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a b s t r a c t

Nonlinear Hamilton–Jacobi–Bellman (HJB) equation commonly occurs in financial modeling. Implicit
numerical scheme is usually applied to the discretization of the continuous HJB so as to find its
numerical solution, since it is generally difficult to obtain its analytic viscosity solution. This type
of discretization results in a nonlinear discrete HJB equation. We propose a power penalty method
to approximate this discrete equation by a nonlinear algebraic equation containing a power penalty
term. Under some mild conditions, we give the unique solvability of the penalized equation and show
its convergence to the original discrete HJB equation. Moreover, we establish a sharp convergence
rate of the power penalty method, which is of an exponential order with respect to the power of the
penalty term. We further develop a damped Newton algorithm to iteratively solve the lower order
penalized equation. Finally, we present a numerical experiment solving an incomplete market optimal
investment problem to demonstrate the rates of convergence and effectiveness of the new method. We
also numerically verify the efficiency of the power penalty method by comparing it with the widely
used policy iteration method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

There are a number of stochastic optimal control problems
naturally linked to the financial modeling of real world prob-
lems (Frey & Polte, 2011). Examples include the derivatives pric-
ing, risk management (Pham, 2003), and optimal portfolio (Yiu,
Liu, Siu, & Ching, 2010). Applying the dynamic programming
principle to the stochastic control problem yields a type of non-
linear and degenerate second order partial differential equations
(PDEs), called HJB equations. Generally, it is very difficult to get
the analytical solution of the HJB equation due to its nonlinear
and non-smooth structure. Hence, numerical approximations are
widely used to solve this problem. The basic idea of numerical
approximations is to discretize the continuous HJB equation first,
which results in a discrete HJB equation, then to apply some itera-
tive solution algorithm to solving the discrete nonlinear algebraic
system.
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Implicit methods are usually chosen over explicit method in
the discretization of the continuous HJB equations. In view of
the nonlinearity and non-smoothness of the HJB equations, one
need to consider the viscosity solution (Crandall, Ishii, & Lions,
1992) when studying the numerical approximation. In financial
context, the viscosity solution of the nonlinear HJB equation is
a viable and financial relevant one. As pointed in Barles (1997)
and Forsyth and Labahn (2007), a numerical discretization of
the continuous HJB equation need to be consistent, stable and
monotone to ensure its convergence in the sense of viscosity
solution. Hence, implicit methods result in a system of nonlinear,
non-smooth discrete HJB equations.

It is a key task to find an efficient solution method to solv-
ing these discrete HJB equations. In the literature there exist
two main types of solution methods, i.e., value iteration method
and policy iteration method, cf. Fleming and Soner (1993). The
value iteration method is a relaxation method and cheap to be
implemented. However, it suffers from the linear convergence
rate and hence its computational efficiency is very low. On the
contrary, the policy iteration method, also called Howard’s algo-
rithm (Bokanowski, Maroso, & Zidani, 2009), is very effective to
solve the discrete HJB equations in most cases. It is in particular
well behaved in the case of the discrete HJB equations with
sparsity or good structure. The good performance of the policy
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iteration method owes to its equivalence to the generalized New-
ton method, which makes it process a superlinear convergence
rate, see Bokanowski et al. (2009).

Nevertheless, there exist some cases where the policy iteration
method loses its efficiency. For example, when the underlying
asset follows a jump diffusion process (Shereve, 2004) or a regime
switching process (Wahab & Lee, 2011), the resulted discrete HJB
equations will include global or coupled operator and hence lose
its sparsity or good structure. In these cases, it turns out that
the policy iteration method also encounters computational ineffi-
ciency issue. Moreover, as stated in Bokanowski et al. (2009), Han
and Wan (2013) and Santos and Rust (2003), the policy iteration
method has some rough similarity to the simplex algorithm of lin-
ear programming, which makes its computational cost increasing
exponentially as the size of the discrete HJB equations increases.
This becomes computational bottleneck when high accuracy is
concerned, which is usually a natural requirement in financial
modeling.

Inspired by the penalty approach to complementarity prob-
lems (CPs ) in Dai and Zhong (2010), Zhang, Yang, and Teo
(2008) and Zhang, Yang, Wang, and Teo (2010), a linear (l1)
penalty method was develop in Witte and Reisinger (2011) to
approximate to solutions of the discrete HJB equations in finance.
By virtue of the semi-smoothness of the l1 penalty function,
they showed that the convergence rate of the solution of the
penalized equation to that of the original discrete HJB equation
is of first order w.r.t. the penalty parameter λ > 0, i.e., O (1/λ).
More importantly, they numerically verified that the computa-
tion cost only increases linearly as the size of the discrete HJB
equations increases, which is a much more desirable result over
the policy iteration method. One drawback of the l1 penalty
method is that its solutions only satisfy the original HJB equations
approximately. Though this can be alleviated by enlarging the
penalty parameters λ, it is well known that the too large penalty
parameters can cause computational difficulties. To overcome
these difficulties, the lower order (l1/k, k > 1) penalty methods
have been used extensively for solving various complementarity
problems arising in finance (Dai & Zhong, 2010; Zhang & Wang,
2009; Zhang et al., 2010) in recent years. This is because the lower
order penalty methods have the merit that they have exponential
convergence rates w.r.t the penalty parameters λ, i.e. O(1/λk).
Therefore, a desirable accuracy in the approximate solution can
be achieved by a much smaller value of the penalty parameter.
Moreover, the power penalty method possesses the advantage
that the resulting penalized equation is of a simple form that
is easy to discretize in any dimensions on both structured and
unstructured meshes, hence can easily handle various types of
problems in finance.

Motivated by the lower order penalty approach to comple-
mentarity problems in Sun, Liu, and Yang (2015) and the linear
penalty approach to the discrete HJB equations in Witte and
Reisinger (2011), we propose in this work a power

(
l1/k, k > 0

)
penalty method, which includes the linear penalty method (k =

1) and the lower order penalty method (k > 1), for solving the
discrete HJB equation arising from finance modeling and study its
mathematical properties such as its solvability and convergence.
In this approach, we approximate the discrete HJB equations by
a system of nonlinear algebraic equations containing a power
penalty term. We will establish a sharp convergence rate for the
approximate solution and design a solution method to solve the
lower order penalized equation. To the best of our knowledge,
there are no studies on power penalty methods for solving large
scale discrete HJB equations arising particularly in finance, though
such methods have been studied extensively for solving general
linear and nonlinear programming problems (Rubinov & Yang,
2003).

The main contributions of this paper are summarized as fol-
lows:

• We propose a power penalty approach to the discrete HJB
equations in finance and show its solvability.

• We show the convergence property of the power penalty
method and establish an exponential convergence rate w.r.t.
the penalty parameter λ, i.e., O(1/λk).

• We design a damped Newton’s method to solve the lower
order penalized equations and numerically demonstrate the
computational efficiency by comparing with the classic pol-
icy iteration method.

The remainder of this paper is organized as follows. In the next
section, we give some standard definitions and assumptions and
state the discrete HJB equation. In Section 3, we propose the
power penalty approach and show that the penalized equation
is uniquely solvable under some assumptions. In Section 4, we
propose a convergence theory for the power penalty approach
and particularly establish an exponential convergence rate. We
develop a damped Newton’s method to solve the lower order
penalized equation in Section 5. In Section 6, numerical exper-
iments using an incomplete market optimal investment problem
are designed to demonstrate the rates of convergence and the
effectiveness of the method. We also, in this section, numerically
verify the efficiency of the power penalty method by compar-
ing to the widely used policy iteration method. Finally, some
conclusions are drawn in the last section.

2. Problem formulation

Consider the following continuous HJB equation: Find V (x, t) :

Ω × (0, T ] ↦→ R, such that

inf
q∈Q

{
LqV (x, t)

}
= 0, (1)

for x ∈ Ω ⊂ Rn, t ∈ (0, T ] with appropriate boundary and
initial/terminal conditions, where q is the control parameter, the
set of feasible controls Q ⊂ R is a nonempty compact set, and
Lq (q ∈ Q) is the linear differential operator of the form

LqV =Vτ −

⎡⎣ n∑
i,j=1

σij(x, τ , q)Vxixj +

n∑
i=1

µi(x, τ , q)Vxi

− r(x, τ , q)V + f (x, τ , q)

]
(2)

with τ = T − t . In a financial context it is usually assumed that
σii(x, τ , q) ≥ 0 and r(x, τ , q) ≥ 0 in (2), which corresponds to
non-negative volatilities and interest rates.

We will make use of a rather general class of discretizations,
which usually is consistent, stable and monotone to ensure the
convergence to the viscosity solution of the continuous HJB equa-
tion (1), cf. for example (Barles, 1997; Zhang & Wang, 2009). We
aim to study the following discrete HJB equations resulted from
these types of discretizations.

Problem 1. Find x ∈ RN , such that

min
Q∈QN

{A (Q ) x − b (Q )} = 0, (3)

where for every Q = (q1, . . . , qN )⊤, A(Q ) : QN
→ RN×N and

b(Q ) : QN
→ RN refer to a N × N matrix and a vector in

RN associated to the control Q , respectively defined by A(Q ) :=

(aij(qi)) and b(Q ) := (b1(q1), . . . , bN (qN ))⊤.

For the sake of concreteness, we introduce the following nota-
tions. Denote by M the set of real-valued N ×N matrices, and let
I be the set of {1, . . . ,N}. Throughout this paper, for every x, y ∈

RN , the notation y ≥ x means that yi ≥ xi, ∀i ∈ I. We also de-
note by min {x, y} (resp. max {x, y}) the vector with components
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min(xi, yi) (resp. max{xi, yi}). The definitions extend trivially to
other relational operators). With these notations, Eq. (3) can also
be stated as the following component form

min
Q∈QN

[A (Q ) x − b (Q )]i

=min
qi∈Q

⎧⎨⎩
N∑
j=1

aij(qi)xj − bi(qi)

⎫⎬⎭ = 0,

It has been shown in Barles (1997) that when the HJB equation (1)
satisfies the strong comparison principle, the maximum principle
and the ellipticity condition, the discretized form A(Q ) of the
operator Lq in (2), under a consistent, stable and monotone dis-
cretization scheme, will be always a strictly diagonally dominant
M-matrix. As in most financial contexts the above conditions are
satisfied (Barles, 1997; Pham, 2003), throughout the paper we
use an important assumption that A(Q ) is a strictly diagonally
M-matrix. More precisely, we make the following assumptions
on the matrices A(Q ) and the vectors b(Q ) in Problem 1:

(A1) A(Q ) is a strictly diagonally dominant M-matrix for every
Q ∈ QN .

(A2) A(Q ) : QN
↦→ M and b(Q ) : Q ↦→ RN are continuous

functions.

It is known that if A = (ai,j) is a strictly diagonally dominant
M-matrix, then we have aii > 0, aij ≤ 0, i ̸= j, for i, j ∈ I,
and aii −

∑
i̸=j |aij| > 0. Moreover, A−1 > 0, cf. Varga (1962).

It has been shown in Witte and Reisinger (2011) that under
the assumptions (A1) and (A2), the HJB Problem 1 is uniquely
solvable.

3. Power penalty approach to the discrete HJB equation

The idea of power penalty approach to the discrete HJB equa-
tion originates from that to the CPs in Wang, Yang, and Teo
(2006). In the power penalty approach to CPs, a power penalty
term is used to penalize the violation of one of the constraints
and then is added to the other constraints, which results in
a system of nonlinear algebraic equation containing the power
penalty term. As CPs can be sometimes viewed as an HJB equa-
tion (Bokanowski et al., 2009), we generalize the power penalty
approach to the discrete HJB equation (3) and get the following
penalized problem.

Problem 2. Find xλ ∈ RN , such that

A
(
Q̄
)
xλ − b

(
Q̄
)
− λ max

Q∈QN
[b(Q ) − A(Q )xλ]

1
k
+ = 0, (4)

where Q̄ = (q̄, . . . , q̄)⊤ ∈ QN is arbitrarily chosen, λ >

0 is the penalty parameter and for any y ∈ RN , [y]1/k+

.
=

[(max{y1, 0})1/k, . . . , (max{yN , 0})1/k]⊤ is the power penalty term
l1/k with 1/k > 0 being the power.

It is worth noting that in Problem 2 we penalize the maximum
violation of the constraints. The essence is to enforce all the
constraints to be satisfied by letting λ → ∞. As the penalty term
in (4) is nondecreasing, The following Lemma 1 directly follows
from Lemmas 3.3 and 3.4 in Witte and Reisinger (2011).

Lemma 1 (Uniqueness and Boundedness). Suppose there exists a
solution xλ to Problem 2, then it is unique. Moreover, the solution is
bounded, i.e., there exists a constant C > 0, independent of λ and k,
such that

∥xλ∥∞ ≤ C . (5)

Now, we will show that Problem 2 has at least one solution in
the following Lemma.

Lemma 2 (Existence). For any λ > 0, there exists a solution xλ to
Problem 2.

Proof. For clarity, we omit the subscript λ of xλ in this proof.
We show that Problem 2 has a solution in a bounded region
S := {x ∈ RN

: −ε−1e < b (Q ) − A (Q ) x < δ−1e, for all Q ∈ QN
},

where e = (1, . . . , 1)⊤ and ε and δ are (sufficiently small) positive
constants. Let

F (x) := A(Q̄ )x − b(Q̄ ) − λ max
Q∈QN

[b(Q ) − A(Q )x]
1
k
+.

Clearly, F = (f1, . . . , fn) : S̄ ⊂ RN
↦→ RN is continuous. To prove

this theorem, it suffices to verify the conditions of Miranda’s
theorem.1 We first show that F (x) ̸= 0 for x on the boundary
∂S of S. More specifically, we will show that 0 /∈ F (∂S) when
both ε > 0 and δ > 0 are sufficiently small. To prove this, we
assume that 0 ∈ F (∂S), that is, there exists an x ∈ ∂S such that
F (x) = 0. Then, we show this is not possible when both δ and ε

are sufficiently small in the following two cases:

Case 1. Suppose there exists l ∈ I such that the lth component of
b (Q ) − A (Q ) x is (b(Q ) − A(Q )x)l = δ−1. Then, we have

fl(x) =(A(Q̄ )x − b(Q̄ ))l − λ max
Q∈QN

([b(Q ) − A(Q )x]
1
k
+)l

=
(
A
(
Q̄
)
x − b

(
Q̄
))

l − λδ−1/k.

It follows from fl(x) = 0 that

x = A
(
Q̄
)−1

(·, ·, . . . , bl
(
Q̄
)
+ λδ−1/k  
lth

, . . . , ·)⊤.

Since A(Q̄ ) is an M-matrix, A(Q̄ )−1
:= (āij) is non-negative. Also,

there must be at least one index m such that āml ̸= 0, as
otherwise, A(Q̄ )−1 is singular. Thus, combining āml ̸= 0 and non-
negativity of A(Q̄ )−1, we have xm = O(āml(bl + λδ−1/k)) → ∞ as
δ → +0. This violates (5) in Lemma 1, and thus we conclude that
when δ > 0 is sufficiently small, 0 /∈ F (∂S) with (b(Q̄ )−A(Q̄ )x)l =

δ−1 for a feasible l.

Case 2. We now consider the case x on ∂S such that at least one
component of b(Q ) − A(Q )x is equal to O(−1/ε), say (b (Q ) −

A (Q ) x)l = −ε−1 for a feasible index l. In this case we have

x = A (Q )−1 (·, ·, . . . , bl (ql) + ε−1  
lth

, . . . , ·)⊤.

Using the similar argument as in Case 1, we also have that
Lemma 1 is violated by this x and thus 0 /∈ F (∂S) with (b (Q ) −

A (Q ) x)l = −ε−1.
Combining the above two cases we see that when ε > 0 and

δ > 0 are both sufficiently small, 0 /∈ F (∂S).
Now, we will check whether the first condition fi(x1,

. . . , xi−1, −C, xi+1, . . . , xn) ≤ 0 and the second condition fi(x1,

. . . , xi−1, C, xi+1, . . . , xn) ≥ 0 are satisfied, where C is the con-
stant defined in (5). In fact, it follows from A(Q̄ ) is a strictly
diagonally dominant M-matrix that aii(Q̄ ) > 0, aij(Q̄ ) ≤ 0, i ̸= j,
for i, j ∈ I, and aii(Q̄ ) −

∑
i̸=j |aij(Q̄ )| > 0. Hence, combining this

1 Let G = {x ∈ Rn
: |xi| < L, for 1 ≤ i ≤ n} and suppose the mapping F =

(f1, · · · , fn) : Ḡ → Rn is continuous on the closure Ḡ of G such that F (x) ̸= 0 for
x on the boundary ∂G of G, and

(1) fi(x1, . . . , xi−1, −L, xi+1, . . . , xn) ≤ 0, for 1 ≤ i ≤ n,
(2) fi(x1, . . . , xi−1, L, xi+1, . . . , xn) ≥ 0, for 1 ≤ i ≤ n.
Then, F (x) = 0 has a solution in G. See Avramescu (2002).
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property and ∥x∥∞ ≤ C , we have for 1 ≤ i ≤ n

fi(x1, . . . , xi−1, −C, xi+1, . . . , xn)

=
(
A
(
Q̄
)
x − b

(
Q̄
))

i − λ max
Q∈QN

(
[b (Q ) − A (Q ) x]

1
k
+

)
i

=ai,i−1
(
Q̄
)
xi−1 − ai,i

(
Q̄
)
C + ai,i+1

(
Q̄
)
xi+1 − bi

(
Q̄
)

− λ
[
bi
(
Q λ
)
− ai,i−1

(
Q λ
)
xi−1 + ai,i

(
Q λ
)
C

−ai,i+1
(
Q λ
)
xi+1

] 1
k
+

≤ 0,

when C is sufficiently large. In the same way, we also have that
when C is sufficiently large, for 1 ≤ i ≤ n

fi(x1, . . . , xi−1, C, xi+1, . . . , xn)

=
(
A
(
Q̄
)
x − b

(
Q̄
))

i − λ max
Q∈QN

(
[b (Q ) − A (Q ) x]

1
k
+

)
i

=ai,i−1
(
Q̄
)
xi−1 + ai,i

(
Q̄
)
C + ai,i+1

(
Q̄
)
xi+1 − bi

(
Q̄
)

− λ
[
bi
(
Q λ
)
− ai,i−1

(
Q λ
)
xi−1 − ai,i

(
Q λ
)
C

−ai,i+1
(
Q λ
)
xi+1

] 1
k
+

≥ 0,

with Q λ
= argmaxQ∈QN ([b(Q ) − A(Q )xλ]

1
k
+), since A(Q λ) is also a

strictly diagonally dominant M-matrix.
From the above analysis, we see that all the conditions of Mi-

randa’s theorem are satisfied. Hence, the existence of the solution
to the penalized Problem 2 is proved. □

4. Convergence analysis of the power penalty approach

In this section, we will examine the convergence property
of the power penalty method. We first show that the power
penalty method possesses a monotonic convergence property
with respect to the penalty parameter in Section 4.1, and then
in Section 4.2 we establish an exponential rate of convergence.

4.1. Monotonic convergence property

To show the convergence property of the power penalty ap-
proach, we first introduce the definition of a lower solution of the
discrete HJB Problem 1 and that of the penalized Problem 2.

Definition 3 (Lower Solution). x̄ is called a lower solution of the
discrete HJB Problem 1 if

min
Q∈QN

{A (Q ) x̄ − b (Q )} ≤ 0.

x̄λ is called a lower solution of Problem 2 if

A
(
Q̄
)
x̄λ − b

(
Q̄
)
− λ max

Q∈QN
[b (Q ) − A (Q ) x̄λ]

1
k
+ ≤ 0.

For the lower solution of Problem 2, we present several prop-
erties in the following lemmas.

Lemma 4. Let λ > 1 and k > 0 and xλ be the solution of Problem 2.
If x̄λ is a lower solution of Problem 2, then x̄λ ≤ xλ.

Proof. Since xλ is the solution of Problem 2 and x̄λ is a lower
solution of Problem 2, it follows from Definition 3 that

A
(
Q̄
)
x̄λ − b

(
Q̄
)
− λ max

Q∈QN
[b (Q ) − A (Q ) x̄λ]

1
k
+

≤0 = A
(
Q̄
)
xλ − b

(
Q̄
)
− λ max

Q∈QN
[b (Q ) − A (Q ) xλ]

1
k
+ .

This implies that

A
(
Q̄
)
(x̄λ − xλ)

≤λ max
Q∈QN

[b(Q ) − A(Q )x̄λ]

1
k
+ − λ max

Q∈QN
[b(Q ) − A(Q )xλ]

1
k
+

≤λ max
Q∈QN

{
[b(Q ) − A(Q )x̄λ]

1
k
+ − [b(Q ) − A(Q )xλ]

1
k
+

}
.

By defining Q ⋆
= (q⋆

1, . . . , q
⋆
N )

⊤ to be such that

Q ⋆
= argmax

Q∈QN
{[b(Q ) − A(Q )x̄λ]

1
k
+ − [b(Q ) − A(Q )xλ]

1
k
+},

the above inequality becomes

A
(
Q̄
)
(x̄λ − xλ)

≤λ

[
[b(Q ⋆) − A(Q ⋆)x̄λ]

1
k
+ − [b(Q ⋆) − A(Q ⋆)xλ]

1
k
+

]
. (6)

Define two disjoint nonempty index subsets I1 and I2 of I as
follows

I1 =

{
i
⏐⏐⏐⏐([b(Q ⋆) − A(Q ⋆)x̄λ]

1
k
+

)
i

≤

(
[b(Q ⋆) − A(Q ⋆)xλ]

1
k
+

)
i

}
, (7)

I2 =

{
i
⏐⏐⏐⏐([b(Q ⋆) − A(Q ⋆)x̄λ]

1
k
+

)
i

>

(
[b(Q ⋆) − A(Q ⋆)xλ]

1
k
+

)
i

}
. (8)

On one hand, it follows from (6) and (7) that(
A
(
Q̄
)
(x̄λ − xλ)

)
i ≤ 0, ∀i ∈ I1.

On the other hand, by virtue of the monotonicity of the operator
[·]

1/k
+ , (8) implies (A(Q ⋆)x̄λ)i ≤ (A(Q ⋆)xλ)i on I2, i.e.,(

A
(
Q ⋆
)
(x̄λ − xλ)

)
i ≤ 0, ∀i ∈ I2.

Now, introducing a matrix, denoting A∗
∈ M to be the matrix

having the ith row as that of (A(Q̄ ))i, i ∈ I1 and of (A(Q ⋆))i, i ∈ I2.
Hence, we have

A∗(x̄λ − xλ) ≤ 0,

which implies x̄λ ≤ xλ on the whole index set I, since A∗ is also
a strictly diagonally dominant M-matrix. □

Lemma 5. Let λ2 > λ1 > 1, and xλ1 and xλ2 be the solutions of
Problem 2 with λ = λ1, λ2, respectively. Then xλ1 is a lower solution
of Problem 2 with λ = λ2. Moreover, xλ1 < xλ2 .

Proof. From the fact xλ1 is the solution of Problem 2 with λ = λ1
and λ2 > λ1 > 1, it follows that

A(Q̄ )xλ1 − b(Q̄ ) − λ2 max
Q∈QN

[
b(Q ) − A(Q )xλ1

] 1
k
+

≤A(Q̄ )xλ1 − b(Q̄ ) − λ1 max
Q∈QN

[
b(Q ) − A(Q )xλ1

] 1
k
+

= 0.

This means that xλ1 is a lower solution of Problem 2 with λ = λ2.
Furthermore, we have xλ1 < xλ2 , which is a consequence of
Lemma 4. □

Lemma 6. Let λ > 1 and k > 0. Assume that xλ and x∗ are
the solutions of Problem 2 and that of the discrete HJB Problem 1,
respectively. Then xλ is a lower solution of the discrete HJB Problem 1.
Moreover, xλ ≤ x∗.
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Proof. First, define Q λ
∈ QN to be such that for i ∈ I

max
Q∈QN

(
[b(Q ) − A(Q )xλ]

1
k
+

)
i
=

(
[b(Q λ) − A(Q λ)xλ]

1
k
+

)
i
.

Then, (4) becomes

A
(
Q̄
)
xλ − b

(
Q̄
)
− λ

[
b
(
Q λ
)
− A

(
Q λ
)
xλ

] 1
k
+

= 0. (9)

Define two disjoint nonempty index subsets I1 and I2 of I as
follows

I1 =
{
i
⏐⏐(b (Q λ

)
− A

(
Q λ
)
xλ

)
i ≤ 0

}
, (10)

I2 =
{
i
⏐⏐(b (Q λ

)
− A

(
Q λ
)
xλ

)
i > 0

}
. (11)

Thus, we distinguish the following two cases.

• For i ∈ I1, based on (10), we have(
b
(
Q̄
)
− A

(
Q̄
)
xλ

)
i

≤(b(Q λ) − A(Q λ)xλ)i
= max

Q∈QN
(b (Q ) − A (Q ) xλ)i ≤ 0.

Nevertheless, it follows from (9) and (10) that(
A
(
Q̄
)
xλ − b

(
Q̄
))

i = 0, i ∈ I1. (12)

Combining the above two equations, we obtain
maxQ∈QN (b (Q ) − A (Q ) xλ)i = 0, i ∈ I1, i.e.,

min
Q∈QN

(A (Q ) xλ − b (Q ))i = 0, i ∈ I1. (13)

• For i ∈ I2, based on (11), we have

(b(Q λ) − A(Q λ)xλ)i = max
Q∈QN

(b(Q ) − A(Q )xλ)i > 0,

which means

min
Q∈QN

(A (Q ) xλ − b (Q ))i < 0, i ∈ I2. (14)

Summarizing (13) and (14) we deduce that on the whole index
set I,

min
Q∈QN

{A (Q ) xλ − b (Q )} ≤ 0.

This means that xλ is a lower solution of the discrete HJB
Problem 1.

Now, we will show that xλ ≤ x∗. We still distinguish the
following two cases.

• For i ∈ I1, we already have (see (12))(
A
(
Q̄
)
xλ − b

(
Q̄
))

i = 0.

Moreover, from the fact x∗ is the solution of the discrete HJB
Problem 1 it follows that(
A
(
Q̄
)
x∗

− b
(
Q̄
))

i ≥
(
A
(
Q ∗
)
x∗

− b
(
Q ∗
))

i

= min
Q∈QN

(A (Q ) x − b (Q ))i

= 0,

with Q ∗
= argminQ∈QN {A (Q ) x − b (Q )}. Thus, combining

the above two equations, we obtain(
A
(
Q̄
) (

x∗
− xλ

))
i ≥ 0, i ∈ I1.

• For i ∈ I2, we have (b(Q λ) − A(Q λ)xλ)i > 0, which is
equivalent to(
A
(
Q λ
)
xλ − b

(
Q λ
))

i < 0.

As the first case, it also holds that

(A(Q λ)x∗
− b(Q λ))i ≥ min

Q∈QN
(A(Q )x − b(Q ))i = 0.

Thus, combining the above two equations, we obtain(
A
(
Q λ
) (

x∗
− xλ

))
i > 0, i ∈ I2.

Now, again introducing a matrix, still denoting A∗
∈ M, to be the

matrix having the ith row as that of (A(Q̄ ))i, i ∈ I1 and of (A(Q λ))i,
i ∈ I2. Therefore, we have

A∗
(
x∗

− xλ

)
≥ 0.

Hence, providing that A∗ is an M-matrix, we have that x∗
≥ xλ on

the whole index set I. □

With the above lemmas, we now establish the following
monotonic convergence result for the l1/k penalty method.

Theorem 7. Let {λm},m = 1, 2, . . ., be a monotonically increasing
sequence tending to +∞ as m → ∞. Assume that xλm is the solution
of Problem 2 with λ = λm. Then the sequence {xλm} is monotonically
increasing and convergent to the solution x∗ of Problem 1.

Proof. It follows from Lemmas 5 and 6 that xλ1 ≤ xλ2 ≤ · · · ≤

xλi ≤ · · · ≤ x∗. This implies that there exists some x⋆ such that
limm→∞ xλm = x⋆. Since xλm is the solution of Problem 2 with
λ = λm, there must hold

A(Q̄ )xλm − b(Q̄ ) = λm max
Q∈QN

[b(Q ) − A(Q )xλm ]

1
k
+ ≥ 0.

Letting m → ∞, we get A(Q̄ )x⋆
− b(Q̄ ) ≥ 0. Furthermore,

reforming the above inequality gives

max
Q∈QN

[b(Q ) − A(Q )xλm ]+ =

[
A(Q̄ )xλm − b(Q̄ )

λm

]k
.

Letting m → ∞ again, we get

max
Q∈QN

[
b (Q ) − A (Q ) x⋆

]
+

= 0,

since A(Q̄ ), b(Q̄ ) and xλm are bounded. This implies that b (Q ) −

A (Q ) x⋆
≤ 0, ∀Q ∈ QN . Hence, we have A(Q )x⋆

− b(Q ) ≥

0, ∀Q ∈ QN . Specifically,

min
Q∈QN

{
A (Q ) x⋆

− b (Q )
}

≥ 0. (15)

Nevertheless, it follows from Lemma 6 that {xλm} are lower solu-
tions of the discrete HJB Problem 1, and hence

min
Q∈QN

{
A (Q ) xλm − b (Q )

}
≤ 0. (16)

Letting m → ∞ in (16), we get

min
Q∈QN

{
A (Q ) x⋆

− b (Q )
}

≤ 0. (17)

In view of (15) and (17), we have

min
Q∈QN

{
A (Q ) x⋆

− b (Q )
}

= 0.

This shows that x⋆ solves the discrete HJB Problem 1. Since the
discrete HJB Problem 1 has a unique solution (see Lemma 1), we
obtain limm→∞ xλm = x⋆

= x∗. □

Remark 8. Though not stated explicitly, it follows from the above
proof and the fact Q is compact, which means that for every
i ∈ {1, 2, . . . ,N} there exists a Q ∗

i ∈ Q such that Q λ
i → Q ∗

i
as λ → ∞ with Q λ

i := argmaxQ∈QN ([b(Q ) − A(Q )xλ]+)i, and
Q ∗

i := argminQ∈QN (A(Q )x − b(Q ))i.
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4.2. Exponential convergence rate

To establish the convergence rate of the l1/k penalty method
w.r.t. the penalty parameter λ, we first give an error estimation
of the solution to Problem 2.

Theorem 9. Assume that xλ is the solution of Problem 1 for every
λ > 1. There exists a constant C > 0, independent of λ, such thatmin
Q∈QN

{A (Q ) xλ − b (Q )}


∞

≤ C/λk.

Proof. For Q ∈ QN , we have

λ [b (Q ) − A (Q ) xλ]
1
k
+ ≤λ max

Q∈QN
[b (Q ) − A (Q ) xλ]

1
k
+

=A
(
Q̄
)
xλ − b

(
Q̄
)

≤ C,

since it follows from Lemma 1 and Witte and Reisinger (2011,
Corollary 2.6) that both xλ and A

(
Q̄
)
are bounded. Hence,

[b (Q ) − A (Q ) xλ]+ ≤ C/λk. (18)

Furthermore, for every i ∈ I, we either have

(A (Q ) xλ − b (Q ))i ≥ 0,

and
(
A
(
Q̄
)
xλ − b

(
Q̄
))

i = 0 ≤ C/λk,

or ∃ Q λ
∈ Q such that b(Q λ)−A(Q λ)xλ ≥ 0, which, based on (18),

gives(
A(Q̄ )xλ − b(Q̄ )

)
i > 0,

and
(
A(Q λ)xλ − b(Q λ)

)
i ≥ −C/λk.

Hence, both cases reduce tomin
Q∈QN

{A (Q ) xλ − b (Q )}


∞

≤ C/λk. □

We are now ready to show that the solution of Problem 2 is in-
deed a good approximation to that of the discrete HJB Problem 1,
in the sense that the approximation converges exponentially
w.r.t. the penalty parameter.

Theorem 10. Assume that xλ and x∗ are the solution of Problem 2
and that of Problem 1, respectively. Then for sufficiently large λ, we
havex∗

− xλ


∞

≤ C/λk, (19)

where C > 0 is a constant, independent of x∗, xλ and λ.

Proof. For λ > 0, since

A(Q̄ )xλ − b(Q̄ ) = λ max
Q∈QN

[b(Q ) − A(Q )xλ]
1/k
+ ≥ 0,

we may define Q ∗

λ ∈ QN to be such that for every i ∈ I,

(
Q ∗

λ

)
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
argmax
Q∈QN

[b(Q ) − A(Q )xλ]
1/k
+

)
i

,

if (A(Q̄ )xλ − b(Q̄ ))i > 0;
q̄, if (A(Q̄ )xλ − b(Q̄ ))i = 0;

(20)

which means, as seen in Theorem 9, that⏐⏐(A (Q ∗

λ

)
xλ − b

(
Q ∗

λ

))
i

⏐⏐ =

⏐⏐⏐⏐min
Q∈QN

(A (Q ) xλ − b (Q ))i

⏐⏐⏐⏐
≤ C1/λ

k (21)

for some constant C1 > 0 independent of λ. This implies, based
on Theorem 7 and Remark 8, that⏐⏐(A (Q ∗

)
x∗

− b
(
Q ∗
))

i

⏐⏐ = 0, (22)

where lim
λ→∞

Q ∗

λ = Q ∗
= argmin

Q∈QN
{A(Q )x − b(Q )}.

It follows from (22) that

(A(Q ∗

λ )x
∗
− b(Q ∗

λ ))i = (A(Q ∗)x∗
− b(Q ∗))i = 0.

Hence,(
A
(
Q ∗

λ

) (
xλ − x∗

))
i

=
(
A
(
Q ∗

λ

)
xλ − b

(
Q ∗

λ

))
i −

(
A
(
Q ∗

λ

)
x∗

− b
(
Q ∗

λ

))
i

≤
(
A
(
Q ∗

λ

)
xλ − b

(
Q ∗

λ

))
i .

Now, using (21), we get

(A(Q ∗

λ )
(
xλ − x∗

)
)i ≤ C1/λ

k.

Meanwhile,(
A
(
Q ∗
) (

x∗
− xλ

))
i

=
[(
A
(
Q ∗
)
x∗

− b
(
Q ∗
))

−
(
A
(
Q ∗

λ

)
xλ − b

(
Q ∗

λ

))]
i

+
[(
A
(
Q ∗

λ

)
xλ − b

(
Q ∗

λ

))
−
(
A
(
Q ∗
)
xλ − b

(
Q ∗
))]

i

≤
[(
A
(
Q ∗
)
x∗

− b
(
Q ∗
))

−
(
A
(
Q ∗

λ

)
xλ − b

(
Q ∗

λ

))]
i ,

since the definition Q ∗

λ in (20) implies [(A(Q ∗

λ )xλ − b(Q ∗

λ )) −

(A(Q ∗)xλ − b(Q ∗))] ≤ 0. Moreover, it follows from (21) and (22)
that[(

A
(
Q ∗
)
x∗

− b
(
Q ∗
))

−
(
A
(
Q ∗

λ

)
xλ − b

(
Q ∗

λ

))]
i

= −
(
A
(
Q ∗

λ

)
xλ − b

(
Q ∗

λ

))
i ≤ C1/λ

k.

Hence,(
A
(
Q ∗
) (

x∗
− xλ

))
i ≤ C1/λ

k.

Denoting by A∗

1, A
∗

2 ∈ M the matrices having the ith rows,
i ∈ I, as those of A(Q ∗

λ ) and A(Q ∗), respectively, we obtain
that

xλ − x∗
≤

C1∥(A∗

1)
−1

∥∞

λk , and x∗
− xλ ≤

C1∥(A∗

2)
−1

∥∞

λk ,

since it follows that both A∗

1 and A∗

2 are strictly diagonally domi-
nant M-matrices. Now, following from Witte and Reisinger (2011,
Corollary 2.6), we know that both A∗

1 and A∗

2 are bounded. Hence,
we infer that ∥x∗

− xλ∥∞ ≤ C/λk, for some constant C > 0
independent of λ, xλ and x∗. □

5. Solution method

In this section, we will develop a solution method to solve
the power penalized equation (4). When the linear (l1/k, k = 1)
penalty method is applied, the generalized Newton method is
well suited to solving the linear penalized equation (4) because of
the semi-smoothness of the l1 penalty function. This method has
been well studied in Witte and Reisinger (2011), hence we omit
its implementation details. But, when the lower order (l1/k, k >

1) penalty method is applied, the generalized Newton method
cannot be used to solve the lower order penalized problem 2. This
is because the lower order penalty function is not semi-smooth.
To solve the lower penalized problem, we propose the following
damped Newton method.
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Algorithm 1 (Damped Newton Method).

Step 1. Choose ε > 0 sufficiently small, Q̄ ∈ QN and an initial
guess x0 ∈ Rn such that A(Q̄ )x0 − b(Q̄ ) ≥ 0. Let l := 0.

Step 2. Compute Q l
= argmax

Q∈QN
([b(Q )−A(Q )xl]1/k+ ), and solve the

following linear system for pl+1:[
A(Q̄ ) + λD(Q l)A(Q l)

]
pl+1

=A(Q̄ )xl + λ
[
b(Q l) − A(Q l)xl

]1/k
+

+ b(Q̄ ), (23)

where D(·) is defined by

D(Q l) =1/k diag
([

b(Q l) − A(Q l)x
]1/k−1
+

)
=1/k diag

(
([b(ql1) − A(ql1)x]+)

1/k−1
1 ,

· · · , ([b(qlN ) − A(qlN )x]+)
1/k−1
N

)
.

Step 3. Set xl+1
= xl + νpl+1, where 0 < ν < 1 is a damping pa-

rameter determined by the Armijo linear search
method (Dennis & Schnabel, 1983).

Step 4. If maxi∈I

⏐⏐⏐xl+1
i −xli

⏐⏐⏐
max

(
1,
⏐⏐⏐xl+1

i

⏐⏐⏐) < ε, then stop. Otherwise, set l :=

l + 1 and go to Step 2.

In view of numerical solution of (23), from the last part of
the proof of Lemma 2 we see that the system matrix A(Q̄ ) +

λD(Q l)A(Q l) of (23) is an M-matrix, and thus efficient iterative
methods, such as the preconditioned CGS or BiCGSTAB (Faccinei
& Pang, 2003), can be used for solving (23).

Remark 11. It is noted that for some i ∈ I and y ∈ RN , ([y]+)
1/k
i

may not exist at 0 when k > 1. In this case, we set it to be
limy→0− ([y]+)

1/k
i = 0. We notice that in the numerical experi-

ments this treatment rarely affects the empirical performance of
the algorithm.

6. Numerical experiment

In this section, we design two numerical examples to demon-
strate the effectiveness, rates of convergence and efficiency of the
power penalty approach to the discrete HJB equations. The first
example is a Markovian dynamic programming problem taken
from Santos and Rust (2003), which is used to show the advan-
tages of the proposed penalty method over the classical policy
iteration method. The second example, arising from the optimal
investment problem under an incomplete market (see, Witte and
Reisinger (2011)), is used to verify the rates of convergence and
efficiency of the power penalty method.

6.1. A Markovian dynamic programming model

Consider the Markovian dynamic programming (MDP) prob-
lem in Santos and Rust (2003) which can be written as

Vi = max
{
Vi−1 + f 1i , Vi+1 + f 2i

}
, i = 0, . . . ,M,

where f 10 = f 20 = f 1M = f 2M = 0, f 1i = −1, f 2i = −2 for all
i = 1, . . . ,M − 1, and f 1M−1 = −1, f 2M−1 = 2M . We apply the
l1 penalty method to solve this problem, which results in

A1Vλ − λ[b2 − A2Vλ]+ = b1,

with

A1
=

⎡⎢⎢⎢⎢⎣
1 0 0 · · · 0
0 1 −1 · · · 0
...

. . .
. . .

. . .
...

0 0 0 1 −1
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ ,

A2
=

⎡⎢⎢⎢⎢⎣
1 0 0 · · · 0

−1 1 0 · · · 0
...

. . .
. . .

. . .
...

0 0 −1 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦
are two (M + 1) × (M + 1) matrices and

b1 =
[
0 −2 · · · 2M 0

]⊤
,

b2 =
[
0 −1 · · · −1 0

]⊤
are two M + 1 vectors.

In our numerical tests we increase M from 100 to 2000. It
is worth noting that though both A1 and A2 are not strictly
diagonally dominant M-matrices, the penalty method works very
well. All the numerical results show that the number of iterations
of the l1 penalty method stays between 1 and 2 when the initial
guess is set to be V0 = 0. However, as stated in Han and Wan
(2013) and Santos and Rust (2003), with the same initial guess
(V0 = 0), the number of iteration of the policy iteration is M − 1
since it will correct the optimal control one by one, from grid
M − 1 to grid 1. This example shows that though the policy
iteration is convergent for HJB equations, it can take up to the
number of grid points to converge. On the contrary, the proposed
penalty method can still be very efficient.

6.2. Investment model

In this problem, a bond price Bt , a stock price St and a volatility
Yt are assumed to follow the processes dBt = rBtdt , dSt =

µStdt + σ (Yt) StdW 1
t , and dYt = b (Yt) dt + a (Yt) dW 2

t , respec-
tively. Here, dW 1

t and dW 2
t are two Brownian motions with a

correlation coefficient −1 ≤ ρ ≤ 1. Let Xt = π0
t + πt denote an

investor’s portfolio or wealth at t ∈ [0, T ], where π0
t and πt are

the amounts invested, respectively in the bond and in the stock.
Then,

dXt = rXtdt + (µ − r) πtdt + σ (Yt) πtdW 1
t .

Suppose the investor’s utility function to be of CRRA-type and
given by U (x) = xγ /γ , x ∈ R, γ ∈ (0, 1). It is well-
known that the investor’s value function is given by φ (x, y, t) =

supπ∈A E [U (XT ) |Xt = x, Yt = Y ] with (x, y, t) ∈ [0, ∞) × R ×

[0, T ]. In Zariphopoulou (2001), the value function is reformed as
φ (x, y, t) = xγ ϕ (y, t) /γ , which is the viscosity solution of the
following continuous HJB problem.

Problem 3 (Continuous HJB).

max
u∈Q

[
γ − 1

2
σ 2(y)u2ϕ + ρσ (y)a(y)uϕy + (µ − r)uϕ

]
+

1
γ

[
ϕt +

1
2
a2 (y) ϕyy + b (y) ϕy

]
+ rϕ = 0, (24)

with an appropriately chosen compact set Q ⊂ R and ϕ (y, T ) =

1.

We set the parameters in Problem 3 to be r = 0.3, µ = 0.7,
ρ = 0.2, γ = 0.5, and T = 1. We also set ymin = 0.1
and ymax = 1 and for y ∈ [ymin, ymax] we use σ (y) = y,
a (y) = −2.5 (y − 0.5 − 0.5ymin)

2
+ 2.5 (−0.5 + 0.5ymin)

2, and
b (y) = −y + 0.55.
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Table 1
Computed rates of convergence in λ and iteration numbers for the l1 penalty
method on the mesh grids 800 × 800. ‘Tot. It.’ stands for the total number of
iterations at all time steps. ‘Av. It.’ stands for the average number of iterations
at each time step.
λ = 10i Error ∥·∥ ∞ Ratio (lg) Tot. It. Av. It.

i = 4 0.28910484 944 1.18
i = 5 0.02924957 0.995 928 1.16
i = 6 0.00292809 0.999 933 1.17
i = 7 0.00029263 1.000 936 1.17
i = 8 0.00002901 1.003 937 1.17
i = 9 0.00000275 1.031 937 1.17
i = 10 0.00000026 1.033 937 1.17
i = 11 Failed Failed Failed Failed

6.2.1. Discretization of the continuous HJB equation
To numerically solve the continuous Problem 3, we first lo-

calize y ∈ R in (24) to y ∈ [ymin, ymax] and Q ⊂ R to Q =

[qmin, qmax], and then present the mesh grids of the space variable
y, the time variable t and the control variable q as follows:

• Space grid: yi = ymin + i∆y, 0 ≤ i ≤ N with ∆y =

(ymax − ymin)/N .
• Time grid: tj = T − j∆t , 0 ≤ j ≤ N , with ∆t = T/M .
• Control grid: qs = qmin + s∆q, with s = 0, . . . , (qmax −

qmin)/∆q.

By using these mesh grids we perform a fully implicit finite
difference discretization, using one-sided differences for all first
derivatives (including the time derivative) and central differences
for all second derivatives. To guarantee the M-matrix property,
we use the upwind scheme to handle the first order spatial
derivative terms. All other terms are approximated by their re-
spective nodal values at (yi, tj). We approximate A(Q ) and b(Q ),
Q ∈ QN by piecewise constant functions. This discretization
method results in a sequence of discrete HJB problems of the form
(3) in RN−1 with a discrete HJB equation at each time step j.

6.2.2. Numerical implementation
To compare the convergence properties of different power

penalty methods, we choose the parameters in Step 1 of Algo-
rithm 5 to be ε = 10−8, and use a unified grid mesh with M =

800 and N = 800. At the same time, we choose qmin = −150,
qmax = 150 and ∆q = 0.005. Hence, the continuous control set
Q is approximated by 60000 piecewise constant functions. All
experiments were performed in double precision under Matlab
environment.

We first investigate the convergence property of the l1 penalty
method. To compute the rates of convergence of the linear penalty
method, we solve the discrete HJB equation using the semi-
smooth Newton method with λ = 10i for i = 4, 5, . . . , 11. The
l∞-norms of the errors in the last time point t = 0 between the
numerical solutions with two consecutive λ values are calculated.
Then, the ratios of errors from two consecutive values of λ

are presented. All these results are listed in Table 1. From the
table we see that the computed rates of convergence are close
to O(λlg 10) = O(λ), consistence with the theoretical result in
(19). The average numbers of Newton iterations for all λ and
all time steps range from 1.16 to 1.18, indicating the numerical
method is very robust w.r.t. the penalty parameter λ. We also
note that when λ ≥ 1011, the l1 penalty method failed due to the
ill-condition caused by too large penalty parameters.

We then investigate the convergence property of the lower
order l1/2 penalty method. As we did for the l1 penalty method,
the lower order penalized problem is first solved by the damped
Newton method with λ = 10i for i = 2, 3, . . . , 6, then l∞-
norms and ratios of the errors are computed. It is known that the

Table 2
Computed rates of convergence in λ and iteration numbers for the l1/2 penalty
method on the mesh grids 800 × 800. The damping parameter is determined
via Armijo linear search method.
λ = 10i Error ∥·∥ ∞ Ratio (lg) Tot. It. Av. It.

i = 2 2.986963996 4360 5.45
i = 3 0.036247934 1.92 3593 4.50
i = 4 0.000374588 1.99 2735 3.42
i = 5 0.000000475 1.90 1994 2.53
i = 6 0.000000005 1.98 1960 2.45

Table 3
Comparison of the l1 , l1/2 penalty methods and the policy iteration method.
λ = 1010 is used for the l1 penalty method. λ = 106 is used for the l1/2 penalty
method.

M × N Policy iteration l1 penalty l1/2 penalty

Av. It. CPU Av. It. CPU Av. It. CPU

25 × 25 2.00 0.142 2.00 0.145 3.61 0.154
50 × 50 1.96 0.370 1.96 0.406 3.13 0.417
100 × 100 1.75 3.097 1.75 3.554 2.81 3.713
200 × 200 1.89 11.330 1.88 12.895 2.62 13.062
400 × 400 1.70 24.610 1.70 28.086 2.44 30.165
800 × 800 1.17 74.538 1.18 81.017 2.13 84.029

damping parameter plays a key role in the numerical convergence
speed of the Newton method. To optimize the convergence speed,
as stated in Algorithm, the damping parameter is determined
via the classic Armijo linear search method. Our numerical tests
show that in most discretization scheme, the optimal damping
parameter is found to be about 0.5. We then list all the results
in Table 2. From the table we see that the computed rates of
convergence are close to O(λlg 100) = O(λ2), again consistent with
the theoretical result in (19). Furthermore, the average numbers
of Newton iterations for all λ and all time steps now range
from 2.45 to 5.45, indicating the numerical method is also robust
with respect to the penalty parameter λ. Moreover, comparing
Table 1 with Table 2, we can see that to achieve the same level of
accuracy, the l1/2 penalty method requires much less penalty pa-
rameter than l1 penalty method needs. It is also clear that we can
achieve a much more accurate result by the l1/2 penalty method.
This verifies the advantage of lower order penalty method.

Finally, to further demonstrate the computational efficiency,
we carry out some numerical comparisons between l1 and l1/2
penalty methods and the popular policy iteration method. With
the same level of accuracy (ε = 10−3), we list all the average
numbers of iterations for all time steps and computation times
on different mesh grids in Table 3. The table clearly shows that
the computational efficiency of the l1 and l1/2 penalty methods
are comparable to that of the policy iteration method. Since the
policy iteration method is commonly regarded as the standard
method to solving discrete HJB equations, we can conclude that
the power penalty method is an efficient and effective method.

7. Conclusions

Motivated by the power penalty approach to CPs, in this work
we have proposed a power penalty approach to the discrete HJB
equations arising from finance. The approach is to approximate
the discrete HJB by a nonlinear algebraic equation containing a
penalty term. We have shown that under some mild conditions
the penalty equation is uniquely solvable. An exponential rate
of convergence w.r.t. the penalty parameters, for the solution to
the penalized equation, has been established. A damped Newton
method has been proposed for solving the lower order penalized
equation. Numerical experiments using an optimal investment
problem under an incomplete market have been carried out.
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Numerical results have demonstrated that the computed rates
of convergence are consistent with theoretical one and that the
method is efficient and effective for solving practical problems.
Moreover, a numerical test has been carried out to verify the
advantage of the penalty method over the policy iteration method
in some circumstances.
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