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Abstract. The quasi-convex feasibility problem (QFP), in which the involved functions are quasi-convex,
is at the core of the modeling of many problems in various areas such as economics, finance and man-
agement science. In this paper, we consider an inexact incremental quasi-subgradient method to solve
the QFP, in which an incremental control of component functions in the QFP is employed and the in-
exactness stems from computation error and noise arising from practical considerations and physical
circumstances. Under the assumption that the computation error and noise are deterministic and bound-
ed and a Hölder condition on component functions in the QFP, we study the convergence property of
the proposed inexact incremental quasi-subgradient method, and particularly, investigate the effect of the
inexact terms on the incremental quasi-subgradient method when using the constant, diminishing and
dynamic stepsize rules.
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1. INTRODUCTION

Let { fi : i = 1, . . . ,m} be a family of continuous and real-valued functions on Rn. The feasi-
bility problem is to find a point x ∈ Rn such that

fi(x)≤ 0 for each i = 1, . . . ,m. (1.1)

The feasibility problem is at the core of the modeling of many problems in various areas of
mathematics and physical sciences, such as image recovery [11], wireless sensor networks lo-
calization [18], radiation therapy treatment planning [8] and gene regulatory network inference
[17, 31].

The convex feasibility problem (CFP), in which the involved functions are convex, has at-
tracted a great deal of attention in the development of optimization algorithms and applications;
see [6, 11, 33] and references therein. One of the most popular approaches for solving the CFP
(1.1) is the subgradient method, which was originally introduced by Censor and Lent [9], and
until now, various variants and many features of subgradient methods have been devised and
established for the CFP; one can refer to a review paper [6] and a recent book [33].
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The convex function plays a central role in mathematical optimization; however, it is too
restrictive for many real-life problems encountered in economics, finance and management sci-
ence. In contrast, the quasi-convex function usually provides a much more accurate represen-
tation of reality in economics and finance, while still inherits certain desirable properties of the
convex function. This leads to a significant increase of studies in quasi-convex optimization; see
[5, 12, 16, 30] and references therein. In particular, for the feasibility problem (1.1), Goffin et
al. [15] introduced a notion of quasi-convex feasibility problem (QFP), in which the functions
involved are quasi-convex. Censor and Segal [10] and Hu et al. [22] proposed the subgradient
method (with the most violated constraint control and the almost cyclic control) and the incre-
mental/stochastic subgradient methods (with different types of stepsize rules) to solve the QFP,
respectively. The global convergence (to a feasible solution) of the subgradient-type methods
were established therein.

The computation error and noise arise from practical considerations and physical circum-
stances, respectively, and are inevitable in applications. Motivated by practical reasons, the
computation error is considered in the ε-subgradient-type methods, which were widely studied
for convex optimization [1, 13, 25, 29] and quasi-convex optimization problems [19, 21, 22, 28].
Moreover, the computation error and physical noise are synthetically considered in the inexact
subgradient-type methods in convex optimization [27] and quasi-convex optimization problems
[20], in which the ε-subgradient with a physical noise is estimated at each iteration.

Motivated by practical considerations and theoretical requirements, in the present paper, we
propose an inexact incremental quasi-subgradient method to solve the QFP and investigate its
quantitative convergence property. In particular, the proposed inexact quasi-subgradient method
employs an incremental updating control to follow an ordered cyclic of component functions
in the QFP, and uses the ε-quasi-subgradient with a physical noise of each component function
to approach the feasibility at each sub-iteration. It covers an incremental ε-quasi-subgradient
method and the exact incremental quasi-subgradient method in [22] as special cases.

Inspired by the ideas in [20, 27] and references therein, we investigate the influence of inexact
terms, including computation error and noise, on the inexact incremental quasi-subgradient
method. The computation error, which gives rise to the ε-quasi-subgradient, is inevitable in
computing process; while the noise, which comes from physical circumstances, is manifested
in inexact computation of quasi-subgradient. Under the assumption that the computation error
and noise are deterministic and bounded and a Hölder condition on component functions in
the QFP, we establish the convergence property of the proposed inexact incremental quasi-
subgradient method, and particularly, present the effect of the inexact terms on the incremental
quasi-subgradient method when using the constant, diminishing and dynamic stepsize rules.
The quantitative convergence result estimates the violation to the feasibility within a tolerance
given explicitly in terms of error, noise and stepsize (as an additive form). This work not only
extends [22, Algorithm 3] to the inexact scenario, but also improves [22, Theorem 4.1] to obtain
a tighter upper bound on the total tolerance; see explanation in Remark 3.4.

The present paper is organized as follows. In Section 2, we present the notations and some
preliminary lemmas that will be used in this paper. In Section 3, we propose an inexact incre-
mental quasi-subgradient method to solve the QFP and establish its quantitative convergence
results.



INEXACT INCREMENTAL QUASI-SUBGRADIENT METHOD 3

2. NOTATIONS AND PRELIMINARY RESULTS

The notations used in the present paper are standard in the n-dimensional Euclidean space
Rn with inner product ⟨·, ·⟩ and norm ∥ · ∥. For x ∈ Rn and r > 0, we use B(x,r) to denote the
closed ball centered at x with radius r, and use S to denote the unit sphere centered at the origin.
For x ∈ Rn and Z ⊆ Rn, the Euclidean distance of x from Z and the Euclidean projection of x
onto Z are respectively defined by

dist(x,Z) := min
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

A function f : Rn → R is said to be quasi-convex if

f (αx+(1−α)y)≤ max{ f (x), f (y)} for any x,y ∈ Rn and α ∈ [0,1].

For any α ∈ R, the sublevel sets of f are denoted by

lev<α f := {x ∈ Rn : f (x)< α} and lev≤α f := {x ∈ Rn : f (x)≤ α}.

A convex function can be characterized by the convexity of its epigraph, while the geometrical
interpretation for a quasi-convex function is characterized by the convexity of its sublevel sets.
Particularly, it is well-known that f is quasi-convex if and only if lev<α f (and/or lev≤α f ) is
convex for any α ∈ R.

The convex subdifferential ∂ f (x) := {g ∈ Rn : f (y) ≥ f (x) + ⟨g,y − x⟩,∀y ∈ Rn} might
be empty for a quasi-convex function (for example f (x) := x3). Hence, the introduction of
(nonempty) subdifferential of quasi-convex functions plays an important role in quasi-convex
optimization. Several different types of subdifferentials of quasi-convex functions have been
introduced in the literature, see [2, 3, 4, 14, 20, 24] and references therein. The earliest one is
the Greenberg-Pierskalla quasi-subdifferential proposed in [14]; recently, Kiwiel [24] and Hu
et al. [20] introduced a quasi-subdifferential defined as a normal cone to its sublevel set and
applied this quasi-subgradient in their proposed subgradient methods, respectively.

Definition 2.1. Let f : Rn → R be a quasi-convex function, x ∈ Rn and ε ≥ 0.
(i) The Greenberg-Pierskalla quasi-subdifferential of f at x is defined by

∂ GP f (x) =
{

g : ⟨g,y− x⟩< 0 for any y ∈ lev< f (x) f
}
.

(ii) The quasi-subdifferential of f at x is defined by

∂ Q f (x) =
{

g : ⟨g,y− x⟩ ≤ 0 for any y ∈ lev< f (x) f
}
.

(iii) The ε-quasi-subdifferential of f at x is defined by

∂ Q
ε f (x) =

{
g : ⟨g,y− x⟩ ≤ 0 for any y ∈ lev< f (x)−ε f

}
.

Any vector g ∈ ∂ Q f (x) or g ∈ ∂ Q
ε f (x) is called a quasi-subgradient or an ε-quasi-subgradient

of f at x, respectively.

It is clear from definition that the (ε-)quasi-subdifferential is a normal cone to the sublevel set
of the quasi-convex function and that ∂ GP f (x)⊆ ∂ Q f (x)⊆ ∂ Q

ε f (x) for any x ∈ Rn. Moreover,
it was shown in [20, Lemma 2.1] that ∂ Q f (x) \ {0} ̸= /0 for any x ∈ Rn whenever f is quasi-
convex. Hence, the (ε-)quasi-subdifferential of a quasi-convex function contains at least a unit
vector. This is a special property of the quasi-subdifferential that the convex subdifferential
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does not share. In particular, it was claimed in [20] that the quasi-subdifferential coincides with
the convex cone hull of the convex subdifferential whenever f is convex.

As usual, we use the notation that a+ := max{a,0} for any a ∈R, and define the positive part
function of f by

f+(x) := max{ f (x),0} for any x ∈ Rn.

The following lemma shows that the positive part operator (partially) preserves the quasi-
convexity and the (ε-)quasi-subdifferentials. The proof adopts a line of analysis similar to [22,
Lemma 2.2]; hence the details are omitted.

Lemma 2.1. Let f : Rn → R be a quasi-convex function and z /∈ lev≤ε f . Then f+ is quasi-
convex, ∂ Q f (z) = ∂ Q f+(z) and ∂ Q

ε f (z) = ∂ Q
ε f+(z).

The notion of Hölder condition has been widely studied in harmonic analysis and fraction-
al analysis and extensively applied in economics and management science. In particular, the
Hölder condition of order 1 is reduced to the Lipschitz condition, which is commonly assumed
(in the form of bounded subgradient assumption) in the convergence study of subgradient meth-
ods for convex optimization problems; see, e.g., [6, 7, 27, 29].

Definition 2.2. Let p ∈ (0,1] and L > 0. f : Rn → R is said to satisfy the Hölder condition of
order p with modulus L at x ∈ Rn if

| f (y)− f (x)| ≤ L∥y− x∥p for any y ∈ Rn. (2.1)

f is said to satisfy the Hölder condition of order p with modulus L on X if (2.1) holds for any
x ∈ X .

The Hölder condition was used to provide a fundamental property of the quasi-subgradient
in [26, Proposition 2.1], which plays an important role in the establishment of a basic inequality
in convergence analysis of subgradient-type methods for quasi-convex optimization problems
[19, 20, 32] and quasi-convex feasibility problems [10, 22]. The following lemma extends
the fundamental property to the ε-quasi-subgradient, which will be useful in the convergence
analysis of inexact quasi-subgradient methods.

Lemma 2.2. Let f : Rn → R be a quasi-convex and continuous function, X ⊆ Rn be a closed
and convex set, and let S := {x ∈ X : f (x) ≤ 0} ≠ /0. Let p ∈ (0,1] and L > 0, and suppose
that f satisfies the Hölder condition of order p with modulus L on S. Then, for any x ∈ S and
z ∈ X \ lev≤ε f , it holds that

f (z)− ε ≤ L⟨g(z,ε),z− x⟩p for any g(z,ε) ∈ ∂ Q
ε f (z)∩S. (2.2)

Proof. By the assumptions of this lemma and by Lemma 2.1, one can check that f+ is quasi-
convex and continuous and satisfies the Hölder condition of order p with modulus L on S, and
∂ Q

ε f+(z) = ∂ Q
ε f (z) for each z /∈ lev≤ε f and S = argminx∈X f+(x). Then, for any x ∈ S and

z ∈ X \ lev≤ε f (i.e., f+(x) = 0 and f+(z) = f (z)), by applying [19, Lemma 4.1] (to f+), we
derive that

f+(z)− f+(x)− ε ≤ L⟨g(z,ε),z− x⟩p for any g(z,ε) ∈ ∂ Q
ε f+(z)∩S;

consequently, (2.2) is obtained. The proof is complete. �
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We end this section by recalling the following two lemmas, which are useful in the conver-
gence analysis of subgradient-type methods.

Lemma 2.3 ([23, Lemma 4.1]). Let γ ≥ 1 and ai ≥ 0 for i = 1, . . . ,n. Then it holds that

1
nγ−1

( n

∑
i=1

ai

)γ
≤

n

∑
i=1

aγ
i ≤

( n

∑
i=1

ai

)γ
.

Lemma 2.4 ([25, Lemma 2.1]). Let {ak} be a sequence of scalars, and let {vk} be a sequence
of nonnegative scalars. Suppose that limk→∞ ∑k

i=1 vi = ∞. Then it holds that

liminf
k→∞

ak ≤ liminf
k→∞

∑k
i=1 viai

∑k
i=1 vi

≤ limsup
k→∞

∑k
i=1 viai

∑k
i=1 vi

≤ limsup
k→∞

ak.

In particular, if limk→∞ ak = a, then limk→∞
∑k

i=1 viai

∑k
i=1 vi

= a.

3. INEXACT QUASI-SUBGRADIENT METHOD FOR QUASI-CONVEX FEASIBILITY PROBLEM

Let X ⊆Rn be a closed and convex set, and let { fi : i= 1,2, ...,m} be a family of quasi-convex
and continuous functions defined on Rn. In the present paper, we consider the quasi-convex
feasibility problem (QFP) that is to find a feasible point x ∈ Rn such that

x ∈ X and fi(x)≤ 0 for each i = 1,2, ...,m. (3.1)

As usual, we assume that the QFP is consistent, i.e., the solution set of the QFP is nonempty:

S := {x ∈ X : fi(x)≤ 0, i = 1,2, ...,m} ̸=∅.

Moreover, we always assume that each component function of the QFP (3.1) satisfies a Hölder
condition as in the following assumption. The Hölder condition is a common assumption to de-
velop the convergence theory of subgradient-type methods for quasi-convex optimization prob-
lems [19, 20, 21, 32] and quasi-convex feasibility problems [10, 22]. Assumption 3.1 consists
of the Hölder condition for all component functions of the QFP (3.1).

Assumption 3.1. Let p ∈ (0,1] and Li > 0 for i = 1, . . . ,m. For each i = 1, . . . ,m, fi satisfies
the Hölder condition of order p with modulus Li on S. Furthermore, we write

Lmax := max
i=1,...,m

Li. (3.2)

3.1. Inexact incremental quasi-subgradient method. The purpose of this subsection is to
propose an inexact incremental quasi-subgradient method to solve the QFP (3.1), in which an
incremental updating control is employed to follow an ordered cyclic of component functions
in (3.1) and the approximate quasi-subgradient of each component function with the following
form is used to approach the feasibility at each sub-iteration:

ĝ(x,ε) = g(x,ε)+ r(x),

where g(x,ε) ∈ ∂ Q
ε f (x)∩S is an arbitrary unit ε-quasi-subgradient of f at x and r(x) is a noise

vector. Specifically, the inexact incremental quasi-subgradient method is formally described as
follows.
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Algorithm 1: Inexact incremental quasi-subgradient method - QFP.

1 Initialize an initial point x0 ∈ X , a sequence of stepsizes {vk} ⊆ R+, and let k := 0;
2 while maxi=1,...,m fi(xk)> εk do
3 Let zk,0 := xk;
4 for i = 1, . . . ,m do
5 if fi(zk,i−1)≤ εk then
6 Let zk,i := zk,i−1;
7 else
8 Update zk,i := PX

(
zk,i−1 − vkĝk,i

)
, in which the approximate subgradient is

of form ĝk,i := gk,i + rk,i with gk,i ∈ ∂ Q
εk fi(zk,i−1)∩S and rk,i being a noise

vector;
9 end

10 end
11 Let xk+1 := zk,m and k := k+1.
12 end

Remark 3.1. (i) In Algorithm 1, the update of the subgradient iteration is processed within
an ordered cyclic sequence on each component function fi involved in the QFP (3.1). It is
worth mentioning that the convergence analysis of Algorithm 1 in the next subsection still
works if any order of component functions is assumed, as long as each component is taken into
account exactly once within a cycle. Hence, in applications, we could reorder the components
{ fi} by either shifting or reshuffling at the beginning of each cycle, and then proceed with the
calculations until the end of this cycle.

(ii) In the case when the noise vanishes (i.e., R = 0), Algorithm 1 is reduced to an incremen-
tal ε-quasi-subgradient method for solving the QFP (3.1), which is an inexact version of [22,
Algorithm 3] with the ε-quasi-subgradient in place of the (exact) quasi-subgradient. Further-
more, if the computation is precise (i.e., ε = 0), Algorithm 1 is reduced to the exact incremental
quasi-subgradient method as in [22, Algorithm 3].

Algorithm 1 extends the incremental quasi-subgradient method for solving the QFP (3.1) to
the inexact scenario in terms of computation error and noise. In the rest of this paper, we aim
to discuss the convergence property of Algorithm 1 and particularly investigate the effect of
the inexact terms on the incremental quasi-subgradient method under the assumption that the
computation error and noise are deterministic and bounded.

3.2. Convergence analysis. This subsection is devoted to studying the convergence property
of the inexact incremental quasi-subgradient method with different types of stepsize rules for
the QFP (3.1) in terms of computation error and noise. Throughout this section, the following
two assumptions are made for convergence analysis.

Assumption 3.2. X is compact with its diameter being D.

Assumption 3.3. The error and noise are bounded, i.e., there exist ε ≥ 0 and R ≥ 0 such that

limsup
k→∞

εk = ε and ∥rk∥ ≤ R for each k ∈ N. (3.3)
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Remark 3.2. By Assumption 3.3, it follows that the approximate quasi-subgradients involved
in Algorithm 1 are uniformly bounded, i.e., ∥ĝk,i∥ ≤ ∥gk,i∥+∥rk,i∥ ≤ 1+R for any i = 1, . . . ,m
and k ∈ N.

We now start the convergence analysis of Algorithm 1 by providing a basic inequality, which
shows a significant property of an inexact incremental quasi-subgradient iteration. To this end,
we define the max-function of the feasible system { fi : i = 1, . . . ,m} by

F(x) := max
i=1,...,m

fi(x) for any x ∈ Rn. (3.4)

Then, the feasible solution set of the QFP can be written as S = {x ∈ X : F(x)≤ 0}. The basic
inequality (3.5) measures the difference of the distances of iterates from any feasible solution
by the max-function value at current iterate, as well as the stepsize and inexact terms. It is worth
noting that (3.5) follows from the nature of (inexact) quasi-subgradient methods and inherits the
important property of the basic inequality in the literature of quasi-subgradient methods; see,
e.g., [10, 19, 20, 22, 24, 32].

Lemma 3.1. Suppose Assumptions 3.1-3.3 are satisfied. Let {xk} be a sequence generated by
Algorithm 1. Suppose that F(xk)> εk. Then, for any x ∈ S, it holds that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 −4vk(2Lmax)
− 1

p (F(xk)− εk)
1
p +2mvkRD+m2v2

k(1+R)2. (3.5)

Proof. Fix x ∈ S. We first show that the following inequality holds for i = 1, . . . ,m:

∥zk,i − x∥2 ≤ ∥zk,i−1 − x∥2 −2vkL
− 1

p
max
(

fi(zk,i−1)− εk
) 1

p
++2vkRD+ v2

k(1+R)2. (3.6)

In view of Algorithm 1, if fi(zk,i−1)≤ εk, then it is updated that zk,i = zk,i−1, and so (3.6) holds
automatically; otherwise, fi(zk,i−1)> εk, then it is updated that

zk,i = PX
(
zk,i−1 − vkĝk,i

)
, where ĝk,i = gk,i + rk,i.

In this case, it follows from the nonexpansive property of the projection operator that

∥zk,i − x∥2 ≤
∥∥zk,i−1 − vkĝk,i − x

∥∥2

= ∥zk,i−1 − x∥2 −2vk
⟨
gk,i + rk,i,zk,i−1 − x

⟩
+ v2

k∥gk,i + rk,i∥2

≤ ∥zk,i−1 − x∥2 −2vk
⟨
gk,i,zk,i−1 − x

⟩
+2vkRD+ v2

k(1+R)2,

(3.7)

where the last inequality follows from Assumptions 3.2-3.3 and Remark 3.2. Noting by x ∈ S
that fi(x)≤ F(x)≤ 0, Lemma 2.2 is applicable (with fi, zk,i−1, εk, gk,i in place of f , z, ε , g(z,ε))
to concluding that

fi(zk,i−1)− εk ≤ Li⟨gk,i,zk,i−1 − x⟩p ≤ Lmax⟨gk,i,zk,i−1 − x⟩p

(due to (3.2)). Then, (3.7) is reduced to (3.6) in this case. Hence, (3.6) is proved as desired.
Next, we estimate the second term on the right hand side of (3.6) in terms of ( fi(xk)− εk)+.

Note by the subadditivity of a+ that

( fi(xk)− εk)+ ≤ ( fi(xk)− fi(zk,i−1))++( fi(zk,i−1)− εk)+.

Since p ∈ (0,1], one has by Lemma 2.3 that

21− 1
p ( fi(xk)− εk)

1
p
+ ≤ ( fi(xk)− fi(zk,i−1))

1
p
++( fi(zk,i−1)− εk)

1
p
+. (3.8)
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By Assumption 3.1 (cf. (2.1)) and in view of Algorithm 1, it follows that

( fi(xk)− fi(zk,i−1))+ ≤ | fi(xk)− fi(zk,i−1)|
≤ Li∥zk,i−1 − xk∥p

≤ Lmax

(
∑i−1

j=1 ∥zk, j − zk, j−1∥
)p

≤ Lmax (vk(i−1)(1+R))p

(cf. Remark 3.2). Hence, (3.8) is reduced to

( fi(zk,i−1)− εk)
1
p
+ ≥ 21− 1

p ( fi(xk)− εk)
1
p
+−L

1
p
maxvk(i−1)(1+R),

and so (3.6) yields that

∥zk,i − x∥2 ≤ ∥zk,i−1 − x∥2 −4vk(2Lmax)
− 1

p ( fi(xk)− εk)
1
p
++2vkRD+ v2

k(2i−1)(1+R)2.

Finally, summing the above inequality over i = 1, . . . ,m, we derive that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 −4vk(2Lmax)
− 1

p
m

∑
i=1

( fi(xk)− εk)
1
p
++2mvkRD+m2v2

k(1+R)2.

Noting by the assumption F(xk)> εk and definition in (3.4) that
m

∑
i=1

( fi(xk)− εk)
1
p
+ ≥ max

i=1,...,m
( fi(xk)− εk)

1
p
+ = (F(xk)− εk)

1
p ,

we achieve (3.5). The proof is complete. �

Remark 3.3. In the case when the noise vanishes (i.e., R = 0), the term ⟨rk,i,zk,i−1−x⟩ vanishes
on (3.7), and correspondingly, the third term 2mvkRD on the right hand side of (3.6) vanishes
in the basic inequality; hence, Lemma 3.1 is satisfied without the compactness hypothesis of X
(i.e., Assumption 3.2). Therefore, the convergence theorems established below are true for the
incremental ε-quasi-subgradient method for the QFP (3.1) regardless of Assumption 3.2.

The stepsize rule has a critical effect on the convergence property and computational capacity
of subgradient methods. In this section, by virtue of the basic inequality provided in Lemma 3.1,
we establish in Theorems 3.1-3.3 the convergence properties of the inexact incremental quasi-
subgradient method for the QFP (3.1) by using the typical constant, diminishing and dynamic
stepsize rules, respectively.

Theorem 3.1. Suppose Assumptions 3.1-3.3 are satisfied. Let {xk} be a sequence generated by
Algorithm 1 with vk ≡ v > 0. Then

liminf
k→∞

F(xk)≤ ε +2Lmax

(
1
2

mRD+
1
4

m2(1+R)2v
)p

. (3.9)

Proof. Without loss of generality, we assume that F(xk)≤ εk+2Lmax
(1

2mRD+ 1
4m2(1+R)2v

)p

only occurs for finitely many times; otherwise, (3.9) holds automatically. We further assume
that

F(xk)> εk +2Lmax

(
1
2

mRD+
1
4

m2(1+R)2v
)p

(3.10)
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for each k ∈N (otherwise, one can choose N ∈N such that (3.10) is satisfied for each k ≥ N and
focus on the subsequence {xk}k≥N instead). Hence, Lemma 3.1 is applicable to ensuring (3.5)
for each k ∈ N. Summing (3.5) with vk ≡ v over k = 0, . . . ,n−1, we deduce that

∥xn − x∥2 −∥x0 − x∥2 ≤−4(2Lmax)
− 1

p v
n−1

∑
k=0

(F(xk)− εk)
1
p +2mRDnv+m2(1+R)2nv2;

consequently,

4(2Lmax)
− 1

p
∑n−1

k=0(F(xk)− εk)
1
p

n
≤ ∥x0 − x∥2

nv
+2mRD+m2(1+R)2v.

Then, we obtain by (3.3) and Lemma 2.4 that

liminf
k→∞

(F(xk)− ε)
1
p = liminf

k→∞
(F(xk)− εk)

1
p

≤ liminf
n→∞

∑n−1
k=0(F(xk)− εk)

1
p

n

≤ (2Lmax)
1
p

(
1
2

mRD+
1
4

m2(1+R)2v
)
.

Consequently, (3.9) is achieved, and the proof is complete. �

Remark 3.4. (i) Theorem 3.1 shows the convergence of the violation of the sequence generated
by Algorithm 1 (with the constant stepsize rule) to the feasibility within some tolerance given
in terms of error and noise. As shown in Theorem 3.1, the total tolerance

Tv := ε +2Lmax

(
1
2

mRD+
1
4

m2(1+R)2v
)p

(3.11)

has an additive form of the error level ε and the noise level R and plus a term related to the
stepsize v.

(ii) As mentioned in Remarks 3.1 and 3.3, in the special case when R = 0 and ε = 0, Theo-
rem 3.1 is applicable to concluding the convergence property of the (exact) incremental quasi-
subgradient method (i.e., [22, Algorithm 3]) with the constant stepsize rule for solving the QFP
(3.1) as

liminf
k→∞

F(xk)≤ 2Lmax

(
1
4

m2v
)p

under Assumption 3.1. While, the convergence result in [22, Theorem 4.1(a)] is

liminf
k→∞

F(xk)≤ 2m1−pLmax

(
1
4

m2v
)p

under the same assumption. From these above results, we can see that Theorem 3.1 not only
extends [22, Algorithm 3] to the inexact scenario, but also improves [22, Theorem 4.1(a)] to
obtain a tighter upper bound on the total tolerance.

Theorem 3.2. Suppose Assumptions 3.1-3.3 are satisfied. Let {xk} be a sequence generated by
Algorithm 1 with the stepsize satisfying

lim
k→∞

vk = 0 and
∞

∑
k=0

vk = ∞. (3.12)
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Then

liminf
k→∞

F(xk)≤ ε +2Lmax

(
1
2

mRD
)p

. (3.13)

Proof. Similar to the beginning of the proof of Theorem 3.1, we can assume, without loss of
generality, that

F(xk)> εk +2Lmax

(
1
2

mRD
)p

for each k ∈ N.

Then, Lemma 3.1 is applicable to ensuring (3.5) for each k ∈ N. Summing (3.5) over k =
0, . . . ,n−1, we obtain that

∥xn − x∥2 −∥x0 − x∥2 ≤−4(2Lmax)
− 1

p
n−1

∑
k=0

vk(F(xk)− εk)
1
p +2mRD

n−1

∑
k=0

vk +m2(1+R)2
n−1

∑
k=0

v2
k ;

consequently,

4(2Lmax)
− 1

p
∑n−1

k=0 vk(F(xk)− εk)
1
p

∑n−1
k=0 vk

≤ ∥x0 − x∥2

∑n−1
k=0 vk

+2mRD+m2(1+R)2 ∑n−1
k=0 v2

k

∑n−1
k=0 vk

.

Then, we obtain by (3.3) and Lemma 2.4 that

liminf
k→∞

(F(xk)− ε)
1
p = liminf

k→∞
(F(xk)− εk)

1
p

≤ liminf
n→∞

∑n−1
k=0 vk(F(xk)− εk)

1
p

∑n−1
k=0 vk

(3.14)

≤ 1
4
(2Lmax)

1
p liminf

n→∞

(
∥x0 − x∥2

∑n−1
k=0 vk

+2mRD+m2(1+R)2 ∑n−1
k=0 v2

k

∑n−1
k=0 vk

)
.

Note by (3.12) and Lemma 2.4 that

lim
n→∞

∥x0 − x∥2

∑n−1
k=0 vk

= 0 and lim
n→∞

∑n−1
k=0 v2

k

∑n−1
k=0 vk

= 0.

Then, (3.14) is reduced to liminfk→∞ (F(xk)−ε)
1
p ≤ 1

2mRD(2Lmax)
1
p , and thus, (3.13) is achieved.

The proof is complete. �
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Remark 3.5. (i) Theorem 3.2 shows the convergence of the violation of Algorithm 1 (by using
the diminishing stepsize rule) to the feasibility within a total tolerance given in terms of error
and noise:

T := ε +2Lmax

(
1
2

mRD
)p

.

This total tolerance has an additive form of the error level ε and the noise level R, and can
be understood as an asymptotic result of the tolerance of the constant stepsize rule (3.11) as
T = limv→0 Tv.

(ii) In the special case when R = 0 and ε = 0, Theorem 3.2 is applicable to concluding the
convergence property of the (exact) incremental quasi-subgradient method (i.e., [22, Algorithm
3]) with the diminishing stepsize rule for the QFP (3.1) as

liminf
k→∞

F(xk) = 0.

This is indeed the same as [22, Theorem 4.1(b)]. Hence, Theorem 3.2 extends [22, Algorithm
3] to the inexact scenario and covers [22, Theorem 4.1(b)] as a special case.

Theorem 3.3. Suppose Assumptions 3.1-3.3 are satisfied. Let {xk} be a sequence generated by
Algorithm 1 with the stepsize given by

vk :=
2γk

m2(1+R)2

((
F(xk)− εk

2Lmax

) 1
p

− 1
2

mRD

)
+

for any k ∈ N, (3.15)

where 0 < γ ≤ γk ≤ γ < 2. Then, either F(xk)≤ εk for some k ∈ N or

limsup
k→∞

F(xk)≤ ε +2Lmax

(
1
2

mRD
)p

. (3.16)

Proof. Without loss of generality, we assume that F(xk) > εk for each k ∈ N; otherwise, the
conclusion of this theorem follows. Then, Lemma 3.1 is applicable to ensuring (3.5) for each
k ∈ N. By the definition of (3.15), (3.5) is reduced to

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − 4γk(2− γk)

m2(1+R)2

((
F(xk)− εk

2Lmax

) 1
p

− 1
2

mRD

)2

+

≤ ∥xk − x∥2 −
4γ(2− γ̄)

m2(1+R)2

((
F(xk)− εk

2Lmax

) 1
p

− 1
2

mRD

)2

+

.

Then, it follows that

∞

∑
k=1

((
F(xk)− εk

2Lmax

) 1
p

− 1
2

mRD

)2

+

≤ m2(1+R)2

4γ(2− γ)
∥x0 − x∗∥2,

which is finite. Consequently, one has limk→∞

((
F(xk)−εk

2Lmax

) 1
p − 1

2mRD
)
+

= 0, and thus, (3.16)

is achieved. The proof is complete. �
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[4] D. Aussel and M. Pištěk. Limiting normal operator in quasiconvex analysis. Set-Valued and Variational Anal-
ysis, 23(4):669–685, 2015.

[5] M. Avriel, W. E. Diewert, S. Schaible, and I. Zang. Generalized Concavity. Plenum Press, New York, 1988.
[6] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex feasibility problems. SIAM

Review, 38(3):367–426, 1996.
[7] D. P. Bertsekas. Convex Optimization ang Algorithms. Athena Scientific, Massachusetts, 2015.
[8] Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld. The multiple-sets split feasibility problem and its applications

for inverse problems. Inverse Problems, 21(6):2071–2084, 2005.
[9] Y. Censor and A. Lent. Cyclic subgradient projections. Mathematical Programming, 24(1):233–235, 1982.

[10] Y. Censor and A. Segal. Algorithms for the quasiconvex feasibility problem. Journal of Computational and
Applied Mathematics, 185(1):34–50, 2006.

[11] P. L. Combettes. The convex feasibility problem in image recovery. Advances in Imaging and Electron Physic-
s, 95:155–270. Elsevier, 1996.

[12] J.-P. Crouzeix, J.-E. Martinez-Legaz, and M. Volle. Generalized Convexity, Generalized Monotonicity. Kluw-
er Academic Publishers, Dordrecht, 1998.

[13] G. D’Antonio and A. Frangioni. Convergence analysis of deflected conditional approximate subgradient
methods. SIAM Journal on Optimization, 20(1):357–386, 2009.

[14] H. J. Greenberg and W. P. Pierskalla. Quasiconjugate functions and surrogate duality. Cahiers Centre Études
Recherche Opertionnelle, 15:437–448, 1973.

[15] J.-L. Goffin, Z. Q. Luo, and Y. Ye. On the complexity of a column generation algorithm for convex or quasi-
convex feasibility problems. In W. W. Hager, D. W. Hearn, P. M. Pardalos, editor Large Scale Optimization:
State of the Art, pages 182–191. Kluwer Academic Publishers, 1994.
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