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Abstract. Subgradient methods for solving quasi-convex optimization
problems have been well studied. However, the usual subgradient method
usually suffers from a zig-zagging phenomena and sustains a slow conver-
gence in many applications. To avert the zig-zagging phenomenon and
speed up the convergence behavior, we introduce a conditional subgra-
dient method to solve a nondifferentiable constrained quasi-convex opti-
mization problem in this paper. At each iteration, a conditional quasi-
subgradient, constructed by a unit quasi-subgradient and a normal vec-
tor to the constraint set, is employed in place of the quasi-subgradient,
as in the usual subgradient method. Assuming the Hölder condition of
order p, we investigate convergence properties, in both objective val-
ues and iterates, of the conditional subgradient method by using the
constant, diminishing and dynamic stepsize rules. We also describe the
finite convergence behavior of the conditional subgradient method when
the interior of optimal solution set is nonempty. Extending to the inex-
act setting, we further propose a conditional ϵ-subgradient method and
establish its convergence results under the assumption that the compu-
tational error is deterministic and bounded.
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1. Introduction

In this paper, we consider the constrained quasi-convex optimization prob-
lem

(1.1)
min f(x)
s.t. x ∈ X,

where f : Rn → R is a quasi-convex function, and X ⊆ Rn is a nonempty,
closed and convex set. We denote the set of minima and minimum value of
(1.1) by X∗ and f∗, respectively. A quasi-convex function usually provides a
much more accurate representation of realities than a convex function does,
while it still inherits some nice properties of a convex function. This lead-
s to a significant increase of research studies in quasi-convex optimization.
Nowadays, quasi-convex optimization has been developed in various branch-
es of applied mathematics and many application fields, such as economics,
engineering and management science; see [2, 4, 7, 25] and references therein.

The development of numerical algorithms for solving constrained opti-
mization problems, especially for large-scale optimization problems, has at-
tracted a great amount of attention. Subgradient methods are popular iter-
ative methods for solving constrained optimization problems. The subgra-
dient method was originally introduced to solve a nondifferentiable convex
optimization problem by Polyak [22] and Ermoliev [5] in the 1970s, which
generates a sequence {xk} by a recursive procedure

(1.2) xk+1 := PX(xk − vkgk),

where gk ∈ ∂f(xk) := {g ∈ Rn : ⟨g, x − xk⟩ ≤ f(x) − f(xk), ∀x ∈ Rn} is a
subgradient of f at xk, vk > 0 is a stepsize, and PX denotes the Euclidean
projection onto the constraint set X. Over the last 40 years, various prop-
erties of subgradient methods have been discovered, many extensions and
generalizations have been considered, and numerous applications have been
proposed; see [3, 8, 9, 14, 19, 20, 21, 24] and references therein.

Recently, subgradient methods have been developed to solve constrained
quasi-convex optimization problem (1.1), but still in its infancy. For exam-
ple, Kiwiel [13] studied convergence properties of the subgradient method
for solving quasi-convex optimization problems by using the diminishing
stepsize rule. Extending this work, Hu et al [10] proposed a generic inex-
act subgradient method to solve a constrained quasi-convex optimization
problem. Adopting the constant and diminishing stepsize rules, they inves-
tigated the influence of the deterministic noise to the inexact subgradient
method via establishing convergence results in both objective values and it-
erates, and observed finite convergence to the approximate optimality. Fur-
thermore, Hu et al [12] proposed a stochastic subgradient method, where
a random noisy subgradient is adopted as the search direction, for solving
quasi-convex optimization problems. They showed that the stochastic sub-
gradient method shares the same convergence behavior as that of the exact
subgradient method [13] almost surely. They also introduced a dynamic
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stepsize rule for the subgradient method in the category of quasi-convex
optimization.

However, the subgradient method usually sustains a slow convergence,
due to a zig-zagging phenomena in either convex or quasi-convex optimiza-
tion problems. The zig-zagging phenomenon may stem from the fact that
the subgradient may be antiparallel to the normal vector of the constraint
set, and thus the Euclidean projection leads to a slow convergence of the
subgradient method. In order to avoid the zig-zagging phenomenon, Lars-
son et al [17] proposed a conditional subgradient method for solving convex
optimization problems, where a normal vector to the constraint set is taken
into account in the construction of conditional subgradient direction. Con-
vergence results of the conditional subgradient method were provided in
[17] when the diminishing or dynamic stepsize rule is adopted. Extended to
the inexact setting, a conditional ϵ-subgradient method, as well as its con-
vergence theory, were studied in [18]. In particular, the following example
illustrates the slow convergence of the subgradient method (1.2) and the
benefit of applying the conditional subgradient method.

Example 1.1. Let f : R2 → R with f(x, y) := x+5y, andX := [0, 10]×{0}.
The (sub)gradient of f at any point is ∇f = (1, 5)⊤. Starting from an initial
point x0 = (10, 0)⊤ and applying the subgradient method (1.2) to solve the
associated problem (1.1), the recursive process of the subgradient method
is illustrated in Figure 1(a), and the zig-zagging phenomena is observed.

Alternatively, the conditional subgradient direction, adopted in the condi-
tional subgradient method [17], consists of a subgradient and a normal vector
in NX(x), that is, gk ∈ ∇f(xk) +NX(xk). Hence the iterative procedure of
the conditional subgradient method is demonstrated in Figure 1(b), which
averts the zig-zagging phenomena and improves the convergence behavior.

0
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......

......

(a) The subgradient method.
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0( )f x !

0( )XN x 

......

......

(b) The conditional subgradient method.

Figure 1. Illustrations of subgradient method vs condition-
al subgradient method.

Inspired by the idea in [17, 18], in this paper, we propose a conditional
subgradient method to solve a nondifferentiable constrained optimization
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problem (1.1) in the setting of quasi-convex optimization, so as to avert
the zig-zagging phenomenon and to speed-up the convergence behavior. In
the proposed conditional subgradient method, the search direction of each
iteration is constructed by a unit quasi-subgradient and a normal vector to
the constraint set X at current iterate. Under the assumption of the Hölder
condition as in [10, 12], we employ the properties of the quasi-subgradient
and the normal vector to provide a proper basic inequality, which is a key
tool of convergence analysis in the literature of subgradient methods. Us-
ing the constant, diminishing and dynamic stepsize rules, we establish the
convergence results of the conditional subgradient method in both objective
values and iterates. In particular, we show that the generated sequence con-
verges to an optimal solution of problem (1.1) when the dynamic stepsize is
adopted. We also describe the finite convergence behavior of the conditional
subgradient method when the interior of optimal solution set is nonempty,
which is absent in [17, 18].

Another contribution of this paper is to extend the conditional subgradi-
ent method to the inexact setting. We propose a conditional ϵ-subgradient
method for solving quasi-convex optimization problem (1.1), and investigate
its convergence behavior to the minimum value of (1.1) within some toler-
ance, which is expressed in terms of the error and the stepsize, under the
assumption that the computational error is deterministic and bounded. In
particular, we provide the convergence analysis of conditional ϵ-subgradient
method in the case when {ϵk} is not necessary to be vanishing and the con-
stant and diminishing stepsize rules are used; while [18] only considered the
case when {ϵk} tends to zero and the diminishing stepsize is adopted.

This paper is organized as follows. In section 2, we present the notations
and preliminary results that will be used in this paper. In section 3, we
propose a conditional subgradient method to solve the constrained quasi-
convex optimization problem (1.1), and investigate convergence properties
of the conditional subgradient method by using the constant, diminishing
and dynamic stepsize rules. Extended to the inexact setting, the conditional
ϵ-subgradient method for solving quasi-convex optimization problem (1.1)
and its convergence analysis are provided in section 4.

2. Notations and preliminary results

The notations used in this paper are standard. We consider the n-
dimensional Euclidean space Rn with inner product ⟨·, ·⟩ and norm ∥ · ∥.
For x ∈ Rn and r > 0, we use B(x, r) to denote the closed ball at x with
radius r, and particularly use B and S to denote the unit ball and the unit
sphere centered at the origin, respectively. For a set Z ⊆ Rn, we denote the
closure, boundary and interior of Z by clZ, bdZ and intZ, respectively. For
x ∈ Rn and Z ⊆ Rn, we use dist(x,Z) and PZ(x) to denote the Euclidean
distance of x from Z and the Euclidean projection of x onto Z, respectively,
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that is,

dist(x,Z) := inf
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

The normal cone to Z at x is defined by

(2.1) NZ(x) := {µ ∈ Rn : ⟨µ, y − x⟩ ≤ 0, ∀y ∈ Z}.
A function f : Rn → R is said to be quasi-convex if for any x, y ∈ Rn and
α ∈ [0, 1], the following inequality holds

f((1− α)x+ αy) ≤ max{f(x), f(y)}.
For α ∈ R, we denote the sublevel sets of f by

lev<αf := {x ∈ Rn : f(x) < α} and lev≤αf := {x ∈ Rn : f(x) ≤ α}.
It is well-known that f is quasi-convex if and only if lev<αf (and/or lev≤αf)
is convex for any α ∈ R. A function f : Rn → R is said to be coercive if
lim∥x∥→∞ f(x) = ∞, and so the set lev≤αf is bounded for any α ∈ R.

The subdifferential of a quasi-convex function plays an important role
in quasi-convex optimization. Several different types of subdifferentials of
quasi-convex function have been introduced in the literature, see [1, 6, 10, 13]
and references therein. In particular, Kiwiel [13] and Hu et al [10] introduced
a quasi-subdifferential, which is a normal cone to the strict sublevel set of the
quasi-convex function, and applied this quasi-subgradient in their proposed
subgradient methods; see, e.g., [10, 11, 12, 13]. Here, we recall the notion
of quasi-subdifferential as follows, which is taken from [10] and properties of
the quasi-subdifferential have been investigated therein.

Definition 2.1. Let f : Rn → R be a quasi-convex function, and let ϵ > 0.
The quasi-subdifferential and ϵ-quasi-subdifferential of f at x ∈ Rn are
respectively defined by

∂∗f(x) :=
{
g ∈ Rn : ⟨g, y − x⟩ ≤ 0,∀y ∈ lev<f(x)f

}
,

and
∂∗
ϵ f(x) :=

{
g ∈ Rn : ⟨g, y − x⟩ ≤ 0, ∀y ∈ lev<f(x)−ϵf

}
.

Any vector g ∈ ∂∗f(x) or g ∈ ∂∗
ϵ f(x) is called a quasi-subgradient or an

ϵ-quasi-subgradient of f at x, respectively.

The Hölder condition of order p is used to describe some properties of
the quasi-subgradient in [15], and to establish the convergence theory of
subgradient methods in [10, 11, 12]. It plays an important role in the study
of convergence analysis in quasi-convex optimization. It is worth noting that
the Hölder condition of order 1 is equivalent to the bounded subgradient
assumption, assumed in the literature of subgradient methods (e.g., [3, 14,
19, 20]), whenever f is convex.

Definition 2.2. Let p > 0 and L > 0. The function f : Rn → R is said to
satisfy the Hölder condition of order p with modulus L on Rn if

f(x)− f∗ ≤ Ldistp(x,X∗) for any x ∈ Rn.
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The following lemma, taken from [16, Proposition 2.1], describes an im-
portant property of a quasi-convex function that satisfies the Hölder condi-
tion of order p.

Lemma 2.3. Let p > 0 and L > 0, and let f : Rn → R be quasi-convex,
continuous and satisfy the Hölder condition of order p with modulus L on
Rn. Let x ∈ X \X∗, and let g(x) be a unit quasi-subgradient of f at x, that
is, g(x) ∈ ∂∗f(x) ∩ S. Then it holds, for any x∗ ∈ X∗, that

⟨g(x), x− x∗⟩ ≥
(
f(x)− f∗

L

) 1
p

.

This property locally provides a connection between the quasi-subgradient
and objective values, which is a key to establish the basic inequality in the
convergence analysis of conditional subgradient methods for solving the con-
strained quasi-convex optimization problem (1.1). To this end, throughout
this paper, we make the following assumption:

• f : Rn → R is quasi-convex and continuous, and satisfies the Hölder
condition of order p with modulus L on Rn.

In order to make this paper self-contained, we end this section by recalling
the following lemma from [14, Lemma 2.1], which is useful in the convergence
analysis. For a sequence of scalars {ak} and a sequence of nonnegative
scalars {vk}, the accumulated sequence of {vk} and the averaged sequence
of {ak} with respect to {vk} are respectively defined by

v̄k :=
k∑

i=1

vi and âk :=
1

v̄k

(
k∑

i=1

viai

)
.

Lemma 2.4. Let {ak} be a sequence of scalars and {vk} be a sequence of
nonnegative scalars, and let {v̄k} be the accumulated sequence of {vk} and
{âk} be the averaged sequence of {ak} with respect to {vk}. Suppose that
limk→∞ v̄k = ∞. Then

lim inf
k→∞

ak ≤ lim inf
k→∞

âk ≤ lim sup
k→∞

âk ≤ lim sup
k→∞

ak.

3. Conditional subgradient method and convergence analysis

The aims of this section are to propose a conditional subgradient method
to solve the constrained quasi-convex optimization problem (1.1), and to in-
vestigate its convergence properties by using some suitable types of stepsizes.
The conditional subgradient method is formally stated as follows.

Algorithm 3.1. Select an initial point x0 ∈ Rn and a sequence of stepsizes
{vk} ⊆ (0,+∞). Having xk, we select

(3.1) gk ∈ ∂∗f(xk) ∩ S and µk ∈
{
NX(xk) ∩ S, if xk /∈ intX,

{0}, if xk ∈ intX,
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and update xk+1 by

(3.2) xk+1 := PX(xk − vk(gk + µk)).

When solving quasi-convex optimization problems, the difference between
the conditional subgradient method and the subgradient methods proposed
in [10, 13] is that a conditional subgradient, consisting of a quasi-subgradient
and a normal vector to the constraint set, is employed in Algorithm 3.1; while
only the quasi-subgradient is used in the algorithms studied in [10, 13].

The stepsize rule has a critical effect on the convergence behavior and
computational performance of subgradient methods. In this paper, we con-
sider the following typical stepsize rules.

(a) Constant stepsize rule:

vk = v(> 0) for any k ∈ N.

(b) Diminishing stepsize rule:

(3.3) vk > 0, lim
k→∞

vk = 0,

∞∑
k=0

vk = +∞.

(c) Dynamic stepsize rule:

(3.4) vk =
γk
4

(
f(xk)− f∗

L

) 1
p

, where 0 < γ ≤ γk ≤ γ < 2.

Remark 3.1. The conditional subgradient method was introduced in [17]
to solve a constrained convex optimization problem, where the subgradient
in (1.2) is replaced by a conditional subgradient, which is an arbitrary vector
in the conditional subdifferential

∂Xf(x) := {g ∈ Rn : ⟨g, y − x⟩ ≤ f(y)− f(x), ∀y ∈ X}.

Essentially, in the context of convex optimization, the conditional subgradi-
ent method in [17] can be considered as the subgradient method for solving
an associated problem

(3.5)
min fX(x) := f(x) + δX(x)
s.t. x ∈ X.

where δX is an indicator function of X. Indeed, it is revealed in [17] (or
[23]) that

∂Xf(x) = ∂f(x) +NX(x) = ∂fX(x) for any x ∈ X.

In the context of quasi-convex optimization, we define the conditional
quasi-subdifferential by

∂∗
Xf(x) := {g ∈ Rn : ⟨g, y − x⟩ ≤ 0, ∀y ∈ lev<f(x)f ∩X}.

Following from [23, Corollary 23.8.1], it also holds, for any x ∈ X, that

∂∗
Xf(x) = Nlev<f(x)f∩X(x) = Nlev<f(x)f (x)+NX(x) = ∂∗f(x)+NX(x) = ∂∗fX(x).
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However, the convergence analysis of the subgradient method [10, 13]
does not work when it is applied to solve quasi-convex optimization problem
(3.5). This is because the objective function fX may not be continuous, and
so Lemma 2.3 and the basic inequality are not necessarily satisfied in this
situation. The failure of convergence theory is also observed in a concrete
example. Indeed, in Example 1.1, the quasi-subdifferential of fX at any
point in X is ∂∗fX = R+ × R. When the quasi-subgradient is selected as
g = (0, 1)⊤ ∈ ∂∗

Xf , then x1 = PX(x0 − vg) = x0. Hence, a fixed sequence is
generated by the subgradient method for solving quasi-convex optimization
problem (3.5), and the convergence fails.

Fortunately, Algorithm 3.1 is only a special case of the subgradient method
for solving the associated quasi-convex optimization problem (3.5), and the
convergence analysis of Algorithm 3.1 will work under the use of some suit-
able stepsize rules, as shown in the remainder of this section. Indeed, the
search direction adopted in Algorithm 3.1 is gk + µk, where µk ∈ NX(xk)
but gk is a unit vector in ∂∗f(xk). This excludes the extreme case when the
search direction falls in {0}+NX(x). A nonzero vector in ∂∗f(xk), involved
in the search direction, maintains the descent property of Algorithm 3.1,
which plays an important role in the convergence analysis of the conditional
subgradient method for solving quasi-convex optimization problem (1.1).

We now start the convergence analysis of the conditional subgradient
method by providing the following basic inequality, which shows a significant
property of a conditional subgradient iteration.

Lemma 3.2. Let {xk} be a sequence generated by Algorithm 3.1. Fix k ∈ N.
If xk /∈ X∗, then it holds, for any x∗ ∈ X∗, that

(3.6) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
f(xk)− f∗

L

) 1
p

+ 4v2k.

Proof. Fix x∗ ∈ X∗. In view of Algorithm 3.1 (cf. (3.2)), it follows from the
nonexpansive property of projection operator that
(3.7)

∥xk+1 − x∗∥2 ≤ ∥xk − vk(gk + µk)− x∗∥2
= ∥xk − x∗∥2 − 2vk ⟨gk + µk, xk − x∗⟩+ v2k∥gk + µk∥2.

By the assumption that xk /∈ X∗, Lemma 2.3 is applicable (to xk, gk in
place of x, g(x)) to concluding that

⟨gk, xk − x∗⟩ ≥
(
f(xk)− f∗

L

) 1
p

.

By the second inclusion of (3.1) and by (2.1), one has that ⟨µk, x
∗−xk⟩ ≤ 0.

Note also by (3.1) that ∥gk + µk∥2 ≤ (∥gk∥ + ∥µk∥)2 ≤ 4. These, together
with (3.7), imply (3.6). The proof is complete. �
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When the constant stepsize is adopted, we establish the convergence of
the conditional subgradient method to the minimum value of (1.1) within
some tolerance, given in terms of the stepsize.

Theorem 3.3. Let {xk} be a sequence generated by Algorithm 3.1 with the
constant stepsize rule. Then

(3.8) lim inf
k→∞

f(xk) ≤ f∗ + L(2v)p.

Proof. We prove by contradiction, assuming that

lim inf
k→∞

f(xk) > f∗ + L(2v)p.

Consequently, there exist some σ > 0 and k0 ∈ N such that

f(xk) > f∗ + L(2v + σ)p for any k ≥ k0.

Hence xk /∈ X∗ for any k ≥ k0, and then Lemma 3.2 is applicable (to v in
place of vk) to concluding that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2v

(
f(xk)− f∗

L

) 1
p

+ 4v2 < ∥xk − x∗∥2 − 2vσ.

Summing the above inequality over k = k0, . . . , n, we obtain that

∥xn+1 − x∗∥2 ≤ ∥xk0 − x∗∥2 − 2(n− k0 + 1)vσ,

which yields a contradiction for a sufficiently large n. The proof is complete.
�

If the stepsize tends to zero, then the tolerance in (3.8) vanishes. Below,
we present convergence results of the conditional subgradient method, in
objective values and distances from the set of minima of (1.1), when the
diminishing stepsize is adopted.

Theorem 3.4. Let {xk} be a sequence generated by Algorithm 3.1 with the
diminishing stepsize rule (3.3). Then the following assertions are true:

(i) lim infk→∞ f(xk) = f∗.
(ii) If f is coercive, then

lim
k→∞

dist(xk, X
∗) = 0 and lim

k→∞
f(xk) = f∗.

(iii) If
∑∞

k=0 v
2
k < ∞, then {xk} converges to an optimal solution of (1.1).

Proof. The proof utilizes the basic inequality (3.6) of Algorithm 3.1 and the
property of the diminishing stepsize rule (3.3).

(i) Summing (3.6) over k = 0, 1, . . . , n− 1, one has

(3.9) ∥xn − x∗∥2 ≤ ∥x0 − x∗∥2 − 2L
− 1

p

n−1∑
k=0

vk(f(xk)− f∗)
1
p + 4

n−1∑
k=0

v2k,
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which implies that

n−1∑
k=0

vk(f(xk)− f∗)
1
p∑n−1

k=0 vk
≤ L

1
p ∥x0 − x∗∥2

2
∑n−1

k=0 vk
+

2L
1
p
∑n−1

k=0 v
2
k∑n−1

k=0 vk
.

Then, by Lemma 2.4 (with (f(xk)−f∗)
1
p in place of ak), it follows that

(3.10)
lim inf
k→∞

(f(xk)− f∗)
1
p ≤ lim inf

n→∞

∑n−1
k=0

vk(f(xk)−f∗)
1
p∑n−1

k=0 vk

≤ lim inf
n→∞

(
L

1
p
∥x0−x∗∥2
2
∑n−1

k=0 vk
+ 2L

1
p

∑n−1
k=0 v2k∑n−1
k=0 vk

)
.

By (3.3) (in particular,
∑∞

k=0 vk = +∞), one has that

(3.11) lim
n→∞

∥x0 − x∗∥2

2
∑n−1

k=0 vk
= 0.

Also by (3.3) (in particular, limn→∞ vn = 0), we obtain from Lemma
2.4 (with v2k in place of ak) that

(3.12) lim inf
n→∞

∑n−1
k=0 v

2
k∑n−1

k=0 vk
≤ lim

k→∞
vk = 0.

These, together with (3.10), conclude that lim infk→∞ f(xk) = f∗.
(ii) Fix σ > 0. Note that limn→∞ vn = 0. We can let k0 ∈ N be such that

(3.13) vk ≤ 1
4σ

1
p for any k ≥ k0.

We consider the estimation of xk (k ≥ k0) in the following two cases:
Case 1 : f(xk) > f∗ + Lσ. Then xk /∈ X∗, and so Lemma 3.2 is

applicable to concluding, for any x∗ ∈ X∗, that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vkσ
1
p + 4v2k ≤ ∥xk − x∗∥2 − 4v2k

(due to (3.13)), and hence

(3.14) dist(xk+1, X
∗) ≤ dist(xk, X

∗)− 4v2k.

That is, dist(xk, X
∗) is decreasing in this case.

Case 2 : f(xk) ≤ f∗+Lσ. It follows from assertion (i) that this case
must occur for infinitely many k. Define

Xσ := X ∩ lev≤f∗+Lσf and ρ(σ) := max
x∈Xσ

dist(x,X∗).

By the assumption that f is coercive, it follows that its sublevel set
lev≤f∗+Lσf is bounded, and so ρ(σ) < ∞. Since f(xk) ≤ f∗ + Lσ,
one has that dist(xk, X

∗) ≤ ρ(σ). In view of Algorithm 3.1, for any
x∗ ∈ X∗, we obtain that

∥xk+1 − x∗∥ ≤ ∥xk − vk(gk + µk)− x∗∥ ≤ ∥xk − x∗∥+ 2vk,

and thus

(3.15) dist(xk+1, X
∗) ≤ dist(xk, X

∗) + 2vk ≤ ρ(σ) + 2vk.
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By (3.14) and (3.15) (in both cases), we conclude that

(3.16) dist(xk, X
∗) ≤ ρ(σ) + 2vk for any k ≥ k0.

Since f is continuous and coercive, its sublevel sets are compact, and
so, it is trivial to see that limσ→0 ρ(σ) = 0. Hence, it follows from
(3.16) that limk→∞ dist(xk, X

∗) = 0, and so limk→∞ f(xk) = f∗ (by
the continuity of f).

(iii) When
∑∞

k=0 v
2
k < ∞, one sees from (3.9) that {∥xk − x∗∥2} is bound-

ed, and hence {xk} is bounded. Since further lim infk→∞ f(xk) = f∗
(proved in (i)), it follows that {xk} must have a cluster point x̄ ∈
X∗. Noting that limn→∞

∑∞
k=n v

2
k = 0, we conclude by (3.6) that

{∥xk − x̄∥2} is a Cauchy sequence, and thus it converges to 0. There-
fore {xk} converges to such x̄.

The proof is complete. �
Given the prior information of f∗, the dynamic stepsize rule is usually

considered in the literature of subgradient methods; see, e.g., [12, 17, 20, 24].
Below, we show the convergence of the conditional subgradient method to
an optimal solution of (1.1), when the dynamic stepsize is adopted.

Theorem 3.5. Let {xk} be a sequence generated by Algorithm 3.1 with the
dynamic stepsize rule (3.4). Then {xk} converges to an optimal solution of
(1.1).

Proof. Fix x∗ ∈ X∗. By using the dynamic stepsize rule (cf. (3.4)), it follows
from Lemma 3.2 that

(3.17)

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
f(xk)−f∗

L

) 1
p
+ 4v2k

= ∥xk − x∗∥2 − 1
4γk(2− γk)

(
f(xk)−f∗

L

) 2
p

≤ ∥xk − x∗∥2 − 1
4γ(2− γ)

(
f(xk)−f∗

L

) 2
p

(which automatically holds when xk ∈ X∗, since f(xk) = f∗, vk = 0 and
xk+1 = xk in this situation). The sequence {∥xk − x∗∥} is decreasing, and
hence {xk} is bounded. It also follows that limk→∞ f(xk) = f∗; otherwise,
it follows from (3.17) that there exists some σ > 0 such that ∥xk+1−x∗∥2 ≤
∥xk−x∗∥2−σ occurs for infinitely many k, which is impossible. Hence, any
cluster point x̄ of {xk} is an optimal solution of (1.1), that is, x̄ ∈ X∗.

Since further the sequence {∥xk − x∗∥} is decreasing, it must converge
to ∥x̄ − x∗∥. If there are two distinct cluster points of {xk}, namely x̄ and
x̃, we have x̄ ∈ X∗, x̃ ∈ X∗, and ∥x̄ − x∗∥ = ∥x̃ − x∗∥ for any x∗ ∈ X∗;
consequently, we conclude that x̄ = x̃. Therefore, {xk} converges to an
optimal solution x̄ ∈ X∗. The proof is complete. �

At the end of this section, we present the finite convergence behavior of
the conditional subgradient method to the set of minima X∗ of problem
(1.1) under the assumption that X∗ has a nonempty interior.
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Theorem 3.6. Let {xk} be a sequence generated by Algorithm 3.1. Let
x∗ ∈ X∗ and σ > 0, and suppose that B(x∗, σ) ⊆ X∗. Then xk ∈ X∗ for
some k ∈ N, provided one of the following conditions:

(i) vk = v ∈ (0, σ2 ) for any k ∈ N.
(ii) {vk} satisfies the diminishing stepsize rule (3.3).

Proof. We prove by contradiction, assuming that f(xk) > f∗ for any k ∈ N.
Fix k ∈ N. Since B(x∗, σ) ⊆ X∗, one sees that B(x∗, σ) ⊆ X ∩ lev<f(xk)f .
Let θ ∈ (0, 1). Since ∥gk∥ = 1, we obtain that x∗ + θσgk ∈ lev<f(xk)f , and
then it follows from Definition 2.1 that ⟨gk, x∗ + θσgk − xk⟩ ≤ 0, that is,
⟨gk, xk − x∗⟩ ≥ θσ. Since θ ∈ (0, 1) is arbitrary, it follows that

(3.18) ⟨gk, xk − x∗⟩ ≥ σ.

Note by definition that ⟨µk, x
∗−xk⟩ ≤ 0. This, together with (3.18), implies

that

(3.19) ⟨gk + µk, xk − x∗⟩ ≥ σ.

On the other hand, summing (3.7) over k = 0, . . . , n, one has

(3.20)

∑n
k=0 vk⟨gk + µk, xk − x∗⟩∑n

k=0 vk
≤ ∥x0 − x∗∥2

2
∑n

k=0 vk
+

2
∑n

k=0 v
2
k∑n

k=0 vk
.

We now claim, under the assumption of (i) or (ii), that

(3.21) lim inf
n→∞

⟨gk + µk, xk − x∗⟩ < σ.

(i) When a constant stepsize v ∈ (0, σ2 ) is used, (3.20) is reduced to∑n
k=0 vk⟨gk + µk, xk − x∗⟩∑n

k=0 vk
≤ ∥x0 − x∗∥2

2nv
+ 2v,

and thus, by Lemma 2.4, we obtain that

lim inf
n→∞

⟨gk + µk, xk − x∗⟩ ≤ lim inf
n→∞

∑n
k=0 vk⟨gk + µk, xk − x∗⟩∑n

k=0 vk
≤ 2v < σ.

(ii) When a diminishing stepsize is used, by (3.11) and (3.12), it follows
from Lemma 2.4 and (3.20) that

lim inf
n→∞

⟨gk + µk, xk − x∗⟩ ≤ 0 < σ.

Hence we have proved (3.21) under the assumption of (i) or (ii), which arrives
at a contradiction with (3.18). The proof is complete. �

4. Conditional ϵ-subgradient method and convergence analysis

In many applications, the computation error stems from practical consid-
erations, and is inevitable in the computing process. Usually, the compu-
tation error gives rise to the calculation of the ϵ-subgradient. To meet the
requirement of applications, this section is devoted to the study of the condi-
tional ϵ-subgradient method for solving constrained quasi-convex optimiza-
tion problem (1.1), where an ϵ-quasi-subgradient is employed in place of the
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quasi-subgradient as in Algorithm 3.1. Hence the conditional ϵ-subgradient
method is formally described as follows.

Algorithm 4.1. Select an initial point x0 ∈ Rn, a sequence of stepsizes
{vk} ⊆ (0,+∞) and a sequence of errors {ϵk} ⊆ (0,+∞). Having xk, we
calculate

(4.1) gk ∈ ∂∗
ϵk
f(xk) ∩ S and µk ∈

{
NX(xk) ∩ S, if xk /∈ intX,

{0}, if xk ∈ intX,

and update xk+1 by

(4.2) xk+1 := PX(xk − vk(gk + µk)).

Assuming that the computational error is deterministic and bounded, we
investigate the influence of the computation error on the proposed condi-
tional ϵ-subgradient method. For this purpose, we first present an important
property in the following lemma, which is a key to establish the basic in-
equality in the convergence analysis.

Lemma 4.1. Let x ∈ X be such that f(x) > f∗+ ϵ, and let g(x, ϵ) be a unit
ϵ-quasi-subgradient of f at x, i.e., g(x, ϵ) ∈ ∂∗

ϵ f(x) ∩ S. Then it holds, for
any x∗ ∈ X∗, that

⟨g(x, ϵ), x− x∗⟩ ≥
(
f(x)− f∗ − ϵ

L

) 1
p

.

Proof. By assumptions that f is quasi-convex and continuous and that
f(x) > f∗ + ϵ, it follows that its strict sublevel set lev<f(x)−ϵf is nonempty,
open and convex. Given x∗ ∈ X∗, we define

(4.3) r := inf
{
∥y − x∗∥ : y ∈ bd

(
lev<f(x)−ϵf

)}
.

One has by the Hölder condition that

f(y)− f∗ ≤ Ldistp(y,X∗) for any y ∈ Rn.

This, by taking the infimun over bd
(
lev<f(x)−ϵf

)
, implies that

(4.4) f(x)− ϵ− f∗ ≤ L inf
{
distp(y,X∗) : y ∈ bd

(
lev<f(x)−ϵf

)}
≤ Lrp.

Let θ ∈ (0, 1). Since ∥g(x, ϵ)∥ = 1, one has by (4.3) that x∗ + θrg(x, ϵ) ∈
lev<f(x)−ϵf , and we obtain by Definition 2.1 that

⟨g(x, ϵ), x∗ + θrg(x, ϵ)− x⟩ ≤ 0,

that is, ⟨g(x, ϵ), x − x∗⟩ ≥ θr. Since θ ∈ (0, 1) is arbitrary, it follows that
⟨g(x, ϵ), x− x∗⟩ ≥ r. This, together with (4.4), implies that

⟨g(x, ϵ), x− x∗⟩ ≥
(
f(x)− f∗ − ϵ

L

) 1
p

.

The proof is complete. �
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Lemma 4.2. Let {xk} be a sequence generated by Algorithm 4.1. Fix k ∈ N.
If xk is such that f(xk) > f∗ + ϵk, then it holds, for any x∗ ∈ X∗, that

(4.5) ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vk

(
f(xk)− f∗ − ϵk

L

) 1
p

+ 4v2k.

Proof. The proof adopts a line of analysis similar to that of Lemma 3.2.
Since f(xk) > f∗ + ϵk, Lemma 4.1 is applicable (to xk, gk, ϵk in place of x,
g(x, ϵ), ϵ) to concluding that

⟨gk, xk − x∗⟩ ≥
(
f(xk)− f∗ − ϵk

L

)p

.

This, together with (3.7), deduces (4.5). The proof is complete. �

By virtue of Lemma 4.2, we establish the convergence of the conditional
ϵ-subgradient method to the minimum value of (1.1) within some tolerance,
which is expressed in terms of the error and the stepsize, under the assump-
tion that the computational error is deterministic and bounded.

Theorem 4.3. Let {xk} be a sequence generated by Algorithm 4.1 with the
constant stepsize rule and lim supk→∞ ϵk = ϵ. Then

lim inf
k→∞

f(xk) ≤ f∗ + L(2v)p + ϵ.

Proof. We prove by contradiction, assuming that

lim inf
k→∞

f(xk) > f∗ + (2v)p + ϵ.

Since lim supk→∞ ϵk = ϵ, there exist some σ > 0 and k0 ∈ N such that

f(xk) > f∗ + L(2v + σ)p + ϵk for any k ≥ k0.

Hence, by Lemma 4.2 (with v in place of vk), it follows for any k ≥ k0 that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2v
(
f(xk)−f∗−ϵk

L

) 1
p
+ 4v2

< ∥xk − x∗∥2 − 2vσ.

Summing the above inequality over k = k0, . . . , n, we obtain

∥xn+1 − x∗∥2 ≤ ∥xk0 − x∗∥2 − 2(n− k0 + 1)vσ,

which yields a contradiction for a sufficiently large n. The proof is complete.
�

Theorem 4.4. Let {xk} be a sequence generated by Algorithm 4.1 with the
diminishing stepsize rule (3.3) and lim supk→∞ ϵk = ϵ. Then the following
assertions are true:

(i) lim infk→∞ f(xk) ≤ f∗ + ϵ.
(ii) If f is coercive, then

(4.6) lim inf
k→∞

dist(xk, lev≤f∗+ϵ ∩X) = 0.
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Let ρ(ϵ) := max{dist(x,X∗) : x ∈ lev≤f∗+ϵ ∩X}. Then

(4.7) lim
k→∞

dist(xk, X
∗ + ρ(ϵ)B) = 0.

Proof. Taking a line of analysis similar to that of Theorem 4.3 and the
property of diminishing stepsize rule (3.3), we can prove assertion (i). Then
it remains the proof of assertion (ii).

Assertion (i) says that there exists a subsequence {xki} such that

(4.8) lim
i→∞

f(xki) ≤ f∗ + ϵ.

By the assumption that f is coercive, it follows that {xki} is bounded.
Without loss of generality, we can assume that {xki} converges to some x̄ ∈
X; otherwise, one can select a subsequence of {xki} such that it converges to
some x̄ ∈ X and satisfies (4.8). Hence it follows from [10, Lemma 3.4] that
dist(x̄, lev≤f∗+ϵ) = 0. Since further x̄ ∈ X, then dist(x̄, lev≤f∗+ϵ ∩X) = 0,
and so (4.6) is proved.

To prove (4.7), we fix σ > 0 and define

V2σ := X∗ + ρ(ϵ)B+ 2σB,

and

(4.9) eσ := inf{f(x) : x ∈ X, dist(x, lev≤f∗+ϵf ∩X) ≥ σ} − (f∗ + ϵ).

Then eσ > 0. Indeed, if eσ = 0, then there exists a sequence {zi}, in
{x ∈ X : dist(x, lev≤f∗+ϵf ∩ X) ≥ σ}, such that limi→∞ f(zi) = f∗ + ϵ.
Thus, by the arguments as we did for (4.6), we conclude that some cluster
point z̄ of {zi} satisfies that dist(z̄, lev≤f∗+ϵf ∩X) = 0, which is impossible
as σ > 0.

Note that lim supk→∞ ϵk = ϵ, limk→∞ vk = 0 and limk→∞ ∥xk+1−xk∥ = 0.
Then there exists some kσ ∈ N such that

(4.10) ϵk < ϵ+
eσ
2
, vk ≤ 1

2

( eσ
2L

) 1
p
, and ∥xk+1 − xk∥ ≤ σ,

for any k ≥ kσ. Note by definition that X∗ ⊆ lev≤f∗+ϵf ∩X ⊆ X∗ + ρ(ϵ)B.
Then, by (4.6), one sees that there exists some k′σ ≥ kσ such that

xk′σ ∈ (lev≤f∗+ϵf ∩X) + σB ⊆ X∗ + ρ(ϵ)B+ σB ⊆ V2σ,

that is, xk′σ ∈ V2σ.
Next, we claim that xk ∈ V2σ for any k ≥ k′σ. Proving by induction, we

assume that xk ∈ V2σ for some k ≥ k′σ and consider the following two cases.
Case 1. If dist(xk, lev≤f∗+ϵf ∩X) ≤ σ, by the third inequality of (4.10),

we have

xk+1 ∈ {xk}+σB ⊆ (lev≤f∗+ϵf ∩X+σB)+σB ⊆ X∗+ρ(ϵ)B+2σB = V2σ.

Case 2. If dist(xk, lev≤f∗+ϵf ∩ X) > σ, it follows from (4.9) and (4.10)
that

f(xk) ≥ eσ + f∗ + ϵ > f∗ + ϵk +
eσ
2
.
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Then Lemma 4.2 is applicable to concluding that

∥xk+1 − x∗∥2 < ∥xk − x∗∥2 − 2vk

(( eσ
2L

) 1
p − 2vk

)
≤ ∥xk − x∗∥2

(thanks to the second inequality of (4.10)). Thus, in both cases, xk ∈ V2σ

implies that xk+1 ∈ V2σ. Hence, by induction, xk ∈ V2σ, and so dist(xk, X
∗+

ρ(ϵ)B) ≤ 2σ, for any k ≥ k′σ. Since σ > 0 is arbitrary, then (4.7) is achieved,
and the proof is complete. �

Remark 4.5. (i) Theorems 4.3 and 4.4 show the convergence behavior to
the minimum value of (1.1) within some tolerance by using the constant and
diminishing stepsize rules, respectively. In particular, it is exhibited by The-
orem 4.3 that the tolerance has an additive form, including the computation
error ϵ and the constant stepsize v, which is of a similar formula as in [10]
(where a noise is additionally considered). When the diminishing stepsize is
adopted, the stepsize tends to zero, and so the term involving the stepsize
vanishes in the tolerance, which is indicated by Theorem 4.4.

(ii) In the convergence analysis of conditional ϵ-subgradient method, we
assume that the computation error satisfies lim supk→∞ ϵk = ϵ, which is
not necessarily to be vanishing. While [18] only considered the case when
limk→∞ ϵk = 0 and only the diminishing stepsize is adopted in the category
of convex optimization. In particular, in the case when ϵ = 0, Theorems 4.3
and 4.4 are applicable to concluding the exact convergence results of the con-
ditional ϵ-subgradient method in the category of quasi-convex optimization,
which cover and extend the results obtained in [18].
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[17] T. Larsson, M. Patriksson and A.-B. Strömberg, Conditional subgradient optimization
– Theory and applications, European J. Oper. Res. 88 (1996), 382–403.

[18] T. Larsson, M. Patriksson and A.-B. Strömberg, On the convergence of conditional
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[19] A. Nedić and D. P. Bertsekas, Incremental subgradient methods for nondifferentiable
optimization, SIAM J. Optim. 12 (2001), 109–138.
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