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Abstract. In this paper, we propose a box-constrained differentiable penalty method for
nonlinear complementarity problems, which not only inherits the same convergence rate as the
existing ℓ 1

p
-penalty method but also overcomes its disadvantage of non-Lipschitzianness. We

introduce the concept of a uniform ξ-P -function with ξ ∈ (1, 2], and apply it to prove that the
solution of box-constrained penalized equations converges to that of the original problem at an
exponential order. Instead of solving the box-constrained penalized equations directly, we solve a
corresponding differentiable least squares problem by using a trust-region Gauss-Newton method.
Furthermore, we establish the connection between the local solution of the least squares problem
and that of the original problem under mild conditions. We carry out the numerical experiments on
the test problems from MCPLIB, and show that the proposed method is efficient and robust.
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1. Introduction. Consider the following nonlinear complementarity problem
(NCP) of finding a vector x ∈ Rn satisfying the following conditions

x ≤ 0, F (x) ≤ 0, xTF (x) = 0, (1.1)

where the function F : Rn → Rn is assumed to be continuously differentiable. We
use X∗ to denote the solution set of problem (1.1) and J to denote the index
set {1, 2, . . . , n}. When F is an affine function, problem (1.1) is reduced to a
linear complementarity problem (LCP). Complementarity problems play an important
role in operations research, option pricing, economic equilibrium models and the
engineering sciences; see, e.g., [12, 13, 16].

Comprehensive studies for the NCP have been done, see monographs [7, 10, 11]
and the references therein. Particularly, we refer to two kinds of methods, which are
efficient to solve the NCP and will be compared with the proposed method in the
numerical experiments. Chen and Mangasarian [5] proposed a class of parametric
smooth functions to smooth out the nonsmooth equations transformed by the NCP.
These smoothing functions were refined by Chen and Harker in [4]. The semismooth
Newton method for solving the NCP by virtue of the Fischer-Burmeister function
[14] was widely studied in [8, 20, 21]. Penalty function methods play an important
role in nonlinear programming, see [19, 29, 32, 33]. Recently, the ℓ 1

p
(p > 1)-penalty

method has received a great deal of attention in solving problem (1.1) and some
desirable results on the convergence rate were proved in [30]. Specifically, the ℓ 1

p
-

penalty method for problem (1.1) is to find a vector x ∈ Rn satisfying the following
system of nonlinear equations

ϕ(x, ρ) := ρF (x) + [x]
1
p

+ = 0, (1.2)
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where ρ > 0 is the penalty parameter, p ≥ 1 is the power, [x]
1
p

+ is a vector with

components ([x]
1
p

+)i = max{xi, 0}
1
p for all i ∈ J . Throughout this paper, we use ∥ · ∥

to indicate the Euclidean norm.

As p = 1, the ℓ 1
p
-penalty method is reduced to the ℓ1(or linear)-penalty method,

which was first proposed by Bensoussan and Lions [1] for solving a continuous
variational inequality problem. They proved that the solution to the penalized
equation converges to the exact one of the variational inequality problem at the rate
of O(ρ

1
2 ). This square root rate of convergence requires ρ to be sufficiently small so

as to achieve a given accuracy of the approximate solution. However, researchers in
[15, 36] pointed out that the small values of the penalty parameter ρ result in poorly
conditional algebraic problems in solving nonlinear equations (1.2).

Wang et al. [31] proposed an ℓ 1
p
-penalty method to solve the LCP arising from

American options. They proved that the solution xρ converges to x∗ at a rate of
O(ρ

p
2 ), which significantly improves the theoretical result of the square root rate

of convergence mentioned above. Furthermore, Huang and Wang [17] extended the
ℓ 1

p
-penalty method to solve problem (1.1) and established that the convergence rate

between the solution of penalized equations and that of problem (1.1) is of an order at

least O(ρ
p
ξ ), provided that the function F is continuous and ξ-monotone for a positive

constant ξ ∈ (1, 2] (see Definition 2.1 for its definition). The same convergence rate has
been established in [18] for the ℓ 1

p
-penalty method in solving a mixed complementarity

problem.

However, all efficient methods for nonlinear equations cannot be used to solve the
ℓ 1

p
-penalized equations directly as the ℓ 1

p
-penalized term is not locally Lipschitz. Some

smoothing methods have been introduced to approximately solve the ℓ 1
p
-penalized

equations in [31, 35]. A vital drawback of the smoothing methods is that their
solutions become unstable as the smoothing parameter is sufficiently small.

In this paper, we introduce a new type of function F , called a uniform ξ-P -
function, which is weaker than the ξ-monotonicity and coincides with a uniform P -
function (or a P -function introduction in [10]) when the function F is linear. Under
the assumption of a uniform ξ-P -function, we show that problem (1.1) has a unique
solution, and moreover the penalized equations (1.2) have a unique solution for any
ρ > 0. Then we introduce a box-constrained differentiable penalty method for solving
problem (1.1), which not only inherits the convergence rate of the existing ℓ 1

p
-penalty

method [30] but also removes the drawback of the non-Lipschitzianness of the ℓ 1
p
-

penalized term. Specifically, we consider a differentiable system of nonlinear equations

with box-constraints, whose solution converges to x∗ at a rate of O(ρ
k
ξ ) provided the

function F is a uniform ξ-P -function. In general, it needs some good starting point
for solving the box-constrained nonlinear equations directly, which is unavailable in
practice. In order to design globally convergent methods that allow arbitrary starting
points to solve the NCP, we consider a corresponding least squares problem, instead
of solving the box-constrained equations directly, and apply the trust-region Gauss-
Newton method introduced by Macconi et al. [26] to solve it. Furthermore, we
establish the connection between solutions of the least squares problem and that of
problem (1.1).

We carry out numerical experiments on test problems from MCPLIB [3]. We first
set p = 2 and compare the performance of the proposed method with the smoothed
ℓ 1

2
-penalty method [17] and the ℓ1-penalty method [1] in terms of the number of
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function evaluations and the values of the penalty parameter. Numerical results
show that our proposed method is more efficient and robust than other two methods.
Then different values of power p = 1, 2, 100, 1000, 5000, 10000 are chosen to test the
efficiency of our method. Furthermore, we compare the proposed method with the
smooth approximation method [4] and the nonsmooth equations method [20] in terms
of the number of function evaluations.

This paper is organized as follows. In Section 2, we propose a differentiable
penalty method for solving problem (1.1). Moreover, we establish the main
convergence rate theorem for the proposed method under the assumption of a uniform
ξ-P -function. We present a numerical algorithm to solve problem (1.1) in Section 3.
In the last section, preliminary numerical experiments are shown.

2. Box-Constrained Differentiable Penalty Method. In this section, we
first introduce the concept of a uniform ξ-P -function with ξ ∈ (1, 2] that is used as
the basic assumption in this paper. Then we propose a box-constrained differentiable
penalty method and establish its convergence rate theorem.

2.1. Uniform ξ-P -function. To begin, we first recall some useful definitions.
Definition 2.1 ([10, Definition 2.3.1]). A function S : Rn → Rn is said to be

ξ-monotone for some ξ ∈ (1, 2], if there exists a constant α > 0 such that

(x− y)T (S(x)− S(y)) ≥ α∥x− y∥ξ, ∀ x, y ∈ Rn.

When ξ = 2, the ξ-monotonicity is called the 2-monotonicity.
Definition 2.2 ([10, Definition 3.5.8]). A function S : Rn → Rn is said to be
• a P0-function, if for all pairs of distinct vectors x and y in Rn, there exists
an index κ = κ(x, y) ∈ J such that

xκ ̸= yκ and (xκ − yκ)(Sκ(x)− Sκ(y)) ≥ 0;

• a P -function, if for all pairs of distinct vectors x and y in Rn,

max
1≤κ≤n

(xκ − yκ)(Sκ(x)− Sκ(y)) > 0;

• a uniform P -function, if there exists constant α > 0 such that for all pairs of
vectors x and y in Rn,

max
1≤κ≤n

(xκ − yκ)(Sκ(x)− Sκ(y)) ≥ α∥x− y∥2.

Definition 2.3 ([23, Definition 2(b)]). A function S : Rn → Rn is said to be
a strict P -function, if there exists γ > 0 such that S − γI is a P -function, where
I : Rn → Rn is an identical mapping.

Definition 2.4 ([10]). A matrix A ∈ Rn×n is said to be
• a P0-matrix if for any vector x ̸= 0 in Rn, and y = Ax, there is at least one
index κ ∈ J such that xκ ̸= 0 and xκyκ ≥ 0;

• a P -matrix if for any x ̸= 0 in Rn, and y = Ax, there is at least one index
κ ∈ J such that xκ ̸= 0 and xκyκ > 0;

• an M -matrix if ai,j ≤ 0 whenever i ̸= j and all principal minors of A are
positive.

Extending the definition of the ξ-monotonicity, we introduce a new notion of
function F , called a uniform ξ-P -function, which is stronger than the P -function.
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Definition 2.5. A function S : Rn → Rn is said to be a uniform ξ-P -function
for some ξ ∈ (1, 2], if there exists a constant α > 0 such that for all pairs of vectors
x and y in Rn,

max
1≤κ≤n

(xκ − yκ)(Sκ(x)− Sκ(y)) ≥ α∥x− y∥ξ.

We see that a ξ-P -function is a P0-function and is weaker than the ξ-monotonicity.
The ξ-monotonicity has been utilized in [17] to establish the convergence rate of

O(ρ
p
ξ ) by which the solution of problem (1.2) converges to that of problem (1.1). The

following propositions are useful to investigate properties of a uniform ξ-P -function.
Proposition 2.6 ([10, Proposition 3.5.9]). Let S : D ⊂ Rn → Rn be a

continuously differentiable P0-function on the open set D. Then ∇S(x) is a P0-matrix
for each x ∈ D.

Corollary 2.7. Let S : D ⊂ Rn → Rn be a continuously differentiable ξ-P -
function on the open set D. Then ∇S(x) is a P0-matrix for each x ∈ D.

Proposition 2.8 ([7, Theorem 3.4.2]). A matrix A ∈ Rn×n is a P0-matrix if
and only if for every nonzero vector x, there exists an index i ∈ J such that xi ̸= 0
and xi

(
Ax

)
i
≥ 0.

Proposition 2.9 ([10]). Let the linear function S : Rn → Rn be S(x) = Ax+ b
with a given matrix A ∈ Rn×n and a vector b ∈ Rn. Then
(a) S is ξ-monotone if and only if matrix A is positive definite;
(b) S is a (uniform) P -function if and only if A is a P -matrix.

It follows from Definition 2.5 and the last proposition, we conclude the next
corollary.

Corollary 2.10. Let the linear function S : Rn → Rn be S(x) = Ax + b with
a given matrix A ∈ Rn×n and a vector b ∈ Rn. Then S is a uniform ξ-P -function if
and only if A is a P -matrix.

Proposition 2.11 ([10, Proposition 2.3.2]). Let S : D ⊂ Rn → Rn be
continuously differentiable on the open convex set D. Then S is 2-monotone on D if
and only if its Jacobian matrix ∇S(x) is uniformly positive definite for all x in D,
i.e., there exists a constant c′ > 0 such that

yT∇S(x)y ≥ c′∥y∥2, ∀ y ∈ Rn,

for all x ∈ D.
We present an example from [7, Example 3.3.2] below to show that the uniform

ξ-P -function is strictly weaker than the ξ-monotonicity.
Example 2.1. Let S(x) = Ax+ b with

A =

(
1 −3
0 1

)
and a vector b ∈ Rn. Clearly, A is a P -matrix. Letting x = (1, 1)T , we note that
xTAx = −1 < 0, which shows that A is not positive definite. Therefore, it follows
from Proposition 2.9 that we know function S(x) is a uniform ξ-P -function, but not
ξ-monotone.

We further describe a nonlinear example to show that the uniform P -function is
strictly weaker than the 2-monotonicity.

Example 2.2. Consider function G : R2 → R2 as

G(x) =

(
x3
1

x3
2

)
+ S(x),

4



where S(x) is the linear function defined in Example 2.1. The Jacobian matrix of
function G(x) is

∇G(x) =

(
3x2

1 0
0 3x2

2

)
+

(
1 −3
0 1

)
.

Take x = (0, 0)T . Then ∇G(x) =

(
1 −3
0 1

)
. Example 2.1 shows that the

matrix ∇G(0) is not positive definite. Therefore, by Proposition 2.11, we conclude
that the function G(x) is not 2-monotone. By Example 2.1, we have the function S(x)
is a uniform P -function. Then there exists constant α > 0 such that for all pairs of
vectors x and y in R2 the inequality max

1≤κ≤2
(xκ−yκ)(Sκ(x)−Sκ(y)) ≥ α∥x−y∥2 holds.

We also notice that the inequality (xκ− yκ)(x
3
κ− y3κ) ≥ 0 holds for all pairs of vectors

x and y in R2 and any 1 ≤ κ ≤ 2. Therefore, we have

max
1≤κ≤2

(xκ − yκ)(Gκ(x)−Gκ(y))

= max
1≤κ≤2

(
(xκ − yκ)(x

3
κ − y3κ) + (xκ − yκ)(Sκ(x)− Sκ(y))

)
≥ max

1≤κ≤2
(xκ − yκ)(Sκ(x)− Sκ(y)) ≥ α∥x− y∥2.

Consequently, the function G(x) is a uniform P -function.
In the following, assuming the function F is a uniform ξ-P -function, we show that

the solution of penalized equations (1.2) is unique. Before doing so, we first prove an
auxiliary proposition.

Proposition 2.12. Assume that the function F : Rn → Rn is a uniform ξ-P -
function. Then problem (1.1) has a unique solution.

Proof. It follows from [10, Proposition 1.1.3] that problem (1.1) is equivalent to
the following variational inequality problem: find a vector x ∈ K such that for all
vectors y ∈ K

(y − x)TF (x) ≥ 0, (2.1)

where K = {y ∈ Rn | y ≤ 0}.
Since a uniform ξ-P -function is a P -function, it follows from [10, Proposition

3.5.10] that the variational inequality problem (2.1) has at most one solution. Thus, to
prove that problem (1.1) has a unique solution, it suffices to show that the variational
inequality problem (2.1) has a solution. Using [10, Proposition 3.5.1], we only need

to prove that there exists a vector xref ∈ K such that the set

L′
≤ := {x ∈ K | Fν(x)(xν − xrefν ) ≤ 0, ∀ ν ∈ J such that xν ̸= xrefν }

is nonempty and bounded. Let xref ∈ K and ∥xref∥ ̸= 0. By the continuity of
function F on the closed convex set K, we obtain that the set L′

≤ is nonempty via
the intermediate value theorem. Now, assume on the contrary that the set L′

≤ is

unbounded. There exists a sequence {xk} ⊂ K such that for all k,

Fν(x
k)(xk

ν − xrefν ) ≤ 0, ∀ ν ∈ J such that xk
ν ̸= xrefν , (2.2)

and lim
k→∞

∥xk∥ = +∞.
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Since the function F is a uniform ξ-P -function, it follows that there exist constants

α > 0, ξ > 1 and an index ν = ν(xk, xref) ∈ J with xk
ν ̸= xrefν such that

(Fν(x
k)− Fν(x

ref))(xk
ν − xrefν ) ≥ α∥xk − xref∥ξ.

Dividing on both sides of the last inequality by the term ∥xk∥
ξ+1
2 , we have

lim
∥xk∥→+∞

Fν(x
k)(xk

ν − xrefν )

∥xk∥ ξ+1
2

= +∞,

which contradicts with inequality (2.2). Therefore, the set L′
≤ is bounded for the

given xref ∈ K. By [10, Proposition 3.5.1], we conclude that the variational inequality
problem (2.1) has a solution. Hence, we conclude that problem (1.1) has a unique
solution.

Proposition 2.13. Assume the function F : Rn → Rn is a uniform ξ-P -
function. Then the penalized nonlinear equations (1.2) have a unique solution for any
ρ > 0.

Proof. For any vectors x, y ∈ Rn and index i ∈ J , we have

(xi − yi)(ϕi(x, ρ)− ϕi(y, ρ)) = ρ(xi − yi)(Fi(x)− Fi(y)) + (xi − yi)([xi]
1
p

+ − [yi]
1
p

+)

≥ ρ(xi − yi)(Fi(x)− Fi(y)),

since the function [x]
1
p

+ is monotone. There exist constants α > 0 and ξ > 1 such that

max
1≤κ≤n

(xκ − yκ)(ϕκ(x, ρ)− ϕκ(y, ρ)) ≥ ρ max
1≤κ≤n

(xκ − yκ)(Fκ(x)− Fκ(y))

≥ ρα∥x− y∥ξ,

where the last inequality follows from Definition 2.5. Therefore, the function ϕ(x, ρ)
is a uniform ξ-P -function for any ρ > 0, and thus the following variational inequality
problem: find a vector x ∈ Rn such that

(y − x)Tϕ(x, ρ) ≥ 0, ∀ y ∈ Rn

has a unique solution by Proposition 2.12. We proved that the penalized equations
(1.2) have a unique solution.

Remark 2.1. Using [23, Propositions 2 and 3], we can achieve the same
conclusion as Proposition 2.13 under the assumption of a strict P -function for F .

2.2. Box-Constrained Differentiable Penalty Method. In the following,
we introduce a box-constrained differentiable penalty method for solving problem
(1.1), which not only shares the same convergence rate as the existing ℓ 1

p
-penalty

method but also can be implemented easily. We consider the system of box-
constrained equations as follows:

F(x, ρ) :=


ρx1F1(x) + [F1(x)]

q
+

ρx2F2(x) + [F2(x)]
q
+

...
...

...
ρxnFn(x) + [Fn(x)]

q
+

 = 0, x ∈ Ω, (2.3)
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where q = 1 + 1
p and Ω := {x ∈ Rn | x ≤ 0}. Since the composite function

[g(x)]q+ is first order continuously differentiable as long as the function g : Rn → R is
continuously differentiable and q > 1. Under our assumption, we see that the function
F(·, ρ) : Rn → Rn is first order continuously differentiable for each ρ. The system
(2.3) can be solved efficiently by algorithms [22, 26].

Remark 2.2. Alternately, we can consider another system of constrained
equations for problem (1.1) as follows

ρx1F1(x) + [x1]
q
+

ρx2F2(x) + [x2]
q
+

...
...

...
ρxnFn(x) + [xn]

q
+

 = 0, x ∈ Ω̂, (2.4)

where Ω̂ := {x ∈ Rn | F (x) ≤ 0}. However, the feasible set Ω̂ is not convex. It is not
easy to solve the system (2.4) when the function F is nonlinear.

Proposition 2.14. Let x∗ ∈ Rn be a solution of problem (1.1). Then x∗ solves
F(x, ρ) = 0 for any given ρ > 0.

We present an example that shows the converse of Proposition 2.14 is not true.
Example 2.3. Let F (x) = 0 for all x ∈ R. It is obvious that x∗ solves the

equation F(x, ρ) = 0 for any x∗ ∈ R. But x∗ is not the solution of problem (1.1)
when x∗ > 0.

Remark 2.3. Example 2.3 indicates that the constraint set Ω in the system (2.3)
is vital to the box-constrained differentiable penalty method for problem (1.1).

Given the penalty parameter ρ and power p. The solution of the system (2.3) in
general is not unique even if problem (1.1) has a unique solution, which is verified by
the next example.

Example 2.4. Let F (x) = x+ 1 with x ∈ R and q = 2. It is clear that x∗ = −1
is the unique solution of this linear complementarity problem. Its box-constrained
equation is ρx(x + 1) + [x + 1]2+ = 0 with x ≤ 0. The constrained equation has two
solutions, one is x̄ρ = −1 and the other one is x̂ρ = − 1

ρ+1 .

2.3. Convergence Rate Analysis. In this subsection, we establish that the
solution xρ of system (2.3) converges to a solution x∗ of problem (1.1) at a rate of

O(ρ
p
ξ ), provided that the function F is a uniform ξ-P -function. We first show some

useful lemmas as follows.
Lemma 2.15. For each ρ > 0, assume that the function F : Rn → Rn is a

uniform ξ-P -function and let the vector xρ ∈ Rn be a solution of system (2.3). Then
there exists a positive constant M1 > 0, independent of xρ, ρ and p, such that

∥xρ∥ ≤ M1.

Proof. Given ρ > 0. Since xρ is a solution of system (2.3), it follows that

ρxρ
iFi(x

ρ) + Fi(x
ρ)[Fi(x

ρ)]
1
p

+ = 0, which means xρ
iFi(x

ρ) ≤ 0, for all i ∈ J .
By the uniform ξ-P -function of function F , we see that there exist constants

α > 0 and ξ > 1 such that

α∥xρ∥ξ ≤ max
1≤i≤n

xρ
i

(
Fi(x

ρ)− Fi(0)
)
≤ max

1≤i≤n

(
− xρ

iFi(0)
)
≤ ∥xρ∥∥F (0)∥∞.

Consequently, we proved this lemma with M1 = ξ−1

√
1
α∥F (0)∥∞.
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Lemma 2.15 implies that, for any ρ > 0, the solution of system (2.3) always lies
in a bounded closed set. Since F is continuous, we have that there exists a positive
constant L, independent of xρ, ρ and p, such that ∥F (xρ)∥ ≤ L, for all ρ > 0.

Lemma 2.16. For each ρ > 0, assume that the function F : Rn → Rn is a
uniform ξ-P -function and let the vector xρ ∈ Rn be a solution of system (2.3). Then
there exists a positive C1, independent of x

ρ and ρ, such that

∥[F (xρ)]+∥ ≤ C1ρ
p.

Proof. Since xρ is a solution of system (2.3), it follows that [Fi(x
ρ)]q+ =

−ρFi(x
ρ)xρ

i ≤ ρ∥F (xρ)∥∞∥xρ∥∞ for all index i ∈ J . Therefore, we have
∥[F (xρ)]+∥∞ ≤ ρp∥xρ∥p∞. By Lemma 2.15 and the fact that there exists some constant

C̃ > 0 such that ∥[F (xρ)]+∥ ≤ C̃∥[F (xρ)]+∥∞, we have

∥[F (xρ)]+∥ ≤ C1ρ
p

where C1 = C̃Mp
1 .

Now, we establish our main convergence rate theorem.

Theorem 2.17. For each ρ > 0, assume that the function F : Rn → Rn is
a uniform ξ-P -function. Let vectors x∗ and xρ in Rn be the solutions of problem
(1.1) and system (2.3), respectively. Then there exist constants Ĉ > 0 and ξ > 1,
independent of xρ and ρ, such that

∥x∗ − xρ∥ ≤ Ĉρ
p
ξ .

Proof. Since xρ is a solution of system (2.3), the index set at xρ can be split into
the following two sets:

αρ = {i ∈ J | xρ
i = 0, Fi(x

ρ) ≤ 0};
γρ = {i ∈ J | xρ

i < 0, Fi(x
ρ) ≥ 0}.

We first show that the inequality holds for any index i ∈ J(
x∗
i −xρ

i

)(
Fi(x

∗)−Fi(x
ρ)+ [Fi(x

ρ)]+

)
=

(
x∗
i −xρ

i

)(
Fi(x

∗)+ [Fi(x
ρ)]−

)
≤ 0 (2.5)

where [a]− := max{−a, 0} for all a ∈ R. Note that x∗ is a solution of problem (1.1),
the following two cases are considered.

(I) i ∈ αρ. We have(
x∗
i − xρ

i

)(
Fi(x

∗)− Fi(x
ρ) + [Fi(x

ρ)]+

)
= x∗

i [Fi(x
ρ)]− ≤ 0;

(II) i ∈ γρ. We have(
x∗
i − xρ

i

)(
Fi(x

∗)− Fi(x
ρ) + [Fi(x

ρ)]+

)
= −xρ

iFi(x
∗) ≤ 0.

Therefore, we proved that the inequality (2.5) holds for all index i ∈ J .
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Since the function F is a uniform ξ-P -function, it follows that there exist constants
α > 0 and ξ > 1 such that

α∥x∗ − xρ∥ξ ≤ max
1≤i≤n

(
x∗
i − xρ

i

)(
Fi(x

∗)− Fi(x
ρ)
)

≤ max
1≤i≤n

(
− [Fi(x

ρ)]+(x
∗
i − xρ

i )
)

≤ C1ρ
p∥x∗ − xρ∥∞

≤ 2C1M1ρ
p,

where the second inequality is from inequality (2.5), the third one is from Lemma
2.16 and the last one is from Lemma 2.15. Therefore, we proved this theorem with

Ĉ = ξ

√
2C1M1

α .

Similar to the proof of Theorem 2.17, we can establish the convergence rate of
O(ρ

p
ξ ) for the existing ℓ 1

p
-penalty method under the assumption of a uniform ξ-P -

function (or a P -matrix for the LCP), which is weaker than that of the ξ-monotonicity
of the function F (or a positive definite matrix for the LCP) used in [17]. Here, the
details are omitted.

Theorem 2.18. For each ρ > 0, assume that the function F : Rn → Rn is a
uniform ξ-P -function. Let vectors x∗ and xρ in Rn be the solutions of the problem
(1.1) and system (1.2), respectively. Then there exist constants Ĉ > 0 and ξ > 1,
independent of xρ and ρ, such that

∥x∗ − xρ∥ ≤ Ĉρ
p
ξ .

Corollary 2.19. For each ρ > 0, assume that the linear function F : Rn → Rn

is F (x) = Ax+ b with the matrix A ∈ Rn×n being a P -matrix and any vector b ∈ Rn.
Let vectors x∗ and xρ in Rn be the solutions of problem (1.1) and system (1.2),

respectively. Then, there exists a constant Ĉ > 0, independent of xρ and ρ, such that

∥x∗ − xρ∥∞ ≤ Ĉρp.

Remark 2.4. We note that the assumption of a P -matrix is weaker than the
assumption of a M -matrix used in [30] and the assumption of positive definiteness
used in [17].

Remark 2.5. It has been proved in [25] that the class of P -matrices contains not
only the positive definiteness matrix but also the M -matrix; furthermore, any strictly
or irreducibly diagonally dominant matrix with non-negative elements is likewise a
P -matrix.

We present an example from [7, Example 3.3.10] to verify the conclusions in
Remarks 2.4 and 2.5.

Example 2.5. Let

A =

 1 −1 0
1 1 −17
4 0 1

 .

Three eigenvalues of matrix A are 5 and −1 ± i
√
13. Thus, the matrix A is neither

positive definite nor an M -matrix. However, it is a P -matrix.
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3. Numerical Method. In this section, we describe specific algorithm to solve
the NCP. In order to use the global convergent methods that allow arbitrary starting
points to solve the NCP, we consider the corresponding least squares problem

min
x∈Ω

Ψ(x, ρ) :=
1

2
∥F(x, ρ)∥2. (3.1)

The first order necessary condition for a vector xρ ∈ Ω to be a local solution of
problem (3.1) for given ρ > 0 is stated in the following proposition.

Proposition 3.1 ([2, Proposition 2.1.2]). For each ρ > 0, assume that xρ is a
local solution of problem (3.1). Then, we have

∇Ψ(xρ, ρ)T (x− xρ) ≥ 0, ∀ x ∈ Ω, (3.2)

where ∇Ψ is the gradient of function Ψ.

For each ρ > 0, the Jacobian matrix ∇F of function F(x, ρ) can be expressed as

∇F(x, ρ) := ρΘ(x) + Π(x, ρ)∇F (x), (3.3)

where ∇F (x) is the Jacobian matrix of function F , Θ(x) and Π(x, ρ) are diagonal ma-
trices, i.e., Θ(x) := diag(F1(x), . . . , Fn(x)), Π(x, ρ) := diag(G1(x, ρ), . . . , Gn(x, ρ)),

and Gi(x, ρ) := ρxi + (1 + 1
p )[Fi(x)]

1
p

+ for all i ∈ J .

3.1. Trust-Region Gauss-Newton Method. In the following, we apply a
trust-region Gauss-Newton method to solve the least squares problem (3.1) for given
ρ > 0; more details can be found in [6, 24, 27]. At the k-th iteration, we consider a
quadratic approximation mk(d, ρ) for Ψ(x, ρ) at xk ∈ Ω and replace the problem (3.1)
by a trust region problem

min mk(d, ρ) s.t. ∥d∥ ≤ ∆k, (3.4)

with the objective function

mk(d, ρ) :=
1

2
∥F(xk, ρ) +∇F(xk, ρ)d∥2, (3.5)

where ∆k is the trust-region radius.

A formal description of the trust-region Gauss-Newton method for problem (3.1)
for given ρ > 0 is can be found in [26, Algorithm 3.1]. Here we omit the details.

We present a box-constrained differentiable penalty algorithm for problem (1.1).
Before doing this, we define the termination criterion for this algorithm as follows

Termination(x) := min{∥[x]+∥, ∥[F (x)]+∥, ∥F (x) ◦ x∥} ≤ ϵ, (3.6)

where ϵ > 0 is the tolerance parameter, which should be small enough, “◦” denotes
the component-wise multiplication. Now, a formal description of the box-constrained
differentiable penalty algorithm for problem (1.1) is given as follows.

10



Algorithm 1: Box-constrained differentiable penalty method for the NCP.

1 Initializing ρ0 > 0, ρmin; σ ∈ (0, 1), ϵ > 0 and an initial point x0 and let i := 0;

2 while ρi > ρmin do
3 if Termination(xi) ≤ ϵ then
4 Stop;
5 else
6 Using [26, Algorithm 3.1] to solve problem (3.1) with starting point xi and

penalty parameter ρi, we obtain xi+1;
7 end

8 Letting ρi+1 := σρi and i := i+ 1;

9 end

3.2. Convergence Analysis. In this subsection, we establish the connection
between solutions of the least squares problem (3.1) and solutions of problem (1.1).

Theorem 3.2. Suppose that vector xi ∈ Ω is the exact global solution of problem
(3.1), and that ρi → 0+. Then every limit point of the sequence {xi} is a solution of
problem (1.1).

Proof. Let x∗ be the solution of problem (1.1). It follows from Proposition 2.14
that Ψ(x∗, ρ) = 0 for any ρ > 0. Since xi is the exact global solution of problem
(3.1) for given ρi > 0, we have Ψ(xi, ρi) ≤ Ψ(x∗, ρi), which means that Ψ(xi, ρi) = 0.
Specifically, we have

1

2

n∑
l=1

(xi
lFl(x

i))2 +
1

ρi

( n∑
l=1

xi
l[Fl(x

i)]q+1
+ +

1

2ρi

n∑
l=1

[Fl(x
i)]2q+

)
= 0. (3.7)

By rearranging this expression, we obtain

1

2
(
1

ρi
)2

n∑
l=1

[Fl(x
i)]2q+ = −1

2

n∑
l=1

(xi
lFl(x

i))2 − 1

ρi

n∑
l=1

xi
l[Fl(x

i)]q+1
+

≤ − 1

ρi

n∑
l=1

xi
l[Fl(x

i)]q+1
+ ,

which means that

n∑
l=1

[Fl(x
i)]2q+ ≤ −2ρi

n∑
l=1

xi
l[Fl(x

i)]q+1
+ . (3.8)

Suppose that x̄ is a limit point of the sequence {xi}, so there is an infinite
subsequence K such that x̄ = lim

i
K→∞

xi ≤ 0, which implies x̄ ∈ Ω. By taking the

limit as i
K→ ∞, on both sides of (3.8), we have

n∑
l=1

[Fl(x̄)]
2q
+ = lim

i
K→∞

n∑
l=1

[Fl(x
i)]2q+ ≤ − lim

i
K→∞

2ρi
n∑

l=1

xi
l[Fl(x

i)]q+1
+ = 0,

where the last equality follows from ρi → 0+. Therefore, we have Fl(x̄) ≤ 0 for all
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l ∈ J . Moreover, by taking the limit as i
K→ ∞ in (3.7), we have

n∑
l=1

(x̄lFl(x̄))
2 = lim

i
K→∞

n∑
l=1

(xi
lFl(x

i))2

= − lim
i
K→∞

( 2

ρi

n∑
l=1

xi
l[Fl(x

i)]q+1
+ + (

1

ρi
)2

n∑
l=1

[Fl(x
i)]2q+

)
,

= − lim
i
K→∞

(
− 2

n∑
l=1

(xi
l)

2[Fl(x
i)]2+ + (

1

ρi
)2

n∑
l=1

[Fl(x
i)]2q+

)
≤ 0,

where the last equality follows from (2.3) that xi
l[Fl(x

i)]q+1
+ = −ρi(xi

l)
2[Fl(x

i)]2+ for
all l ∈ J .

Therefore, we have proved that x̄ ≤ 0, F (x̄) ≤ 0 and
n∑

l=1

(x̄lFl(x̄))
2 = 0, that is, x̄

is a solution of problem (1.1).
Theorem 3.3. Suppose that the function F : Rn → Rn is a uniform ξ-P -

function. Moreover, assume that xρ is a local solution of problem (3.1) for given
ρ > 0 and satisfies F (xρ) ≤ 0. Then xρ is the solution of problem (1.1).

Proof. Applying Proposition 3.1 at xρ for given ρ > 0, we have{
∂Ψ(xρ,ρ)

∂xi
= 0, if xρ

i < 0,
∂Ψ(xρ,ρ)

∂xi
≤ 0, if xρ

i = 0,

which can be expressed by virtue of (3.3) as follows{ (
ρΘ(xρ)F(xρ, ρ) +∇F (xρ)TΠ(xρ, ρ)F(xρ, ρ)

)
i
= 0, if xρ

i < 0,(
ρΘ(xρ)F(xρ, ρ) +∇F (xρ)TΠ(xρ, ρ)F(xρ, ρ)

)
i
≤ 0, if xρ

i = 0.
(3.9)

Since xρ satisfies F (xρ) ≤ 0, it follows that Π(xρ, ρ) = ρdiag(xρ
1, . . . , x

ρ
n).

We first prove that F(xρ, ρ) = 0. Assume on the contrary that F(xρ, ρ) ̸= 0.
Then there exists at least one index i ∈ J such that Fi(x

ρ, ρ) ̸= 0. Without loss
of generality, we assume F1(x

ρ, ρ) ̸= 0 and Fi(x
ρ, ρ) = 0 for all i = 2, . . . , n. Since

F1(x
ρ, ρ) = ρxρ

1F1(x
ρ), we see that F1(x

ρ) ̸= 0 and xρ
1 ̸= 0. It follows from (3.9) that(

ρΘ(xρ)F(xρ, ρ) +∇F (xρ)TΠ(xρ, ρ)F(xρ, ρ)
)
1
= 0. (3.10)

Thus,(
Θ(xρ)F(xρ, ρ)

)
1
= ρxρ

1F1(x
ρ)2 < 0 and

(
Π(xρ, ρ)F(xρ, ρ)

)
1
= ρ2(xρ

1)
2F1(x

ρ) < 0.

It follows from equality (3.10) that(
Π(xρ, ρ)F(xρ, ρ)

)
1

(
∇F (xρ)TΠ(xρ, ρ)F(xρ, ρ)

)
1
= −ρ4(xρ

1)
3F1(x

ρ)3 < 0,

which contradicts the fact that ∇F (xρ)T is a P0-matrix (because the uniform ξ-P -
function F is a P0-function). Therefore, we proved that F(xρ, ρ) = 0. Since further
xρ ≤ 0 and F (xρ) ≤ 0, it follows from (2.3) that xρ is the solution of problem (1.1).

In the next theorem, under the assumption of a uniform ξ-P -function on the
function F , we prove that the merit function Ψ has bounded level sets for given
ρ > 0.
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Theorem 3.4. Suppose that the function F : Rn → Rn is a uniform ξ-P -
function. Then the merit function Ψ(x, ρ) is level-bounded for each ρ > 0.

Proof. Suppose on the contrary that the level sets of Ψ(x, ρ) are unbounded for
given ρ > 0. Then there exist a sequence {xk} and a constant α̂ ≥ 0 such that
lim
k→∞

∥xk∥ = ∞ and

Ψ(xk, ρ) ≤ α̂. (3.11)

We define the index set T := {i ∈ J | {xk
i } is unbounded}. Since {xk} is unbounded,

it follows that T ≠ ∅. Let {zk} denote a bounded sequence defined by:

zki =

{
0 if i ∈ T ,
xk
i if i ̸∈ T .

By the definition of sequence {zk} and the assumption of a uniform ξ-P -function on
F , there exist constants α > 0, ξ > 1 and an index ν = ν(xk, zk) ∈ J such that

α
∑
i∈T

(xk
i )

ξ = α∥xk − zk∥ξ

≤ (xk
ν − zkν )(Fν(x

k)− Fν(z
k))

≤ max
i∈T

xk
i (Fi(x

k)− Fi(z
k))

= xk
j (Fj(x

k)− Fj(z
k))

≤ |xk
j ||Fj(x

k)− Fj(z
k)|,

(3.12)

where j is one of the indices at which the max is attained. Since j ∈ T , we can
assume, without loss of generality, that

{|xk
j |} → ∞. (3.13)

Dividing by |xk
j | on both sides of inequality (3.12), we have

α|xk
j |ξ−1 ≤ |Fj(x

k)− Fj(z
k)|,

this, in turn, implies

{|Fj(x
k)|} → ∞, (3.14)

since Fj(z
k) is bounded. However, (3.13) and (3.14) imply that {|Fj(x

k, ρ)|} → ∞,
which contradicts with (3.11).

4. Numerical Experiments. In this section, we present numerical results
of our proposed method described in Section 3 by using MATLAB R2011b. We
conduct numerical testing on Windows XP with 3.00GB of main memory and Intel(R)
Core(TM) 2 Duo 3.0GHz processors. We carry out the numerical experiments on the
test problems from MCPLIB [3].

We refer to the implementation of Algorithm 1 as the CDLOP method, which
stands for the Constrained Differentiable Lower Order Penalty method. For
convenience, we write the CDLOP method with p = 2 and 100 as the CDLOP1/2

and CDLOP1/100 methods, respectively. We first compare the performance of the
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DLOPP1/2 method with the ℓ 1
2
-penalty method [31] and ℓ1-penalty method [1] in

terms of the number of function evaluations and the values of the penalty parameter
ρ. Using the same terms, we compare the performance of the CDLOP method with
different values of power p = 1, 2, 100, 1000, 5000, 10000. Finally, based on the number
of function evaluations, we compare the performance of the proposed method with
some well known approaches, such as the smooth approximation method [4, 5] and
the nonsmooth equations method [20].

Before presenting our numerical results, we illustrate the implementation details
for our method and other existing methods used in this section as follows.

A smoothing strategy in [31] is used to smooth out the non-Lipschitzian term in
the ℓ 1

2
-penalized term. The smoothing ℓ 1

2
-penalty method is abbreviated as SLOP1/2

method. The ℓ1-penalty method employs the semismooth Newton method [28] to
solve the corresponding ℓ1-penalized equations. We refer to the implementation of ℓ1-
penalty method as the SSOOP1 method, which stands for the SemiSmooth One Order
Penalty method. A Matlab solver TRESNEI1 developed by Morini and Porcelli [26]
for bound-constrained (or unconstrained) nonlinear least squares problems is used
to solve the corresponding least squares problems for the SLOP1/2 and SSOOP1

methods.
Throughout the experiments, we set parameters ρ0 = 1, ρmin = 10−16, σ = 0.1

and ϵ = 10−6 in Algorithm 1. We use εs = 10−22 for the value of smoothing factor
in the SLOP1/2 method. We follow all default parameters in the solver TRESNEI.
Details can be found in [26].

We select 22 test problems from MCPLIB shown in Table 4.1, in which there
are 7 linear complementarity problems. For each problem, we perform 100 runs from
randomly generated starting points by a uniform distribution in a given interval.
Therefore, we run each method on a set of 2200 test problems.

Table 4.1: Problem characteristics and starting intervals.

Problem Dim Char Interval Problem Dim Char Interval

colvnlp 15 N [-10,0] cycle 1 N [-10,0]
josephy 4 N [-10,0] kojshin 4 N [-10,0]
mathisum 4 N [-10,0] powell 16 N [-10,0]
scarfanum 13 N [-1,0] scarfsum 14 N [-1,0]
sppe 27 N [-10,0] tobin 42 N [-10,0]
billups 1 N [-10,0] colvdual 20 L [-10,0]
degen 2 L [-10,0] hanskoop 14 N [-10,0]
nash 10 N [-10,0] tinloi 146 L [-1,0]
colvtemp 20 N [-1,0] oligomcp 6 N [-10,0]
fathi 100 L [-10,0] murty 100 L [-10,0]
primaldual 6 L [-10,0] explcp 16 L [-10,0]

In Table 4.1, the Problem denotes the name of test problem, the Dim denotes
the dimension of problem (1.1), the Char denotes the characterization of problem
(1.1) where N denotes that F is nonlinear and L denotes that F is linear, and the
Interval denotes the interval in which a starting point is generated by a uniform
distribution.

1http://tresnei.de.unifi.it/.
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Using the performance profiles of Dolan and Moré in [9], we plot Figure ??, where
the plots πs(τ) denote the scaled performance profile

πs(τ) :=
number of problems p̂ where log2(rp̂,s) ≤ τ

total number of problems
, τ ≥ 0,

where log2(rp̂,s) is the scaled performance ratio between the number of function
evaluations to solve problem p̂ by solver s over the fewest number of function
evaluations required by the three solvers. It is clear that πs(τ) is the probability
for solver s that a scaled performance ratio log2(rp̂,s) is within a factor τ ≥ 0 of the
best possible ratio. See [9] for more details regarding the performance profiles.

Figure ?? indicates that the CDLOP1/2 method is the most efficient method
among them as its performance profile lies above all others for all performance ratios.
Moreover, the CDLOP1/2 method can solve the most test problems (about 88%)
successfully. The SLOP1/2 method is the weakest solver among them and can only
solve about 55% test problems.

The performance profiles in Figure ?? are plotted on the values of 1
ρ . Figure

?? indicates the CDLOP1/2 method can solved about 68% test problems with the
biggest values of the penalty parameter ρ. The fewest test problems (about 27%) can
be solved by the SSOOP1 method with the biggest penalty parameter ρ. However,
the SSOOP1 method is more robust than the SLLOP1/2 method.

We plot Figures ?? and ?? to compare performance of the CDLOP method with
different values of p in terms of the number of function evaluations and the values of
the penalty parameter.

Figure ?? indicates that the CDLOP method with p = 100 can solve about 60%
test problems with the least number of function evaluations and is the most efficient
solver among them. We also see that the number of function iterations used by
the CDLOP method decreases dramatically as the power p increases from 2 to 100.
Slight changes happen on the performance profiles as we increase p from 100 to 10000.
Furthermore, there are nearly the same test problems (about 90%) that can be solved
successfully by the CDLOP method with different values of p.

The performance profiles in Figure ?? are plotted on the values of 1
ρ , which

indicates that the CDLOP method with p = 1 uses the smallest values of penalty
parameter. Bigger values of the penalty parameter ρ are used by the CDLOP method
as we increase p from 1 to 100, which verifies the conclusion of Theorem 2.17.

Next, we use the CDLOP method with p = 100 to compare its performance
with the smooth approximation method and the nonsmooth equations method in
terms of the number of function evaluations. The Zang smooth plus function
[34] is used in the smooth approximation method to smooth its normal equations.
The nonsmooth equations method employs the semismooth Newton method [28] to
solve its nonsmooth equations. We write SAM and NSEM to denote the Smooth
Approximation and Nonsmooth Equations Methods, respectively. Moreover, the
solver TRESNEI is used to solve the corresponding least squares problems for the
last two methods.

Figure ?? indicates that the SAM can solve about 47% test problems with the
least number of function evaluations. However, the fewest problems can be successfully
solved by this method. The NSEM is more efficient than the SAM. The CDLOP with
p = 100 can successfully solve the most test problems among them.
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