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Inferring gene regulatory networks from gene expression data at whole genome level is still an arduous
challenge, especially in higher organisms where the number of genes is large but the number of exper-
imental samples is small. It is reported that the accuracy of current methods at genome scale significantly
drops from Escherichia coli to Saccharomyces cerevisiae due to the increase in number of genes. This limits
the applicability of current methods to more complex genomes, like human and mouse. Least absolute
shrinkage and selection operator (LASSO) is widely used for gene regulatory network inference from gene
expression profiles. However, the accuracy of LASSO on large genomes is not satisfactory. In this study,
we apply two extended models of LASSO, L0 and L1/2 regularization models to infer gene regulatory net-
work from both high-throughput gene expression data and transcription factor binding data in mouse
embryonic stem cells (mESCs). We find that both the L0 and L1/2 regularization models significantly out-
perform LASSO in network inference. Incorporating interactions between transcription factors and their
targets remarkably improved the prediction accuracy. Current study demonstrates the efficiency and
applicability of these two models for gene regulatory network inference from integrative omics data in
large genomes. The applications of the two models will facilitate biologists to study the gene regulation
of higher model organisms in a genome-wide scale.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Inferring gene regulatory networks from high-throughput gen-
ome-wide data is still a major challenge in systems biology. Tran-
scriptome that is measured by microarray or RNA-seq describes
the expression of all the genes of a genome. Various methods have
been developed to infer gene regulatory networks from such tran-
scriptome data (reviewed in [1]). Even though most of the methods
perform very well on smaller genomes such as Escherichia coli, very
few of them can accurately handle larger genomes, such as human
and mouse. In large genomes, the complexity of gene regulatory
system dramatically increases. Thousands of regulators, such as
transcription factors (TFs), communicate in different ways to regu-
late tens of thousands of target genes in various tissues or biolog-
ical processes. However, for a specific gene, only a few key TFs
collaborate and control its expression change in a specific cell type
or developmental stage. Thus, the gene regulatory network infer-
ence for such large genomes becomes a sparse optimization prob-
lem, which is to search a small number of key TFs from a pool of
thousands of TFs for tens of thousands of targets based on the
dependencies between the expression of TFs and the targets. The
sparsity levels of the gene regulatory networks in large genomes
are much higher than those in small genomes.

One of the most popular approaches is to estimate the pair-wise
correlation between genes using metrics like Pearson’s correlation
coefficient, Spearman’s correlation coefficient, mutual information,
partial correlation coefficient or expression alignment, and then fil-
ter for causal relationships to infer TF-target pairs [2–6]. For exam-
ple, ARACNE (Algorithm for the Reconstruction of Accurate Cellular
Networks) is proved to achieve low error rate and scaled up to
mammalian system [2,7,8]. Another popular approach is to use
the regression-based models to select TFs with target gene-specific
sparse linear-regression [1,9,10]. In regression-based models, least
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absolute shrinkage and selection operator (LASSO) is most com-
monly used for gene regulatory network inference. In the field of
optimization, LASSO is also called the L1 regularization model
[11]. Many efficient algorithms, such as ISTA (Iterative Soft Thres-
holding Algorithm), LAR (Least Angle Regression) and YALL1 (Your
ALgorithms for L1), have been developed for this model, and some
of them are applied to large datasets [11–20]. Recently developed
methods, such as NARROMI, take advantages of both correlation-
and regression-based approaches and achieve improved accuracy
[10].

However, both approaches suffer from several limitations when
dealing with large genomes. Marbach et al. have shown that all of
the 35 methods assessed, including both approaches, have much
less precision for gene regulatory network inference in Saccharomyces
cerevisiae than those in E. coli. Because the genome of S. cerevisiae is
larger than that of E. coli, and its gene regulatory network is much
more complex, only about 2.5% area under the precision-recall curve
(AUPR) is achieved by these methods in S. cerevisiae, which is close to
random. The correlation-based approaches need to calculate the cor-
relation of all gene pairs, thus the computation cost increases expo-
nentially with the number of genes. The sparsity level of the gene
regulatory networks in large genomes is much higher than those in
small genomes, hence false positives also increase remarkably when
a similar correlation cutoff is used to predict the gene regulatory net-
works [2,7,21]. The accuracy of LASSO in large-scale problems with
high sparsity is also reported to be not satisfactory [22–24].

To improve the performance, current methods require a large
number of transcriptome profiles, usually at least one fold of the
number of regulators [1]. However, in most biological studies, sam-
ple size is much smaller than the number of regulators due to high
experimental cost. The limitation in sample size impedes perfor-
mance of both approaches. In correlation-based methods, limited
sample size makes the correlations between genes sensitive to
noise, and thus high correlated gene pair needs not imply a true
regulatory relationship. In large genomes, it is even more difficult
to infer true regulatory links from a larger pool of highly correlated
gene pairs with smaller sample size. In LASSO-based methods,
when sample size is smaller than the number of regulators, multi-
ple solutions are available, which makes it difficult to determine
which solution is more biologically meaningful. To encounter the
small sample size problem, heterogeneous datasets from different
tissues, biological processes or experimental conditions are usually
pooled together before the modeling, which increases prediction
accuracy. However, the inferred network will lose its cell-type or
condition specificity [1,25]. Further, heterogeneous datasets may
weaken dependencies between the expression of TFs and their tar-
gets, since gene regulatory network topology varies among differ-
ent biological processes, and one TF may regulate different gene
sets in different cell states.

Chromatin immunoprecipitation (ChIP) coupled with high-
throughput techniques, such as sequencing or microarray (ChIP-
seq/chip, hereafter refer to as ChIP-X) data, which is also called
cistrome, are also widely used to construct gene regulatory net-
work in recent years [26–28]. However, TF binding sites detected
by ChIP-X show only the genomic positions of the TF binding,
but could not tell which gene is its target and whether and how
the TF binding affects the transcription of its targets. Recently
developed web server ChIP-Array that integrates both ChIP-X and
transcriptome data to construct gene regulatory networks takes
the advantages of both technologies and provides high accuracy,
but it can be used for single TF-centered network only and requires
the transcriptome data to be generated under the perturbation of
the same TF as that of ChIP-X data. However, genome-wide gene
regulatory networks contain multiple TFs, but only a limited num-
ber of TFs have both omics data.
In summary, although several methods have been proposed to
infer genome-wide gene regulation networks from transcriptome
profiles either alone [1,29], or in combination with predicted TF
binding data [30], they are all limited by high computation cost
and low accuracy in large genomes. To tackle these limitations,
here we propose to integrate ChIP-X data with transcriptome pro-
files for gene regulatory network inference and use the Lp (p < 1)
regularization model to improve the accuracy of LASSO, hereafter
referred to as the L1 regularization model. It is reported that it is
able to achieve more sparse and accurate solutions by virtue of
the Lp (p < 1) regularization model, even from small amount of
samples [22,23,31]. However, the Lp (p < 1) regularization model
suffers from its non-convexity and it is very difficult in general to
design efficient algorithm for its solutions. Fortunately, the itera-
tive hard thresholding algorithm [32] and iterative half threshold-
ing algorithm [23] have been developed to solve the L0 and L1/2

regularization models respectively, but they have not been applied
to gene regulatory network inference. Due to their low computa-
tion cost and fast convergence rate, we found that they are suitable
for the gene regulatory network inference problem. Thus in this
study, we apply the L0 and L1/2 regularization models to infer gene
regulatory networks from ChIP-X and transcriptome data in mouse
embryonic stem cells (mESCs). We compare their performance
with the L1 regularization model and find that ChIP-X data dramat-
ically improved the accuracy of all three models, and the L0 and L1/2

regularization models significantly outperform the L1 regulariza-
tion model in the presence of ChIP-X data. The proposed models
biologists to infer gene regulatory networks in higher model organ-
isms using integrative omics data, efficiently. All the datasets and
codes are available at: http://jjwanglab.org/LpRGNI.

2. Materials and Methods

2.1. Lp regularization models

Regulatory relationship between TFs and targets can be repre-
sented approximately by a linear system (Fig. 1A)

AX ¼ Bþ e

where A 2 Rm�r denotes the expression matrix of candidate TFs,
B 2 Rm�n denotes the expression matrix of all target genes,
e 2 Rm�n denotes an error matrix and X 2 Rr�n denotes the regula-
tion matrix that describes the regulatory relationship between all
TFs and the targets, m denotes the number of samples, r denotes
the number of factors and n denotes the number of target genes.
In gene regulatory network inference, for each target gene j, we
want to minimize the difference between AX:;j and B:;j with a small
number of selected TFs, which is a sparse optimization problem de-
scribed as

min kAX:;j � B:;jk2

s:t:kX:;jk0 6 K;

where k � k2 denotes the Euclidean norm as kX:;jk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr

i¼1X2
i;j

q
and

kX:;jk0 denotes the number of non-zero elements in X:;j. The less
kX:;jk0 means higher sparsity of X:;j. It indicates how many TFs are
found to regulate the target gene j.

For this problem, a popular and practical technique is to trans-
form the sparse optimization problem into an unconstrained opti-
mization problem, called a regularization problem (Fig. 1B). For
example, given a gene j and its expression profile B:;j, the L0 regu-
larization model is to minimize the difference between AX:;j and
B:;j, and maximize the sparsity of X:;j:

min
X:;j2Rr
kAX :;j � B:;jk2

2 þ kkX:;jk0;

http://jjwanglab.org/LpRGNI


Fig. 1. Workflow of gene regulatory network inference with three regularization models. (A) matrix A and B containing the expression profiles of TFs and targets respectively
are generated from transcriptome data, while ChIP-X identified TF-target interaction are converted into an initial X0; (B) three regularization models are applied to solve the Lp

(p = 1,1/2,0) regularization models; (C) output is a sparse matrix X⁄ that describes the TF-target relationships, which is evaluated by two sets of golden standards.
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where k > 0 is the regularization parameter, providing a tradeoff be-
tween accuracy and sparsity. Even though the L0 regularization
model is close to the original problem we want to solve, it is NP-
hard to achieve a global optimal solution [33]. Thus, the L1 regular-
ization model (LASSO), a popular relaxation of the L0 regularization
model, is introduced to solve the following problem:

min
X:;j2Rr
kAX:;j � B:;jk2

2 þ kkX :;jk1;

where kX:;jk1 ¼
Pr

i¼1jXi;jj. However, in many practical applications,
the solutions yielded from the L1 regularization model are less
sparse than those of the L0 regularization model [22–24].

Recently, the L1/2 regularization model is proposed and proved
to perform better than the L1 regularization model [23]. This model
is described as
min
X:;j2Rr
kAX :;j � B:;jk2

2 þ kkX:;jk1=2
1=2;

where kX:;jk1=2 ¼
Pr

i¼1

ffiffiffiffiffiffiffiffiffi
jXi;jj

p� �2
. Neither L0 nor L1/2 regularization

model has been used in gene regulatory network inference.

2.2. Algorithms

In this study, we apply the iterative thresholding algorithms to
solve the Lp (p = 1,1/2,0) regularization models for gene regulatory
network inference from omics data. The iterative thresholding
algorithm is the most widely studied class of the first-order meth-
ods for the sparse optimization problem. It is convergent and of
very low computational complexity [11,23,32]. Benefitting from
its simple formulation and low storage requirement, it is very effi-
cient and applicable even for the large-scale sparse optimization
problem. In particular, the iterative soft thresholding algorithm is
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introduced and developed to solve the L1 regularization problem;
the iterative hard thresholding algorithm is proposed to solve the
L0 regularization problem; and the iterative half thresholding algo-
rithm is designed for the L1/2 regularization problem. Briefly, in
each iteration, these three algorithms firstly have a same gradient
step

Zk
:;j ¼ Xk

:;j � 2vATðAXk
:;j � B:;jÞ;

and then perform the thresholding operator respectively

ðL1Þ Xkþ1
i;j ¼

Zk
i;j � signðZk

i;jÞvk; jZk
i;jj > vk

0; jZk
i;jj 6 vk

(

ðL0Þ Xkþ1
i;j ¼

Zk
i;j; jZ

k
i;jj >

ffiffiffiffiffiffiffiffiffi
2vk
p

0; jZk
i;jj 6

ffiffiffiffiffiffiffiffiffi
2vk
p

(
;

ðL1=2Þ Xkþ1
i;j ¼

2
3 Zk

i;jð1þ cosð23 p� 2
3 wðZk

i;jÞÞÞ; jZ
k
i;jj > 3

2 ðvkÞ2=3

0; jZk
i;jj 6 3

2 ðvkÞ2=3

(

with wðZk
i;jÞ ¼ arccos

vk
4

3

jZk
i;jj

 !3=2
0
@

1
A;

where the upper indexes of X and Z denote the number of iterations,
v denotes the stepsize, which we always choose as 1/2, and signð�Þ
denotes the sign function. The solutions of three algorithms
achieved after 200 iterations, except those indicated, are used for
further evaluation and comparison. For all the three algorithms,
the regularization parameter k is updated iteratively so as to keep
the sparsity of Xk

:;j. For the details, one can refer to [23,32]. Since
the number of TFs (the sparsity of X:;j) that regulate a particular
gene is usually unknown and biologists need to select a small num-
ber of TFs for the experimental verification, we make this parameter
adjustable to the user. For further evaluation and comparison of
three models, we test a series of factor numbers (kX :;jk0) from 1 to
100 (sparsity level �0.1%-10%). In each test, we fix the same spar-
sity (kX:;jk0) for all three models. We assume that the TFs which
are detected in a higher sparsity will be more important than those
detected in a lower sparsity. Thus we score each factor according to
the highest sparsity where it gets a non-zero index in the final solu-
tion (Section 2.5).

2.3. Data collections

Transcriptome data were downloaded from Gene Expression
Omnibus (GEO). 245 experiments under perturbations in mESC
were collected from three papers (Table 1) [34–36]. Each experi-
ment produced transcriptome data with or without overexpression
or knockdown of a gene, two replicates for control and two repli-
cates for treatment. Gene expression fold changes between control
and TF perturbation samples of 19978 genes in all experiments
were log2 transformed and formed matrix B (Fig. 1A). Candidate
regulators, including TFs, mediators, co-factors, chromatin modifi-
ers and repressors, were collected from four TF databases, TRANS-
FAC, JASPAR, UniPROBE and TFCat, as well as literatures. Matrix A
was made up of the expression profiles of 939 regulators
(Fig. 1A). A literature-based golden standard TF-target pair set from
biological studies (Fig. 1C), including 97 TF-target interactions be-
Table 1
Transcriptome data for gene regulatory network inference.

#Experiment Perturbation GEO accession Pubmed ID

53 Overexpression GSE16375 19796622
84 Overexpression GSE31381 22355682

107 Knockdown GSE26520 23462645
tween 23 TFs and 48 target genes (low-throughput golden stan-
dard), was downloaded from iScMiD (Integrated Stem Cell
Molecular Interactions Database). Another golden standard mESC
network was constructed from high-throughput ChIP-X and tran-
scriptome data under TF perturbation (high-throughput golden
standard). 28 TFs with evidences from both high-throughput
ChIP-X and transcriptome data under perturbation were collected
from literatures (Tables 2 and 3). TF binding sites were called with
MACS [37] for ChIP-seq data and Cisgenome [38] for ChIP-chip
data. Distance cutoff between a TF binding site and a potential tar-
get gene was set as 10 kbp. Differentially expressed genes under TF
perturbation were defined as top 5% up-regulated and top 5%
down-regulated genes, whose expression changes were significant
with p-value <0.05. Single TF-centered network was constructed
for each TF by ChIP-Array [39] with both high-throughput data. Di-
rect target of all TFs were combined as a golden standard mESC
network, which contains 40006 links between 13092 notes
(Fig. 1C). Basically, each target in the network is evidenced by
the cell-type specific binding sites on its promoter and the expres-
sion change in the perturbation experiment of the TF, which is gen-
erally accepted as a true target.

2.4. Integration of ChIP-X and transcriptome data

ChIP-X identifies in vivo active and cell-specific TF binding sites
of a particular TF. A gene with an active TF binding site around its
promoter is considered to be a potential target of the TF. Thus,
ChIP-X data provides possible direct TF-target connections and
may help regularization models to approximate the biologically
meaningful solutions for the whole genome. Since matrix X de-
scribes the connections between TFs and targets, the TF-target con-
nections defined by ChIP-X data were converted into an initial
matrix X0 (Fig. 1A and Table 2). Without ChIP-X data as a prior,
the initial X0 was artificially set as 0. When integrating ChIP-X data,
if TF i has binding site around the gene j promoter within 10 kbp,
except those indicated, the Pearson’s correlation coefficient (PCC)
between the expression profiles of TF i and gene j was calculated
and assigned on X0

i;j. PCC can be positive or negative, representing
the TF can activate or repress the target gene expression.

2.5. Evaluations

The area under the curve (AUC) of a receiver operating charac-
teristic (ROC) curve is widely applied as an important index of the
overall classification performance of an algorithm. We applied AUC
to evaluate the performance of these three regularization models.
For each pair of TF i and target j, if the Xi;j is non-zero in the final
solution matrix X, this TF is regarded as a potential regulator of
the target. A series of factor numbers (kX:;jk0) from 1 to 100 were
tested for each target. We assume that the TFs which are detected
in a higher sparsity (smaller kX :;jk0) will be more important than
those detected in a lower sparsity (larger kX :;jk0). Thus in the pro-
cess of calculating the AUC, a score Si;j was applied as the predictor
for TF i on target j:

Si;j ¼
maxð1=kX:;jk0Þ; Xi;j – 0
0; Xi;j ¼ 0

�
And either high-throughput or low-throughput evaluation

dataset was used as the golden standard. Furthermore, 1000 times’
bootstrap was used to test the stability of AUCs. After the 1000
times’ bootstrap, 1000 AUCs of each model was obtained. We then
used Wilcoxon test to compare the performance of three models.

3. Results and discussions

Since, current methods are mostly designed for transcriptome
data, we firstly inferred the gene regulatory network using current



Table 2
ChIP-X data for gene regulatory network inference and evaluation.

Factor GEO accession Pubmed ID Factor GEO accession Pubmed ID

Cdx2 GSE16375 19796622 Rest GSE26680 –
Ctr9 GSE14654 19345177 Rest GSE27844 22297846
Ctr9 GSE20530 20434984 Sall4 GSE20551 20946988
Esrrb GSE11431 18555785 Sfpi1 GSE11329 18358816
Jarid2 GSE19365 20075857 Smad1 GSE11431 18555785
Jarid2 GSE18776 20064375 Sox2 GSE11431 18555785
Kdm1a GSE27844 22297846 Sox2 GSE11329 18358816
Klf4 GSE11431 18555785 Sox2 GSE11724 18692474
Myc GSE11431 18555785 Stat3 GSE11431 18555785
Myc GSE11329 18358816 Suz12 GSE11431 18555785
Mycn GSE11431 18555785 Suz12 GSE11724 18692474
Nacc1 GSE11329 18358816 Suz12 GSE19365 20075857
Nanog GSE11431 18555785 Suz12 GSE13084 18974828
Nanog GSE11329 18358816 Suz12 GSE18776 20064375
Nanog GSE11724 18692474 Tbx3 GSE19219 20139965
Nelfa GSE20530 20434984 Tcf3 GSE11724 18692474
Nr0b1 GSE11329 18358816 Tcfcp2l1 GSE11431 18555785
Nr5a2 GSE19019 20096661 Trim28 GSE12283 19339689
Pou5f1 GSE11431 18555785 Wdr5 GSE22934 21477851
Pou5f1 GSE22934 21477851 Zfp281 GSE11329 18358816
Pou5f1 GSE11329 18358816 Zfp42 GSE11329 18358816
Pou5f1 GSE11724 18692474

Table 3
Transcriptome data of TF perturbation for the construction of high-throughput golden standard network.

Factor GEO accession Pubmed ID Factor GEO accession Pubmed ID

Cdx2 GSE12986 20081188 Pou5f1 GSE19588 21477851
Cdx2 GSE16375 19796622 Pou5f1 GSE26520 23462645
Ctr9 GSE12078 19345177 Pou5f1 GSE4189 16518401
Esrrb GSE26520 23462645 Rest GSE26520 23462645
Jarid2 GSE26520 23462645 Rest GSE31381 22355682
Jarid2 GSE31381 22355682 Sall4 GSE16375 19796622
Kdm1a GSE27844 22297846 Sall4 GSE26520 23462645
Klf4 GSE16375 19796622 Sfpi1 GSE16375 19796622
Klf4 GSE26520 23462645 Smad1 GSE16375 19796622
Myc GSE16375 19796622 Sox2 GSE16375 19796622
Myc GSE26520 23462645 Sox2 GSE26520 23462645
Mycn GSE16375 19796622 Stat3 GSE16375 19796622
Mycn GSE26520 23462645 Stat3 GSE26520 23462645
Nacc1 GSE26520 23462645 Suz12 GSE16375 19796622
Nanog GSE16375 19796622 Suz12 GSE26520 23462645
Nanog GSE26520 23462645 Tbx3 GSE26520 23462645
Nanog GSE4189 16518401 Tbx3 GSE31381 22355682
Nelfa GSE16375 19796622 Tcf3 GSE16375 19796622
Nelfa GSE26520 23462645 Tcfcp2l1 GSE26520 23462645
Nr0b1 GSE16375 19796622 Tcfcp2l1 GSE31381 22355682
Nr0b1 GSE26520 23462645 Trim28 GSE26520 23462645
Nr5a2 GSE16375 19796622 Wdr5 GSE19588 21477851
Nr5a2 GSE26520 23462645 Zfp281 GSE26520 23462645
Pou5f1 GSE16375 19796622 Zfp42 GSE26520 23462645

Fig. 2. ROC curves and AUCs of current methods on transcriptome data alone. Networks were inferred from transcriptome data alone. (A) evaluation with high-throughput
golden standard; (B) evaluation with literature-based low-throughput golden standard.
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Fig. 3. ROC curves and AUCs of different methods on mESC gene regulatory network inference. (A) evaluation with high-throughput golden standard; (B) evaluation with
literature-based low-throughput golden standard. L0 (I), L1/2 (I), L1 (I): integrate ChIP-X and transcriptome data; L0, L1/2, L1: transcriptome data alone. (C and D) 1000 times’
bootstrap was used to test the stability of AUCs. Box plot of the 1000 AUCs shows the variability of the AUCs.
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methods from transcriptome data alone. To retain the cell-type
specificity of the inferred gene regulatory networks, we incorpo-
rated data from only mESC. Two TF-target datasets from high-
throughput and low-throughput studies respectively are used as
golden standards to evaluate the accuracy. As expected, their AUCs
are all close to random on both evaluation data because the num-
ber of samples is much less than the number of regulators in our
mESC data set (Fig. 2). Thus we incorporated ChIP-X data to im-
prove the accuracy. We applied three Lp (p = 1,1/2,0) regularization
models on the integration of ChIP-X and transcriptome data, and
compared their performance. The L1 regularization model used
Table 4
Comparison of different LASSO-type regularization methods on mESC gene regulatory netw
high-throughput golden standard (upper triangle, p-values in orange) or low-throughput

p-value L0 (I) L1/2 (I) L1 (I)
AUC (H)* 0.913 0.897 0.7
L0 (I) <1.000E-284 <1.000E-2

L1/2 (I) <1.000E-284 <1.000E-2

L1 (I) <1.000E-284 <1.000E-284

L0 <1.000E-284 <1.000E-284 4.890E-2

L1/2 <1.000E-284 <1.000E-284 2.999E-1

L1 <1.000E-284 <1.000E-284 3.134E-1
AUC (L)* 0.921 0.834 0.68

⁄ AUC (HGS): AUC for high-throughput evaluation data (red); AUC (LGS): AUC for low-t
the same algorithm as ISTA, but using a different initial X0 derived
from ChIP-X data. Without the integration of ChIP-X data, the per-
formance of the three models is similar to other methods and very
poor when evaluated with either high-throughput (HGS) or low-
throughput (LGS) golden standard (Fig. 3A and B). When ChIP-X
data are integrated for network inference, the performance of all
three regularization models dramatically improved, and the L0

and L1/2 regularization models significantly outperformed the L1

regularization model (Fig. 3A and B, Table 4). The stabilities of
the AUCs for all models are high when evaluated on high-through-
put golden standard (Fig. 3C), while, due to the small number of
ork inference. Pair-wise comparisons of AUCs were performed with Wilcoxon test on
golden standard (lower triangle, p-value in blue).

L0 L1/2 L1

0.538 0.544 0.557
84 <1.000E-284 <1.000E-284 <1.000E-284

84 <1.000E-284 <1.000E-284 <1.000E-284

<1.000E-284 <1.000E-284 <1.000E-284

57 7.44E-261 <1.000E-284

27 9.304E-98 <1.000E-284

54 3.306E-67 1.850E-05
0.554 0.61 0.599

hroughput evaluation data (purple).



Fig. 4. Errors of three regularization models. A: errors against the sparsity level (kXx,jk0), which represents the number of TFs that are inferred as regulators of the target
(solutions are achieved after 200 iterations); B: errors against the number of iterations (sparsity level is �1% (kXx,jk0 = 10)). Each data point is the average of all genes. Error
bars are the 95% confidence intervals. Errors were recorded when gene regulatory networks were inferred from integrative omics data.

Fig. 5. Inferred TFs and their regulations on the targets. (A) TFs are ranked
according to the number of targets in the inferred network (red line); and the
number of publications, in which the TF and embryonic stem cell are co-occurred, is
plotted for each ranked TF (blue line). (B) heatmap shows an example network with
the regulatory connections between TFs and targets. Each row is a target gene,
whereas each column is a TF. 10 TFs are detected for each target (sparsity level is
�1%, kXx,jk0 = 10). Red points are positive regulations, blue points are negative
regulations, and white points indicate no regulation relationship.
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known TF-target pairs, AUCs of different models calculated on low-
throughput golden standard are less stable (Fig. 3D). But the L0 and
L1/2 regularization models for integrative data still showed signifi-
cantly better performance when evaluated on this data set (Table 4
and Fig. 3B). ROCs describe the information of false positive rate
(FPR) and true positive rate (TPR) of all models. In biological stud-
ies, 0.05 is commonly used as the cutoff of FPR. At the FPR of 0.05,
when evaluated with HGS, integration of ChIP-X data achieved
TPRs of 0.637, 0.594 and 0.079 for the L0, L1/2 and L1 regularization
models respectively, and calculation with transcriptome data alone
had TPRs of 0.031, 0.034 and 0.044 for the L0, L1/2 and L1 regulari-
zation models respectively (Fig. 3A). The L0, and L1/2 regularization
models achieved much higher sensitivity when integrating ChIP-X
data, which meets biological researches’ demand much better.
Fig. 7 shows an example networks known to be active in mESC.
A strict and identical cutoff (score Si;j P 0:1) is used for all three
models. The L0 and L1/2 regularization models reported much more
true targets than the L1 regularization model.

The advantages of the L0 and L1/2 regularization models are also
demonstrated by the smaller error between AX:;j and B:;j when
compared with the L1 regularization model (Fig. 4). The errors
are calculated along different sparsity levels (Fig. 4A) or iterations
(Fig. 4B). When more TFs are selected, smaller error is achieved. To
obtain solutions with same sparsity level, the L1 regularization
model showed a larger error than the L0 and L1/2 regularization
models, which means that it gets less sparse if we fix the error
allowance. This observation is consistent with several previous
numerical experiments [22–24]. The error reduction along the iter-
ation of the L0 and L1/2 regularization models were also faster than
the L1 regularization model after 100 iterations (Fig. 4B). Heatmap
in Fig. 5B illustrates an example gene regulatory network inferred
by the L0 regularization model in mESC, in which only a small por-
tion of TFs regulates most of the targets. The inferred TFs with
more targets significantly overlapped with the TFs that were inten-
sively reported to be associated with ESCs (Fig. 5A, p-value is
9.95E-10 in hypergeometric test).

The iterative thresholding algorithms we applied here only re-
quire low storage and computation cost [11,23,32]. The computa-
tional complexity of iterative hard and soft thresholding
algorithms for the L0 and L1 regularization models, respectively,
has been reported to be O(kr logm), where k is the number of iter-
ations, r is the number of TFs and m is the number of targets
[11,32,40]. The L1/2 regularization model costs the similar compu-
tation time, since its computational complexity is similar to that of
the L0 and L1 regularization models (Fig. 6). Here, these three reg-
ularization models inferred the gene regulatory network with 939
TF, 19978 targets and 245 samples of mouse genome within one



Fig. 6. Runtime of different methods. L0 (I), L1/2 (I), L1 (I): integrate ChIP-X and
transcriptome data; L0, L1/2, L1: transcriptome data alone.
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hour with one Intel Core i7 in personal laptop (2.00 GHz, 8.00 GB of
RAM), slower than YALL1, but much faster than ARACNE and
NARROMI (Fig. 6).

The ChIP-Array web server we developed previously can also
integrate ChIP-X and transcriptome data to construct gene regula-
tory network for a single TF [39]. Even though it provides more
confident network, it could be used only if both ChIP-X and tran-
scriptome data of perturbation are available for the same TF. How-
ever, only a limited number of TFs have both omics data. Moreover,
ChIP-Array constructs network for only one TF, although in most
cases, target genes are regulated by multiple TFs. Unlike ChIP-Array,
transcriptome data used by the Lp (p = 1,1/2,0) regularization mod-
els are not necessary to be the paired transcriptome data obtained
from the perturbation of the same TF of ChIP-X experiment. More-
Fig. 7. Example networks known to be active in mESC and inferred by the Lp (p = 1,1/2,0)
strict and identical cutoff (score Si,j P 0.1) is used for all three models. Grey arrows are re
that are identified by all three models; blue ones are identified by the L0 and L1/2 regular
identified by the L1/2 regularization model and the L1 regularization model, respectively. (
in the example network.
over, the Lp (p = 1,1/2,0) regularization models consider multiple
TFs at the same time to infer more comprehensive gene regulatory
network in a genome-wide scale. To assess how three models rely
on the ChIP-X data, we tested their performance with different ini-
tial X0 s. A series of initial X0 s are made up of ChIP-X defined TF-
target relationships with different distance cutoffs between a TF
binding site and a potential target gene from 200 bp to 50 kbp,
which are commonly used in biological studies (Table 5). After
the TF binding sites are detected from ChIP-X data, a gene that lo-
cates closely to a TF binding site is usually considered as a potential
target of the TF. However, proximity may not always indicate a
true target, because the TF may bind on a distal enhancer, it may
have other unknown function rather than transcription regulation,
or sometimes multiple genes are close to a single TF binding site.
Thus a large portion of potential targets defined by only ChIP-X
data are false positives. Table 5 has shown that only 12.468-
16.277% of potential targets defined by ChIP-X data alone are true
targets that are verified by the TF knockdown/overexpression
experiments (HGS). When a shorter distance cutoff is used, fewer
genes will be defined as potential targets in the initial X0, less false
targets, but some true targets in a longer distance may be lost.
When a longer distance cutoff is chosen, more true targets will
be included, but false targets will be increased also. With different
initial X0 s, the L0 and L1/2 regularization models consistently out-
performed the L1 regularization model (Table 5). Even though high-
throughput golden standard shares the ChIP-X data with the initial
X0 s, the large proportions of false targets in the initial X0 s show
that ChIP-X data alone could not infer the true targets accurately.
PCC values between TF and target expression profiles in the initial
X0 s were used to indicate the possible regulatory effects of the TFs
on the targets (activated or repressed), however, using PCC value in
regularization models from integrative omics data. (A) Example networks in mESC. A
gulations that are not identified by any of three models; red arrows are regulations
ization models but not the L1 regularization model; purple and green ones are only
B) Venn diagram shows numbers of true regulations that identified by three models



Table 5
Sensitivities of Lp (p = 1,1/2,0) regularization models to different initial X0s. Initial X0s were produced with different distance cutoffs for the potential targets defined by ChIP-X
data.

Distance cutoff (bp) 200 500 1000 2000 5000 10000 20000 50000

AUC (HGS, L0 (I))* 0.855 0.865 0.875 0.887 0.900 0.914 0.918 0.914
AUC (HGS, L1/2 (I)) 0.843 0.855 0.861 0.870 0.886 0.9 0.902 0.897
AUC (HGS, L1 (I)) 0.705 0.709 0.705 0.709 0.703 0.703 0.696 0.677

AUC (LGS, L0 (I))* 0.737 0.860 0.810 0.933 0.876 0.907 0.908 0.872
AUC (LGS, L1/2 (I)) 0.812 0.797 0.800 0.868 0.865 0.895 0.883 0.864
AUC (LGS, L1 (I)) 0.716 0.757 0.697 0.794 0.679 0.742 0.679 0.670

AUC (HGS, PCC) 0.531 0.531 0.530 0.531 0.537 0.534 0.538 0.533

No. of true targets in initial X0 (HGS) 15050 17049 18853 20816 24660 29271 32953 37183
No. of all potential targets in initial X0 96083 107644 117281 128442 151500 180456 222186 298217
% of true targets in initial X0 (HGS) 15.664 15.838 16.075 16.207 16.277 16.221 14.831 12.468

* AUC (HGS): AUC for high-throughput golden standard; AUC (LGS): AUC for low-throughput golden standard.
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the initial X0 s as the predictor to classify true targets in those po-
tential targets defined by ChIP-X data resulted in very low AUCs
(0.530–0.538, Table 5). Besides, least norm minimization can pro-
vide the solution having the smallest L2 norm in all the possible
solutions, which is commonly used as the initial point for the algo-
rithms for solving the regularization problems of sparse optimiza-
tion [22]. We created initial X0 s via least norm minimization from
transcriptome data, then performed the applied iterative thres-
holding algorithms for the Lp (p = 0,1/2,1) regularization models
and evaluated results with the same methods. Three regularization
models, L0, L1/2 and L1, obtained AUCs of 0.529, 0.531 and 0.498
with high-throughput golden standard, and AUCs of 0.681, 0.672
and 0.629 with low-throughput golden standard, respectively.
Consistent with [22], the L0, L1/2 regularization models are slightly
better than L1 regularization model. However, the results starting
from L2 norm solution are still much worse than those starting
from the ChIP-X data. Thus, either ChIP-X or transcriptome data
alone cannot achieve satisfactory accuracy, and the L0 and L1/2 reg-
ularization models did improve the performance of gene regula-
tory network inference from integrating ChIP-X and
transcriptome data.

Recursive optimization of these three models iteratively moves
the initial X0

:;j to the solution with minimum value of error between
AX:;j and B:;j. When sample size is smaller than the number of fac-
tors, the solution is not unique. Without prior knowledge, X:;j

reaches one of the solutions that are close to the artificially as-
signed initial X0

:;j, like 0. Thus, even though the models achieve a
small error, which is mathematically profound; the non-unique-
ness of the solution makes it biologically contradictory, i.e. it
may not be the true biological solution we want. Integrating
ChIP-X data provides partial knowledge of the gene regulatory net-
work. The solutions that are close to the initial X0

:;j defined by ChIP-
X are biologically more meaningful. Thus the performances of
these three models improve after ChIP-X data are incorporated.
Since the L1 regularization model is convex, its local minimizer is
also the global minimizer. Thus different initial X0 s have less influ-
ence on the solution of L1 regularization model (Table 5). However,
the L0 and L1/2 regularization models are non-convex, the corre-
sponding algorithms only converge to some local minimizers
[41]. Here, we have shown that these local minimizers of the L0

and L1/2 regularization models obtained from integrative data are
much closer to the biological solutions we expect than those of
the L1 regularization model (Table 5).
4. Conclusion

In this study, we apply the L0 and L1/2 regularization models to
gene regulatory network inference from integrative omics data in
large genome with a small number of samples. Integrating ChIP-
X data with transcriptome profiles significantly improves the per-
formance of network inference. Compared with the commonly
used L1 regularization model, the L0 and L1/2 regularization models
have much higher accuracy for integrative omics data. We evalu-
ated the inferred networks with both high-throughput and low-
throughput golden standards. The L0 and L1/2 regularization models
consistently outperformed the L1 regularization model for integra-
tive omics data. Besides, the algorithms we applied here are com-
putationally efficient and can be executed by a personal computer
within one hour. In summary, we have demonstrated that the L0

and L1/2 regularization models are applicable to gene regulatory
network inference in biological researches that study higher organ-
isms but generate only a small number of omics data, and facilitate
biologists to analyze gene regulation at whole system level.
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