtain by

substituting (3.24) into (3.23) that

dist2(xk+1, X
∗) ≤ τdist2(xk, X

∗) + κ
− 3

2p
α2

4β
λ(2− λ)ϵ

2
p for each k ≥ N.
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Then, we inductively obtain

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) +
1

1− τ
κ
− 3

2p
α2

4β
λ(2− λ)ϵ

2
p for each k ∈ N;

hence, (3.20) holds (noting that κ > 1 is arbitrary), and assertion (i) is proved.

(ii) Suppose that q > p and ϵ = 0. Then, combining (3.23) and (3.24) implies that, for

each k ≥ N ,

dist2(xk+1, X
∗) ≤ dist2(xk, X

∗)− 2
1− 2

pκ
− 3

2p
α2

4β
λ(2− λ)η

2
pdist

2q
p (xk, X

∗).

Then, Lemma 2.2(i) is applicable (with dist2(xk, X
∗), 2

1− 2
pκ

− 3
2p α2

4βλ(2−λ)η
2
p , q

p−1 in place of

uk, a, r) to concluding that (3.21) holds with γ := 2
1− 2

pκ
− 3

2p
α2(q−p)

4βp λ(2−λ)η
2
pdist

2q
p
−2

(xN , X∗).

(iii) Suppose that q > p and 0 < ϵ <
(
α2q
4βpλ(2− λ)

)− pq
2(q−p)

η
− p

q−p . We obtain by (3.23)

and (3.24) that, for each k ≥ N ,

dist2(xk+1, X
∗) ≤ dist2(xk, X

∗)−2
1− 2

pκ
− 3

2p
α2

4β
λ(2−λ)η

2
pdist

2q
p (xk, X

∗)+κ
− 3

2p
α2

4β
λ(2−λ)ϵ

2
p .

Then Lemma 2.2(ii) is applicable (with dist2(xk, X
∗), q

p−1, 2
1− 2

pκ
− 3

2p α2

4βλ(2−λ)η
2
p , κ

− 3
2p α2

4βλ(2−

λ)ϵ
2
p in place of uk, r, a, b) to concluding that there exists τ ∈ (0, 1) such that (3.22) is sat-

isfied.

Theorem 3.5. Let {xk} ⊆ X satisfy (H1)-(H3), and {vk} be given by (3.3). Suppose that f

is coercive and that X∗ is the set of boundedly weak sharp minima of order 2p for f over X

with modulus η. Then, the following assertions are true.

(i) If ϵ = 0, then either xk ∈ X∗ for some k ∈ N or there exists N ∈ N such that

dist2(xk, X
∗) ≤ βc

α

(
2

η

) 1
p

k−s for each k ≥ N.

(ii) If ϵ > 0, then either xk ∈ X∗
ϵ for some k ∈ N or there exist C > 0 and τ ∈ (0, 1) such

that

dist2(xk, X
∗) ≤ Cτk +

(
2ϵ

η

) 1
p

for each k ∈ N.

Proof. Without loss of generality, we assume that f(xk) > f∗ + ϵ for each k ∈ N; otherwise,
this theorem holds automatically. Then, (H1) and (3.3) show that, for each x∗ ∈ X∗

ϵ and

k ∈ N,
∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − αkck

−s(f(xk)− f∗ − ϵ)
1
p + βkc

2k−2s. (3.25)

Fix κ > 1 and σ > ϵ, and define X∗
σ and ρ(σ) by (3.11). By (H2) and (H3), there exists

N ≥ ( cβα )
1
s ( κ

σ−ϵ)
1
sp such that (3.12) is satisfied. Similar to the arguments that we did for
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(3.16), we can derive that dist(xk, X
∗) < ρ(σ)+2γc for each k > N . Hence, {xk} is bounded,

and then, by assumption of boundedly weak sharp minima property of order 2p, there exists

η > 0 such that (3.17) is satisfied with q = 2p. This, together with (3.25) and (3.19), implies

that, for each k ≥ N ,

dist2(xk+1, X
∗) ≤ (1−2

1− 1
pακ

− 1
2p η

1
p ck−s)dist2(xk, X

∗)+ακ
− 1

2p ϵ
1
p ck−s+βκ

1
2p c2k−2s. (3.26)

(i) Suppose that ϵ = 0. Lemma 2.3(i) is applicable (with 2
1− 1

pακ
− 1

2p η
1
p c, βκ

1
2p c2, 2s in

place of a, b, t) to obtaining the conclusion (as κ > 1 is arbitrary).

(ii) Suppose that ϵ > 0. Letting N ≥ ( cβα )
1
s (κϵ )

1
sp , (3.26) is reduced to

dist2(xk+1, X
∗) ≤ (1− 2

1− 1
pακ

− 1
2p η

1
p ck−s)dist2(xk, X

∗) + 2ακ
− 1

2p ϵ
1
p ck−s,

and then, Lemma 2.3(ii) is applicable (with 2
1− 1

pακ
− 1

2p η
1
p c and 2ακ

− 1
2p ϵ

1
p c in place of a and

b) to obtaining the conclusion.

Remark 3.4. Theorems on convergence rates improve the results in [55], in which only the

global convergence theorems were provided.

(i) Theorems 3.3 and 3.4 show the linear convergence rates of the sequence satisfying

(H1)-(H3) to a certain region (i.e., O((ϵ
1
p + v)

2p
q ) or O(ϵ

2
q )) of the solution set under the

boundedly weak sharp minima of order q when using the constant or dynamic stepsize rules,

respectively.

(ii) In the special case when ϵ = 0 and using the dynamic stepsize rule, Theorem 3.4

presents the linear (or sublinear) convergence of the sequence satisfying (H1)-(H2) to the

solution set under the boundedly weak sharp minima of order q.

(iii) When using the diminishing stepsize rule (3.3) and under the boundedly weak sharp

minima of order 2p, Theorem 3.5 shows the sublinear convergence rate to the solution set or

the linear convergence rate to a certain region (i.e., O(ϵ
1
p )) of the solution set for the exact

or inexact framework, respectively.

4 Applications to subgradient methods

Quasi-convex optimization plays an important role in various fields such as economics, finance

and engineering. The subgradient method is a popular algorithm for solving constrained

quasi-convex optimization problems. It was shown in [55] that several types of subgradient

methods for solving quasi-convex optimization problem satisfy conditions (H1)-(H3) assumed

in the unified framework (with ϵ = 0) under the Hölder condition. Hence, in this section, we

directly apply the convergence theorems obtained in the preceding section to establish the

convergence properties of several subgradient methods for solving quasi-convex optimization

problems. The convergence theorems (resp. Theorems 4.1, 4.5 and 4.9) cover the existing

results in the literature of subgradient methods (resp. [55, Theorem 4.2], [21, Theorem 3.1]

and [23, Theorems 3.3 and 3.5]). To the best of our knowledge, the theorems of complexity
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estimation (i.e., Theorems 4.2, 4.6 and 4.10) and convergence rates (i.e., Theorems 4.3, 4.7

and 4.11) of subgradient methods for quasi-convex optimization are new in the literature.

Throughout the whole section, we make the following blanket assumption:

• f : Rn → R is quasi-convex and continuous, and satisfies the Hölder condition of order

p with modulus L on Rn.

4.1 Subgradient method

It was claimed in [55] the standard subgradient method (i.e., Algorithm 1.1) satisfies the

following basic inequality under the blanket assumption:

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
f(xk)− f∗

L

) 1
p

+ vk
2

whenever f(xk) > f∗, and ∥xk+1−xk∥ ≤ vk. That is, conditions (H1)-(H3) are satisfied with

ϵ = 0, αk ≡ 2L
− 1

p , βk ≡ 1, γk ≡ 1.

Therefore, the convergence theorems established in the preceding section can be directly

applied to establish the convergence properties of the standard subgradient method as follows.

Theorem 4.1. Let {xk} be a sequence generated by Algorithm 1.1.

(i) If vk ≡ v > 0, then lim infk→∞ f(xk) ≤ f∗ + L
(
1
2v

)p
.

(ii) If {vk} satisfies (3.8), then lim infk→∞ f(xk) ≤ f∗.

(iii) If {vk} is given by

vk := λk

(
f(xk)− f∗

L

) 1
p

, where 0 < λ ≤ λk ≤ λ < 2, (4.1)

then limk→∞ f(xk) = f∗.

Remark 4.1. For the dynamic stepsize rule (4.1) ( (4.8) or (4.9) in the sequel), once xk
enters X∗ (or X∗

ϵ ), the stepsize will be zero, the iterates will stay at the solution (or the

approximate solution), and thus, the conclusions of global convergence and convergence rate

follow automatically.

Theorem 4.2. Let δ > 0, and let {xk} be a sequence generated by Algorithm 1.1.

(i) Let K1 :=
L

1
p dist2(x1,X∗)

2vδ and vk ≡ v > 0. Then min
1≤k≤K1

f(xk) ≤ f∗ +
(
1
2L

1
p v + δ

)p
.

(ii) Let K2 :=

(
(1−s)L

1
p dist2(x1,X∗)
2cδ

) 1
1−s

and {vk} be given by (3.3). Then min
1≤k≤K2

f(xk) ≤

f∗ +
(
1
2L

1
p ck−s + δ

)p
.
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(iii) Let K3 :=
L

2
p dist2(x1,X∗)

λ(2−λ)δ2
and {vk} be given by (4.1). Then min

1≤k≤K3

f(xk) ≤ f∗ + δp.

Theorem 4.3. Let {xk} be a sequence generated by Algorithm 1.1. Suppose that X∗ is the

set of boundedly weak sharp minima of order q for f over X with modulus η.

(I) Suppose that vk ≡ v > 0 and that f is coercive.

(i) If q = 2p, then either xk ∈ X∗ for some k ∈ N or there exist τ ∈ [0, 1) and N ∈ N
such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
1
p
−2

(
L

η

) 1
p

v for each k ∈ N.

(ii) If q > 2p and v <
(
2−p L

η (
2p
q )

q
2

) 1
q−p

, then either xk ∈ X∗ for some k ∈ N or there

exist τ ∈ (0, 1) and N ∈ N such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
2
q
− 4p

q

(
L

η

) 2
q

v
2p
q for each k ∈ N.

(II) Suppose that {vk} is given by (3.3), q = 2p and that f is coercive. Then, either xk ∈ X∗

for some k ∈ N or there exists N ∈ N such that

dist2(xk, X
∗) ≤ c

2

(
2L

η

) 1
p

k−s for each k ≥ N.

(III) Suppose that {vk} is given by (4.1).

(i) If q = p, then there exist τ ∈ [0, 1) and N ∈ N such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) for each k ∈ N.

(ii) If q > p, then there exist γ > 0 and N ∈ N such that

dist2(xk+N , X∗) ≤ dist2(xN , X∗)

(1 + γk)
p

q−p

for each k ∈ N.

Remark 4.2. (i) When using the dynamic stepsize rule, the linear convergence rate of the

subgradient method for solving convex optimization problems was shown in [8, Theorem 2.5]

under the assumption of weak sharp minima. Theorem 4.3 remarkably extends the result in

[8] to quasi-convex optimization, using several typical stepsize rules and under the weaker

assumption of weak sharp minima of Hölderian order.

(ii) When using the constant stepsize rule, [25, Theorem 1] proved the linear convergence

rate of the subgradient method for solving convex optimization problems under the assumption

of weak sharp minima of Hölderian order. Theorem 4.3 extends the result in [8] to quasi-

convex optimization and using several typical stepsize rules.
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The finite convergence is a strong convergence property of optimization algorithms. For

example, the proximal point algorithm has the finite convergence property under the assump-

tion of weak sharp minima; see, e.g., [13, 53]. However, the subgradient method may not

converge within the finite iterations to an optimal solution under the assumption of weak

sharp minima, even for the convex optimization problem; see the following counter-example.

Example 4.1. Consider the optimization problem

min
x∈R

f(x) := |x|.

Clearly, its solution set is X∗ = {0}, and f is a (quasi-)convex function and satisfies the weak

sharp minima and the Lipschitz condition. Note that its convex subdifferential ∂f(x) = {1}
and {−1} (resp. quasi-subdifferential ∂∗f(x) = R+ and R−) if x > 0 and x < 0, respectively.

Selecting the initial point x1 =
√
2 and the constant stepsize v = 1 or the diminishing stepsize

vk = 1
k or the dynamic stepsize (4.1) (with λk ≡ λ ̸= 1), one can check that the sequence

generated by the convex subgradient method (resp. Algorithm 1.1) cannot achieve the solution

within finite iterations.

In the following theorem, we establish the finite convergence property of the subgradient

method to the solution setX∗ of problem (1.1) under the assumption thatX∗ has a nonempty

interior.

Theorem 4.4. Let {xk} be a sequence generated by Algorithm 1.1. Let x∗ ∈ X∗ and σ > 0,

and suppose that B(x∗, σ) ⊆ X∗. Then xk ∈ X∗ for some k ∈ N, provided one of the following

conditions:

(i) vk = v ∈ (0, 2σ) for each k ∈ N.

(ii) {vk} satisfies (3.8).

Proof. Proving by contradiction, we assume that f(xk) > f∗ for each k ∈ N. By the process

of Algorithm 1.1, it follows from the nonexpansive property of projection operator that

∥xk+1 − x∗∥2 ≤ ∥xk − vkgk − x∗∥2 = ∥xk − x∗∥2 − 2vk ⟨gk, xk − x∗⟩+ v2k

for each k ∈ N. Summing the above inequality over k = 0, . . . , n, one has∑n
k=0 vk⟨gk, xk − x∗⟩∑n

k=0 vk
≤ ∥x0 − x∗∥2

2
∑n

k=0 vk
+

∑n
k=0 v

2
k

2
∑n

k=0 vk
. (4.2)

By the assumption that B(x∗, σ) ⊆ X∗ and ∥gk∥ = 1, one has x∗+σgk ∈ X∗ ⊆ X∩lev<f(xk)f .

Then, it follows from Definition 2.1 that ⟨gk, x∗ + σgk − xk⟩ ≤ 0, that is, ⟨gk, xk − x∗⟩ ≥ σ.

This, together with (4.2), shows that

∥x0 − x∗∥2

2
∑n

k=0 vk
+

∑n
k=0 v

2
k

2
∑n

k=0 vk
≥ σ. (4.3)
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On the other hand, under either assumption (i) or (ii), one can check by Lemma 2.1 that

lim inf
n→∞

∥x0 − x∗∥2

2
∑n

k=0 vk
+

∑n
k=0 v

2
k

2
∑n

k=0 vk
< σ,

which arrives at a contradiction with (4.3). The proof is complete.

4.2 Inexact subgradient method

In many applications, the computation error stems from practical considerations and is in-

evitable in the computing process. To meet the requirement of practical applications, an

inexact subgradient method was proposed in [21] to solve a constrained quasi-convex op-

timization problem (1.1), in which an ϵ-quasi-subgradient is employed (with an additional

noise), and the global convergence theorem is established there. This section is devoted to es-

tablishing the iteration complexity and convergence rates of the inexact subgradient method

for solving problem (1.1), which is formally described as follows.

Algorithm 4.1. Let ϵ > 0. Select an initial point x1 ∈ Rn and a sequence of stepsizes

{vk} ⊆ (0,+∞). For each k ∈ N, having xk, we select gk ∈ ∂∗
ϵ f(xk) ∩ S and update xk+1 by

xk+1 := PX(xk − vkgk). (4.4)

We claim that the inexact subgradient method satisfies conditions (H1)-(H3) under the

blanket assumption. To this end, we provide in the following lemma an important property

of a quasi-convex function, which is inspired by [29, Proposition 2.1].

Lemma 4.1. Let x ∈ X be such that f(x) > f∗ + ϵ and let g ∈ ∂∗
ϵ f(x) ∩ S. Then, it holds

that

⟨g, x− x∗⟩ ≥
(
f(x)− f∗ − ϵ

L

) 1
p

for each x∗ ∈ X∗.

Proof. Fix x ∈ X be such that f(x) > f∗ + ϵ. Then, the level set lev<f(x)−ϵf is nonempty

open and convex by the blanket assumption that f is quasi-convex and continuous on Rn.

Given x∗ ∈ X∗, we define

r := inf
{
∥y − x∗∥ : y ∈ bd

(
lev<f(x)−ϵf

)}
, (4.5)

where bd(Z) denotes the boundary of the set Z. It follows that r > 0 by the fact that

f(x)− ϵ > f(x∗) and the Hölder condition. Furthermore, we have by Definition 2.2 that

f(y)− f∗ ≤ Ldistp(y,X∗) for each y ∈ Rn.

Taking the infimun over bd
(
lev<f(x)−ϵf

)
, we can show that

f(x)− f∗ − ϵ ≤ L inf
{
distp(y,X∗) : y ∈ bd

(
lev<f(x)−ϵf

)}
≤ Lrp. (4.6)
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Let δ ∈ (0, 1). Since g ∈ ∂∗
ϵ f(x) ∩ S, we obtain by (4.5) that x∗ + δrg ∈ lev<f(x)−ϵf . Hence,

it follows by definition that

⟨g, x− x∗⟩ = ⟨g, x− (x∗ + δrg)⟩+ δr ≥ δr.

Since δ ∈ (0, 1) is arbitrary, one has ⟨g, x − x∗⟩ ≥ r. This, together with (4.6), implies the

conclusion.

Lemma 4.2. Let {xk} be a sequence generated by Algorithm 4.1.

(i) ∥xk+1 − xk∥ ≤ vk.

(ii) If f(xk) > f∗ + ϵ, then it holds for each x∗ ∈ X∗ that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
f(xk)− f∗ − ϵ

L

) 1
p

+ v2k.

Proof. Assertion (i) of this theorem directly follows from Algorithm 4.1 (cf. (4.4)). To show

assertion (ii), we suppose that f(xk) > f∗ + ϵ and fix x∗ ∈ X∗. In view of Algorithm 4.1, it

follows from the nonexpansive property of projection operator that

∥xk+1 − x∗∥2 ≤ ∥xk − vkgk − x∗∥2

= ∥xk − x∗∥2 − 2vk ⟨gk, xk − x∗⟩+ v2k.
(4.7)

By the assumption that f(xk) > f∗ + ϵ, Lemma 4.1 is applicable to concluding that

⟨gk, xk − x∗⟩ ≥
(
f(xk)− f∗ − ϵ

L

) 1
p

.

This, together with (4.7), implies the conclusion.

Lemma 4.2 shows that conditions (H1)-(H3) are satisfied for Algorithm 4.1 with

ϵ > 0, αk ≡ 2L
− 1

p , βk ≡ 1, γk ≡ 1.

Hence, the convergence theorems established in the preceding section can be directly applied

to establish the convergence properties of the inexact subgradient method as follows.

Theorem 4.5. Let {xk} be a sequence generated by Algorithm 4.1.

(i) If vk ≡ v > 0, then lim infk→∞ f(xk) ≤ f∗ + L
(
1
2v

)p
+ ϵ.

(ii) If {vk} satisfies (3.8), then lim infk→∞ f(xk) ≤ f∗ + ϵ.

(iii) If {vk} is given by

vk := λk

(
f(xk)− f∗ − ϵ

L

) 1
p

+

, where 0 < λ ≤ λk ≤ λ < 2, (4.8)

then limk→∞ f(xk) ≤ f∗ + ϵ.
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Theorem 4.6. Let δ > 0, and let {xk} be a sequence generated by Algorithm 4.1.

(i) Let K1 :=
L

1
p dist2(x1,X∗)

2vδ and vk ≡ v > 0. Then min
1≤k≤K1

f(xk) ≤ f∗ +
(
1
2L

1
p v + δ

)p
+ ϵ.

(ii) Let K2 :=

(
(1−s)L

1
p dist2(x1,X∗)
2cδ

) 1
1−s

and {vk} be given by (3.3). Then min
1≤k≤K2

f(xk) ≤

f∗ +
(
1
2L

1
p ck−s + δ

)p
+ ϵ.

(iii) Let K3 :=
L

2
p dist2(x1,X∗)

λ(2−λ)δ2
and {vk} be given by (4.8). Then min

1≤k≤K3

f(xk) ≤ f∗ + δp + ϵ.

Theorem 4.7. Let {xk} be a sequence generated by Algorithm 4.1. Suppose that X∗ is the

set of boundedly weak sharp minima of order q for f over X with modulus η.

(I) Suppose that vk ≡ v > 0 and that f is coercive.

(i) If q = 2p, then either xk ∈ X∗
ϵ for some k ∈ N or there exist τ ∈ [0, 1) and N ∈ N

such that, for each k ∈ N,

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
1
p
−1

η
− 1

p

(
ϵ
1
p +

1

2
L

1
p v

)
.

(ii) If q > 2p and ϵ
1
p + 1

2L
1
p v < η

− 2
q−2p ( p

vqL
1
p )

q
q−2p , then either xk ∈ X∗

ϵ for some

k ∈ N or there exist τ ∈ (0, 1) and N ∈ N such that, for each k ∈ N,

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
2
q
− 2p

q η
− 2

q

(
ϵ
1
p +

1

2
L

1
p v

) 2p
q

.

(II) Suppose that {vk} is given by (3.3), q = 2p and that f is coercive. Then, either xk ∈ X∗
ϵ

for some k ∈ N or there exist C > 0 and τ ∈ (0, 1) such that

dist2(xk, X
∗) ≤ Cτk +

(
2ϵ

η

) 1
p

for each k ∈ N.

(III) Suppose that {vk} is given by (4.8).

(i) If q = p, then either xk ∈ X∗
ϵ for some k ∈ N or there exist τ ∈ [0, 1) and N ∈ N

such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
2
p
−1

η
− 2

p ϵ
2
p for each k ∈ N.

(ii) If q > p and ϵ <
(
L
η

) q
q−p

(
q
pλ(2− λ)

)− pq
2(q−p)

, then either xk ∈ X∗
ϵ for some k ∈ N

or there exist τ ∈ (0, 1) and N ∈ N such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
2
q
− p

q η
− 2

q ϵ
2
q for each k ∈ N.
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Following a line of analysis similar to that of Theorem 4.4, we can obtain the finite

convergence property of the inexact subgradient method to the approximate solution set X∗
ϵ

under the interior point assumption of X∗. The proof is omitted.

Theorem 4.8. Let {xk} be a sequence generated by Algorithm 4.1. Let x∗ ∈ X∗ and σ > 0,

and suppose that B(x∗, σ) ⊆ X∗. Then xk ∈ X∗
ϵ for some k ∈ N, provided one of the following

conditions:

(i) vk = v ∈ (0, 2σ) for each k ∈ N.

(ii) {vk} satisfies (3.8).

4.3 Conditional subgradient method

The standard subgradient method (i.e., Algorithm 1.1) usually suffers from a zig-zagging phe-

nomenon and sustains a slow convergence in practical applications. To avoid the zig-zagging

phenomenon and speed up the convergence behavior, an idea of conditional subgradient

method was proposed for either convex optimization [30] or quasi-convex optimization prob-

lems [23], which is stated as follows. It is worth mentioning that the algorithmic procedure of

the conditional subgradient method is totally different from the conditional gradient method

(also named the Franke-Wolfe method) [14], although they share a similar name.

Algorithm 4.2. Select an initial point x1 ∈ Rn and a sequence of stepsizes {vk} ⊆ (0,+∞).

For each k ∈ N, given xk, we calculate

gk ∈ ∂∗f(xk) ∩ S and µk ∈

{
NX(xk) ∩ S, if xk /∈ intX,

{0}, if xk ∈ intX,

and update xk+1 by

xk+1 := PX(xk − vk(gk + µk)).

It was proved in [23, Lemma 3.2] the condition subgradient method satisfies the basic

inequality as follow under the blanket assumption:

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
f(xk)− f∗

L

) 1
p

+ 4vk
2

whenever f(xk) > f∗, and ∥xk+1 − xk∥ ≤ 2vk. This shows that conditions (H1)-(H3) are

satisfied with

ϵ = 0, αk ≡ 2L
− 1

p , βk ≡ 4, γk ≡ 2.

Hence, the convergence theorems established in the preceding section can be directly applied

to the conditional subgradient method as follows.

Theorem 4.9. Let {xk} be a sequence generated by Algorithm 4.2.

(i) If vk ≡ v > 0, then lim infk→∞ f(xk) ≤ f∗ + L (2v)p.
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(ii) If {vk} satisfies (3.8), then lim infk→∞ f(xk) ≤ f∗.

(iii) If {vk} is given by

vk :=
λk

4

(
f(xk)− f∗

L

) 1
p

, where 0 < λ ≤ λk ≤ λ < 2, (4.9)

then limk→∞ f(xk) = f∗.

Theorem 4.10. Let δ > 0, and let {xk} be a sequence generated by Algorithm 4.2.

(i) Let K1 :=
L

1
p dist2(x1,X∗)

2vδ and vk ≡ v > 0. Then min
1≤k≤K1

f(xk) ≤ f∗ +
(
2L

1
p v + δ

)p
.

(ii) Let K2 :=

(
(1−s)L

1
p dist2(x1,X∗)
2cδ

) 1
1−s

and {vk} be given by (3.3). Then min
1≤k≤K2

f(xk) ≤

f∗ +
(
2L

1
p ck−s + δ

)p
.

(iii) Let K3 :=
4L

2
p dist2(x1,X∗)

λ(2−λ)δ2
and {vk} be given by (4.9). Then min

1≤k≤K3

f(xk) ≤ f∗ + δp.

Theorem 4.11. Let {xk} be a sequence generated by Algorithm 4.2. Suppose that X∗ is the

set of boundedly weak sharp minima of order q for f over X with modulus η.

(I) Suppose that vk ≡ v > 0 and that f is coercive.

(i) If q = 2p, then either xk ∈ X∗ for some k ∈ N or there exist τ ∈ [0, 1) and N ∈ N
such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
1
p

(
L

η

) 1
p

v for each k ∈ N.

(ii) If q > 2p and v <
(
2p Lη (

p
2q )

q
2

) 1
q−p

, then either xk ∈ X∗ for some k ∈ N or there

exist τ ∈ (0, 1), c > 0 and N ∈ N such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) + 2
2
q

(
L

η

) 2
q

v
2p
q for each k ∈ N.

(II) Suppose that {vk} is given by (3.3), q = 2p and that f is coercive. Then, either xk ∈ X∗

for some k ∈ N or there exists N ∈ N such that

dist2(xk, X
∗) ≤ 2c

(
2L

η

) 1
p

k−s for each k ≥ N.

(III) Suppose that {vk} is given by (4.9).
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(i) If q = p, then there exist τ ∈ [0, 1) and N ∈ N such that

dist2(xk+N , X∗) ≤ τkdist2(xN , X∗) for each k ∈ N.

(ii) If q > p, then there exist γ > 0 and N ∈ N such that

dist2(xk+N , X∗) ≤ dist2(xN , X∗)

(1 + γk)
p

q−p

for each k ∈ N.

The following finite convergence property of the conditional subgradient method is recalled

from [23, Theorem 3.6].

Theorem 4.12. Let {xk} be a sequence generated by Algorithm 4.2. Let x∗ ∈ X∗ and σ > 0,

and suppose that B(x∗, σ) ⊆ X∗. Then xk ∈ X∗ for some k ∈ N, provided one of the following

conditions:

(i) vk = v ∈ (0, σ2 ) for each k ∈ N.

(ii) {vk} satisfies (3.8).
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[36] Nedić, A., Ozdaglar, A.: Subgradient methods for saddle-point problems. Journal of

Optimization Theory and Applications 142, 205–228 (2009)

[37] Nesterov, Y.: Primal-dual subgradient methods for convex problems. Mathematical

Programming 120, 221–259 (2009)

28



[38] Nesterov, Y., Shikhman, V.: Dual subgradient method with averaging for optimal

resource allocation. European Journal of Operational Research 270, 907–916 (2018)

[39] Neto, E.S.H., Pierro, A.R.D.: Incremental subgradients for constrained convex opti-

mization: A unified framework and new methods. SIAM Journal on Optimization 20,

1547–1572 (2009)

[40] Poljak, B.T.: Nonlinear programming methods in the presence of noise. Mathematical

Programming 14, 87–97 (1978)

[41] Polyak, B.T.: A general method for solving extremum problems. Soviet Mathematics

Doklady 8, 593–597 (1967)

[42] Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

[43] Robinson, S.M.: Linear convergence of epsilon-subgradient descent methods for a class

of convex functions. Mathematical Programming 86, 41–50 (1999)

[44] Papa Quiroz, E.A., Apolinario, H.C.F., Villacorta K.D., Oliveira, P.R.: A linear scalar-

ization proximal point method for quasiconvex multiobjective minimization, Journal of

Optimization Theory and Applications 183, 1028–1052 (2019)

[45] Papa Quiroz, E.A., Oliveira, P.R.: An extension of proximal methods for quasiconvex

minimization on the nonnegative orthant. European Journal of Operational Research

216, 26–32 (2012)

[46] Papa Quiroz, E.A., Oliveira, P.R.: Proximal point methods for quasiconvex and convex

functions with Bregman distances on Hadamard manifolds. Journal of Convex Analysis

16, 49–69 (2009)

[47] Papa Quiroz, E.A., Quispe Cardenas, E.M., Oliveira P.R.: Steepest descent method

with a generalized Armijo search for quasiconvex functions on Riemannian manifolds.

Journal of Mathematical Analysis and Applications 341, 467–477 (2008)

[48] Papa Quiroz, E.A., Ramirez, L.M., Oliveira, P.R.: An inexact proximal method for qua-

siconvex minimization. European Journal of Operational Research 246, 721–729 (2015)

[49] Shor, N.Z.: Minimization Methods for Non-differentiable Functions. Springer-Verlag,

New York (1985)

[50] Stancu-Minasian, I.M.: Fractional Programming. Kluwer Academic Publishers, Dor-

drecht (1997)

[51] Studniarski, M., Ward, D.E.: Weak sharp minima: Characterizations and sufficient

conditions. SIAM Journal on Control and Optimization 38, 219–236 (1999)

29



[52] Wang, J., Hu, Y., Li, C., Yao, J.-C.: Linear convergence of CQ algorithms and applica-

tions in gene regulatory network inference. Inverse Problems 33, 055017 (2017).

[53] Wang, J., Li, C., Lopez, G., Yao, J.-C.: Proximal point algorithms on Hadamard

manifolds: Linear convergence and finite termination. SIAM Journal on Optimization

26, 2696–2729 (2016).

[54] Xu, Y., Lin, Q., Yang, T.: Accelerate stochastic subgradient method by leveraging local

error bound. arXiv:1607.01027 (2018)

[55] Yu, C.K.W., Hu, Y., Yang, X., Choy, S.K.: Abstract convergence theorem for quasi-

convex optimization problems with applications. Optimization 68: 1289–1304 (2019).

[56] Zhou, Z., So, A.M.C.: A unified approach to error bounds for structured convex opti-

mization problems. Mathematical Programming 165, 689–728 (2017)

30


