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Abstract. In this paper, we propose a stochastic subgradient method
to solve a nondifferentiable constrained quasi-convex optimization prob-
lem. A unit noisy (unbiased) quasi-subgradient, involving the stochastic
noise in the quasi-subgradient, is employed in each iteration in place
of the deterministic quasi-subgradient. Assuming the Hölder condition
of order p, we investigate the convergence properties of the stochastic
subgradient method by using the constant, diminishing and dynamic
stepsize rules. The stochastic subgradient method has the attractive
computational advantage that it avoids the difficulty of calculating the
exact quasi-subgradient, while it shares the same convergence behavior
as that of the exact subgradient method almost surely, which achieves a
more precise tolerance than that of inexact subgradient method. We fur-
ther apply the stochastic subgradient method to solve the Cobb-Douglas
production efficiency problem. The numerical results verify our theoret-
ical results and show the high efficiency of the stochastic subgradient
method, especially for large-scale problems.

1. Introduction

Subgradient methods are popular iterative methods for solving nondiffer-
entiable convex optimization problems. Following the pioneering works of
Polyak [32] and Ermoliev [13], subgradient methods were further developed
by Shor [34] and other researchers in the 1970s. Various properties of sub-
gradient methods have been discovered over the last 40 years. In addition,
many extensions and generalizations have been considered and numerous
applications have been proposed; see [4, 5, 8, 31, 34] and references therein.
Nowadays, because of the simple formulation and low storage requirement,
subgradient methods remain important for solving nonsmooth and stochas-
tic optimization problems, particularly for large-scale problems.
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It is worth noting that the exact subgradient could be difficult to compute
in many applications. This is because of errors in measurements, uncertainty
in data, or intractability in computation. In such situations, an alternative
approach is to get a noisy estimate of the subgradient, which is usually
possible and tractable. Adopting the noisy estimate as the true value, the
resulting subgradient method is called the inexact subgradient method or
stochastic subgradient method. The difference between variants of these
two subgradient methods is due to the modes of noise: deterministic or
stochastic.

In the context of deterministic optimization, the approximate subgra-
dient method, where an ϵ-subgradient is employed, is widely studied in
[1, 10, 23, 25, 34] for solving convex optimization problems. By applying
the diminishing and nonvanishing stepsize rules, the convergence results are
obtained in consideration of the convergence in objective values and the con-
vergence to a neighborhood of the optimal solution set. In 2010, Nedić and
Bertsekas [30] investigated the effect of the deterministic noise, including the
noise in computation of subgradients and errors in computation of function
values, on subgradient methods for convex optimization problems. They es-
tablished the convergence to the optimal value within some tolerance, which
is expressed in terms of noise and errors.

In the stochastic optimization literature, the stochastic subgradient method
was pioneered by Ermoliev [13, 14, 15] and developed by Shor [34] and Bert-
sekas and Tsitsiklis [6]. Many convergence results of the stochastic subgradi-
ent method have been established. It was shown that its generated sequence
could achieve the same convergence properties as that of the exact subgra-
dient method almost surely, because the random steps help “average out”
the statistical noise in subgradient evaluations. This property is significant-
ly better than that of the inexact subgradient method, in which only the
convergence to an approximate optimal value and to a neighborhood of the
optimal solution set can be proved when the noise is not vanishing. Because
of its cheap computation cost and exact convergence behavior, the stochas-
tic subgradient method is extensively and effectively applied in many fields,
such as the online and stochastic learning [12] and the large-scale feasibili-
ty problems arising in control [28]. One of the most important applications
arises in the network applications, including in-network estimation, learning,
signal processing and resource allocation. In particular, the researchers in
[20, 26, 29, 33, 36] proposed the stochastic incremental subgradient method-
s to solve large-scale convex optimization problems in distributed networks
and studied the convergence properties and the effect of stochastic errors
on the stochastic incremental subgradient methods, including a cyclic and
a (non-cyclic) Markov randomized incremental method, under the use of
several types of stepsizes.

Most papers in the literature of subgradient methods focus on the cate-
gory of convex optimization problems. Recently, much attention have been
drawn beyond the convex category. One of the most important types is
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quasi-convex optimization problems, which have many important applica-
tions in various areas, such as economics, engineering, management science
and various applied sciences; see [3, 9, 17, 35] and references therein. Howev-
er, the study of using subgradient methods to solve quasi-convex optimiza-
tion problems is limited. Kiwiel [22] studied convergence properties of the
exact subgradient method for solving quasi-convex optimization problems
under the use of the diminishing stepsize rule. By extending this work and
further using the constant stepsize rule, Hu, Yang and Sim [19] proposed
a generic inexact subgradient method to solve quasi-convex optimization
problems, and studied the influence of the deterministic noise by describing
convergence results in both objective values and iterates and finite conver-
gence to the approximate optimality.

Note in [19, 22] that the quasi-subgradient used in subgradient methods is
a normal vector to a strict sublevel set of the objective function at the current
iterate. The exact quasi-subgradient is quite difficult to calculate, because
the strict sublevel set of a quasi-convex function is difficult to approach
exactly. Thus, the stochastic approximate is an alternative approach to
get a noisy estimate of the subgradient and make the subgradient method
more implementable. However, the research on the stochastic subgradient
method for solving quasi-convex optimization problems is still in its infancy.
Motivated by practical and theoretical reasons, in this paper, we focus on
a stochastic subgradient method for solving the constrained quasi-convex
optimization problems

(1.1)
min f(x)
s.t. x ∈ X,

where f : Rn → R is quasi-convex and continuous, and X is nonempty,
closed and convex. We denote its optimal solution set and optimal value by
X∗ and f∗, respectively.

Inspired by the idea in [19, 29] and references therein, we explore conver-
gence properties of the stochastic subgradient method by using the constant,
diminishing and dynamic stepsize rules, where a unit noisy (unbiased) quasi-
subgradient (see Definition 2.2) is adopted in each iteration. Note in [19]
that the epigraph of a convex function is convex; while only the sublevel
set of a quasi-convex function is convex. Lacking the convexity assumed
in [29], the quasi-convex function is more difficult to deal with. The main
technical challenge of the convergence analysis of the stochastic subgradient
method is to establish a proper basic inequality, which is a key tool in the
literature of subgradient methods, in terms of expectation. To this end, we
assume the Hölder condition holds, as in [19], and employ the property of
the unit noisy quasi-subgradient. Our convergence results show that the sto-
chastic subgradient method shares the same convergence behavior as that
of the exact subgradient method (see [22, Theorem 1]) almost surely, which
achieves a better tolerance than that of inexact subgradient method in [19].
Another contribution of our paper is to introduce the dynamic stepsize rule
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in quasi-convex optimization. To the best of our knowledge, this is the first
attempt to apply the dynamic stepsize rule in the subgradient method for
solving quasi-convex optimization problems.

In addition, the fractional programming is considered as an application
of the quasi-convex model. One example is the Cobb-Douglas production
efficiency problem [7]. By applying the stochastic subgradient method, we
conduct some numerical experiments on this problem. The numerical results
can verify our theoretical analysis and show that the stochastic subgradient
type method is highly efficient for the Cobb-Douglas production efficiency
problem, even for large-scale problems.

The paper is organized as follows. In section 2, we present the notation
and preliminary results used in this paper. In section 3, we investigate
convergence properties of the stochastic subgradient method by using the
constant, diminishing and dynamic stepsize rules. Its application to the
Cobb-Douglas production efficiency problem is demonstrated in section 4.

2. Notation and preliminary results

Let us consider the n-dimensional Euclidean space Rn. A vector is viewed
as a column one, and the inner product of two vectors x, y ∈ Rn is denoted
by ⟨x, y⟩. We use ∥x∥ to denote the standard Euclidean norm, i.e., ∥x∥ =√

⟨x, x⟩. For a set Z ⊆ Rn, we denote the closure, boundary and relative
interior of Z by clZ, bdZ and riZ, respectively. For x ∈ Rn and Z ⊆ Rn,
dist(x,Z) and PZ(x) denote the Euclidean distance of x from Z and the
projection of x onto Z, respectively, i.e.,

dist(x,Z) := inf
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

Let (Ω,F , P ) be a probability space, and let {ϕk : Ω → R} a sequence of
functions on the probability space. The limit inferior of {ϕk} is an extended
real valued function defined by(

lim inf
k→∞

ϕk

)
(ω) = sup

k≥0
inf
n≥k

ϕn(ω) for any ω ∈ Ω.

A function f : Rn → R is said to be quasi-convex if for all x, y ∈ Rn and
α ∈ [0, 1], the following inequality holds

f((1− α)x+ αy) ≤ max{f(x), f(y)}.
For each α ∈ R, we denote the level sets of f by

lev<αf := {x ∈ Rn : f(x) < α} and lev≤αf := {x ∈ Rn : f(x) ≤ α}.
It is well-known that f is quasi-convex if and only if lev<αf (and/or lev≤αf)
is convex for all α ∈ R. Throughout this paper, we assume that

• f : Rn → R is quasi-convex and continuous.

The subdifferential of a quasi-convex function plays an important role
in quasi-convex optimization. Several different types of subdifferentials of
quasi-convex functions were introduced in the literature, see, e.g., [2, 16, 19,
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22, 27]. The earliest one is the Greenberg-Pierskalla subdifferential proposed
in [16], which is defined by a quasi-conjugate function based on the quasi-
convexity structure. Recently, to meet much boarder class of applications,
Kiwiel [22] and Hu, Yang and Sim [19] introduced a quasi-subdifferential,
which is a normal cone to the strict sublevel set of the quasi-convex func-
tion, and applied such a subgradient in their proposed subgradient methods.
Here, we recall the definition of quasi-subdifferential as follows.

Definition 2.1. The quasi-subdifferential of f at x is defined by

∂f(x) =
{
g : ⟨g, y − x⟩ ≤ 0, ∀y ∈ lev<f(x)f

}
.

Any vector g ∈ ∂f(x) is called a quasi-subgradient of f at x.

The relationships between the quasi-subdifferential and convex subdiffer-
ential, the quasi-subdifferential and the Greenberg-Pierskalla subdifferential
were described in [19].

Definition 2.2. Let x ∈ Rn and g̃(x) ∈ Rn be a random vector. g̃(x) is
called

(a) a noisy (unbiased) quasi-subgradient of f at x if Eg̃(x) ∈ ∂f(x), that is,

E⟨g̃(x), y − x⟩ ≤ 0 for each y ∈ lev<f(x)f .

(b) a unit noisy quasi-subgradient of f at x if it is a noisy quasi-subgradient
of f at x and ∥g̃(x)∥ = 1.

The Hölder condition of order p is used to describe some properties of the
quasi-subgradient in [24], and to investigate convergence properties of the
inexact subgradient method in [19]. It is a critical assumption for the study
of convergence analysis in quasi-convex optimization. It is worth noting that
the Hölder condition of order 1 is equivalent to the bounded subgradient
assumption, assumed in [23, 29, 30], whenever f is convex.

Definition 2.3. Let p > 0 and L > 0. f : Rn → R is said to satisfy the
Hölder condition of order p with modulus L on Rn if

f(x)− f∗ ≤ Ldistp(x,X∗) for each x ∈ Rn.

The following lemma describes an important property of a quasi-convex
function, which satisfies the Hölder condition. This property locally relates
the quasi-subgradient with objective values, which is the key to establish
the basic inequality in convergence analysis.

Lemma 2.4. Let p > 0 and L > 0. Let x ∈ X \X∗, and g̃(x) be a unit noisy
quasi-subgradient of f at x. Suppose that f satisfies the Hölder condition of
order p with modules L on Rn. Then it holds for any x∗ ∈ X∗ that

E⟨g̃(x), x− x∗⟩ ≥
(
f(x)− f∗

L

) 1
p

.
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Proof. By the blanket assumption that f is quasi-convex and continuous, it
follows that its level set lev<f(x)f is convex and open. Given x∗ ∈ X∗, we
define

r := inf
{
∥y − x∗∥ : y ∈ bd

(
lev<f(x)f

)}
.

One has by the Hölder condition that

f(y)− f∗ ≤ Ldistp(y,X∗) for each y ∈ Rn.

This, by taking the infimun over bd
(
lev<f(x)f

)
, implies that

(2.1) f(x)− f∗ ≤ L inf
{
distp(y,X∗) : y ∈ bd

(
lev<f(x)f

)}
≤ Lrp.

Let δ ∈ (0, 1). Since ∥g̃(x)∥ = 1, we obtain that x∗ + δrg̃(x) ∈ lev<f(x)f ,
and then it follows from Definition 2.2 that

E⟨g̃(x), x∗ + δrg̃(x)− x⟩ ≤ 0,

that is, E⟨g̃(x), x− x∗⟩ ≥ δr. Then one has that E⟨g̃(x), x− x∗⟩ ≥ r, since
δ ∈ (0, 1) is arbitrary. Hence, by (2.1), we obtain that

E⟨g̃(x), x− x∗⟩ ≥
(
f(x)− f∗

L

) 1
p

.

The proof is complete. �
We end this section by recalling the supermartingale convergence theorem

in [6, page 148], which is useful in the study of convergence properties of
the stochastic subgradient method for quasi-convex optimization problems,
so as to make the paper more self-contained.

Lemma 2.5. Let {Yk}, {Zk} and {Wk} be three sequences of nonnegative
random variables, and let {Fk} be a sequence of sets of random variables
such that Fk ⊆ Fk+1 for each k. Suppose that the following conditions are
satisfied for each k:

(a) Yk, Zk and Wk are functions of the random variables in Fk;
(b) E {Yk+1 | Fk} ≤ Yk − Zk +Wk;
(c)

∑∞
k=0Wk < ∞.

Then
∑∞

k=0 Zk < ∞, and the sequence {Yk} converges to a nonnegative
random variable Y , almost surely.

3. Stochastic subgradient method and convergence analysis

The aims of this section are to propose a stochastic subgradient method
to solve the quasi-convex optimization problem (1.1), and to investigate
its convergence properties by using different types of stepsize rules. The
stochastic subgradient method is formally stated by the following algorithm.

Algorithm 3.1. Select an initial point x0 ∈ Rn and a sequence of stepsizes
{vk} ⊆ (0,+∞). Having xk, we calculate a unit noisy (unbiased) quasi-
subgradient g̃(xk) and update xk+1 by

(3.1) xk+1 = PX(xk − vkg̃(xk)).
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For quasi-convex optimization problems, the difference between the sto-
chastic subgradient method and the subgradient methods proposed in [19]
and [22] is that Kiwiel [22] studied an exact subgradient method, a deter-
ministic noise is considered in the inexact subgradient method [19], while
a stochastic noisy subgradient is employed in the stochastic subgradient
method.

The stepsize rule has a critical effect on the convergence behavior and
computational performance of subgradient methods. In this paper, we con-
sider the following typical stepsize rules.

(a) Constant stepsize rule:

vk = v(> 0) for each k.

(b) Diminishing stepsize rule:

(3.2) vk > 0, lim
k→∞

vk = 0,

∞∑
k=0

vk = ∞.

(c) Dynamic stepsize rule:

(3.3) vk = γk

(
f(xk)− f∗

L

) 1
p

for each k,

where 0 < γ ≤ γk ≤ γ < 2.

Throughout this section, to investigate convergence properties of the sto-
chastic subgradient method (Algorithm 3.1), we make the following assump-
tion:

• f satisfies the Hölder condition of order p with modulus L on Rn.

We now start the convergence analysis by providing the following basic
inequality, which shows a significant property of a stochastic subgradient
iteration.

Lemma 3.1. Let {xk} be a sequence generated by Algorithm 3.1. Fix some
n ∈ N, and let Fn := {x0, x1, . . . , xn}. If xn /∈ X∗, then it holds for any
x∗ ∈ X∗ that

(3.4) E
{
∥xn+1 − x∗∥2 | Fn

}
≤ ∥xn − x∗∥2 − 2vn

(
f(xn)− f∗

L

) 1
p

+ v2n.

Proof. By (3.1) and the nonexpansive property of projection operator, for
any x∗ ∈ X∗, we have that

∥xn+1 − x∗∥2 ≤ ∥xn − vng̃(xn)− x∗∥2
= ∥xn − x∗∥2 − 2vn ⟨g̃(xn), xn − x∗⟩+ v2n.

By taking the conditional expectation with respect to Fn, it follows that

E
{
∥xn+1 − x∗∥2 | Fn

}
≤ ∥xn − x∗∥2 − 2vnE {⟨g̃(xn), xn − x∗⟩ | Fn}+ v2n

≤ ∥xn − x∗∥2 − 2vn

(
f(xn)−f∗

L

) 1
p
+ v2n,

where the last inequality follows from Lemma 2.4. The proof is complete. �
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By virtue of Lemma 3.1, we will establish in Theorems 3.2, 3.4 and 3.6
the convergence results of Algorithm 3.1 for stepsize rules (a), (b) and (c),
respectively. In particular, we prove in Theorem 3.6 that any sequence
generated by Algorithm 3.1 with the dynamic stepsize rule converges to
an optimal solution of (1.1) almost surely, which is the first attempt to
apply the dynamic stepsize rule in the subgradient method for quasi-convex
optimization, to the best of our knowledge.

Theorem 3.2. Let {xk} be a sequence generated by Algorithm 3.1 with the
constant stepsize rule. Then

lim inf
k→∞

f(xk) ≤ f∗ + L
(v
2

)p
almost surely,

that is,

P

({
ω ∈ Ω : lim inf

k→∞
f(xk)(ω) ≤ f∗ + L

(v
2

)p})
= 1.

Proof. Given δ > 0, we consider the feasible level set Xδ defined by

Xδ := X ∩ lev<f∗+L( v
2
+δ)

pf,

and let yδ ∈ X be such that f(yδ) = f∗+Lδp (by the continuity of f). Note
that yδ ∈ Xδ by construction. Define a new process {x̂k} by x̂0 = x0 and

x̂k+1 :=

{
PX (x̂k − vkg̃(x̂k)) , if x̂k /∈ Xδ,

yδ, otherwise.

Thus the process {x̂k} is identical to {xk}, except that once x̂k enters the
feasible level set Xδ and then the process terminates with x̂k = yδ ∈ Xδ.
Assume that x̂k /∈ Xδ for any k and let F̂k := {x̂0, x̂1, . . . , x̂k}. It says that
f(x̂k) ≥ f∗ + L

(
v
2 + δ

)p
, and then it follows from Lemma 3.1 (with v in

place of vk) that the following relation holds for any x∗ ∈ X∗ and any k

E
{
∥x̂k+1 − x∗∥2 | F̂k

}
≤ ∥x̂k − x∗∥2 − 2v

(
f(x̂k)−f∗

L

) 1
p
+ v2

≤ ∥x̂k − x∗∥2 − 2vδ.

Then by Lemma 2.5, it follows that
∑∞

k=0 2vδ < ∞ almost surely, which is
impossible. Hence x̂k /∈ Xδ only occurs finitely many times, and x̂k ∈ Xδ

for large k. Consequently, in the original process, it holds that

lim inf
k→∞

f(xk) ≤ f∗ + L
(v
2
+ δ
)p

almost surely.

Since δ > 0 is arbitrary, by letting δ → 0, we arrive at the conclusion. �

Remark 3.3. Theorem 3.2 shows the convergence of Algorithm 3.1 to the
optimal value within some tolerance given in terms of the constant stepsize,
that is,

TSto(v) = L
(v
2

)p
.
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Recall from [19, Theorem 3.1] that the tolerance away from the optimal
value for the inexact subgradient method by using the constant stepsize rule
is presented in terms of noise (R), errors (ϵ) and the constant stepsize, i.e.,

TInexact(v,R, ϵ) = L
(
Rd+

v

2
(1 +R)2

)p
+ ϵ.

By contrast, the stochastic subgradient method achieves a better tolerance
than that of the inexact subgradient method. In particular, TSto(v) =
TInexact(v, 0, 0), which is the tolerance of the exact subgradient method by
using the same constant stepsize. This shows the advantage of using ran-
domization, which can also be observed from our experimental results in the
next section.

Theorem 3.4. Let {xk} be a sequence generated by Algorithm 3.1 with the
diminishing stepsize rule. Then

lim inf
k→∞

f(xk) = f∗ almost surely,

that is,

P

({
ω ∈ Ω : lim inf

k→∞
f(xk)(ω) = f∗

})
= 1.

Furthermore, if
∑∞

k=0 v
2
k < ∞, then {xk} converges to an optimal solution

of (1.1) almost surely.

Proof. The proof of the first statement uses the property of the diminishing
stepsize rule (cf. (3.2)) and a line of analysis similar to that of Theorem 3.2.
Hence we omit the details.

Recall that Lemma 3.1 describes the basic inequality of the sequence {xk}

E
{
∥xk+1 − x∗∥2 | Fk

}
≤ ∥xk − x∗∥2 − 2vk

(
f(xk)− f∗

L

) 1
p

+ v2k.

Note that
∑∞

k=0 vk = ∞ and
∑∞

k=0 v
2
k < ∞. It follows from [15, Theorem 2]

that {xk} converges to an optimal solution of (1.1) almost surely. �

Remark 3.5. Theorem 3.4 describes the exact convergence of the stochas-
tic subgradient method for the quasi-convex optimization problem (1.1) by
using the diminishing stepsize rule, which shares the same convergence prop-
erty as that of the exact subgradient method (see [22, Theorem 1]) almost
surely.

Theorem 3.6. Let {xk} be a sequence generated by Algorithm 3.1 with the
dynamic stepsize rule. Then there exist x̄ : Ω → X∗ such that {xk} converges
to x̄ almost surely, that is,

P ({ω ∈ Ω : {xk(ω)} converges to x̄(ω)}) = 1.
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Proof. It follows from Lemma 3.1 and (3.3) that, for any x∗ ∈ X∗,

(3.5)

E
{
∥xk+1 − x∗∥2 | Fk

}
≤ ∥xk − x∗∥2 − 2vk

(
f(xk)−f∗

L

) 1
p
+ v2k

= ∥xk − x∗∥2 − γk(2− γk)
(
f(xk)−f∗

L

) 2
p

≤ ∥xk − x∗∥2 − γ(2− γ)
(
f(xk)−f∗

L

) 2
p
.

Thus by Lemma 2.5, we can show that {∥xk − x∗∥} is convergent and
limk→∞ f(xk) = f∗ almost surely. Let Z be a countable and dense sub-
set of X∗. Choose

Θz := {ω : {∥xk(ω)− z∥} converges} for each z ∈ Z,

and

Θ :=
∩
z∈Z

Θz.

By the elements of probability theory, one has that

P (Θ) = 1− P (Θc) = 1− P

(∪
z∈Z

Θc
z

)
≥ 1−

∑
z∈Z

P (Θc
z) = 1.

For any ω ∈ Θ and any z ∈ Z, the sequence {∥xk(ω)− z∥} converges; hence
{xk(ω)} is bounded and must has the cluster point. Define x̄ : Ω → Rn be
such that

x̄(ω) is a cluster point of {xk(ω)} for any ω ∈ Θ.

Since limk→∞ f(xk) = f∗ almost surely, without loss of generality, we can
assume that f (xk(ω)) → f∗ for any ω ∈ Θ. Then it follows from the
continuity of f that

x̄(ω) ∈ X∗ for any ω ∈ Θ.

Fix ϵ > 0 and ω ∈ Θ. Then there exists z(ω) ∈ Z such that

(3.6) ∥x̄(ω)− z(ω)∥ ≤ ϵ/3,

because x̄(ω) ∈ X∗ and Z ⊆ X∗ is dense. Let {xki(ω)} be a subsequence
of {xk(ω)} such that xki(ω) → x̄(ω). Hence, limi→∞ ∥xki(ω)− z(ω)∥ ≤ ϵ/3
(by (3.6)). By the definition of Θ, one has that {∥xk(ω)− z(ω)∥} converges;
so that limk→∞ ∥xk(ω)− z(ω)∥ ≤ ϵ/3. Then there exists N ∈ N such that

∥xk(ω)− z(ω)∥ ≤ 2ϵ/3 for any k ≥ N.

Consequently, by (3.6), we obtain that

∥xk(ω)− x̄(ω)∥ ≤ ∥xk(ω)− z(ω)∥+ ∥x̄(ω)− z(ω)∥ ≤ ϵ for any k ≥ N.

Therefore we proved {xk(ω)} converges to x̄(ω) for any ω ∈ Θ, where
P (Θ) = 1, and the proof is complete. �
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4. Application

This section illustrates an application in fractional programming. In gen-
eral, the objective function in a fractional programming is a certain indicator
(e.g. efficiency), characterized by a ratio of technical terms. Fractional pro-
gramming is widely applied in various areas, such as economics, information
theory, management science and applied physics. For details, one can refer
to [3, 9, 17, 35] and references therein.

Here, we consider the Cobb-Douglas production efficiency problem intro-
duced by Bradley and Frey [7]. The problem is to maximize the profit/cost
ratio, which is an efficiency indicator, i.e., the ratio between the revenue
and the expenditure, subject to a variety of constraints on funding levels.
In particular, for a set of m projects and a collection of n production fac-
tors, the total profit value assigned to these projects can be expressed as the
following Cobb-Douglas production function

Profit = a0

n∏
j=1

x
aj
j , where

n∑
j=1

aj = 1,

where the variables xj designate the production factors. The total cost is
formulated as a linear function of the levels of investment in these projects,
i.e.,

Cost =

n∑
j=1

cjxj + c0.

With the definitions of total profit and total cost, the Cobb-Douglas pro-
duction efficiency model is expressed as

(4.1)
max f(x) :=

a0
∏n

j=1 x
aj
j∑n

j=1 cjxj+c0

s.t.
∑n

j=1 bijxj ≥ pi, i = 1, . . . ,m,

x ≥ 0,

where pi represents the profit that must be obtained at project i and bij is the
contribution of the production factor j to project i to realize the profit pi.
According to the circumstance of the Cobb-Douglas production efficiency
problem, all parameters on profit (aj) and cost (cj) are positive. From
[35, Theorems 2.3.3 and 2.5.1], it is obvious that (4.1) is a quasi-concave
maximization problem.

Two popular techniques for solving the nonlinear fractional programming
are the bisection method [21] and the Dinkelbach’s method (also called the
parametric method) [11, 35]. However, the Dinkelbach’s method is not ap-
plicable for solving the Cobb-Douglas production efficiency problem (4.1),
because the subproblem of Dinkelbach’s method is nonconcave and thus d-
ifficult to solve. Note that the subproblem of the bisection method is a
nonconvex feasibility problem. We will apply the linearized proximal al-
gorithm in our recent work [18], which can efficiently solve the nonconvex
feasibility problem, to solve subproblems of the bisection method.
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In order to facilitate the presentation of numerical results, we list the
abbreviations of algorithms used for solving the Cobb-Douglas production
efficiency problem in Table 1.

Table 1. List of the algorithms for solving the Cobb-
Douglas production efficiency problem.

Abbreviations Algorithms

BSM BiSection Method in [21].

QSM Exact Quasi-Subgradient Method in [22].

AQSM Approximate Quasi-Subgradient Method in [19].

StoSM Stochastic Subgradient Method.

All numerical experiments are implemented in MATLAB R2009a and ex-
ecuted on a personal laptop (Intel Core i7, 2.00 GHz, 8.00 GB of RAM).
In the numerical experiments, the parameters of the problem (4.1) are ran-
domly chosen from different intervals,

aj , bij ∈ [0, 1], a0, c0, cj ∈ [0, 10], and pi ∈ [0, n/2].

The diminishing stepsize rule is chosen as

vk = v/(1 + 0.1k),

where v is always chosen between [2, 5], while the constant stepsize is selected
between [0.5, 2]. The larger the problem size, the larger the stepsize.

We first compare the performances (in both the accuracy and CPU time)
of the BSM, AQSM and StoSM by using the diminishing stepsize rule for
different dimensions. The computation results are displayed in Table 2. The
noise of the AQSM is set to be a deterministic vector with length being 0.05
or 0.1; while the one of the StoSM is randomly selected following a stan-
dard normal distribution. In this table, the columns of Projects and Factors
represent the numbers of projects (m) and production factors (n) of prob-
lem (4.1) respectively, and fopt and CPU time denote the obtained optimal
value and the CPU time (seconds) cost to reach fopt by each algorithm,
respectively. From the results shown in Table 2, it is observed that the sub-
gradient type methods are highly efficient for the Cobb-Douglas production
efficiency problem (4.1); while the BSM is not suitable for the large-scale
Cobb-Douglas production efficiency problem, since it takes too much time
in solving the subproblems. We also note that the StoSM achieves a better
optimal value than the AQSM in a little shorter time.

The second experiment is performed to compare the convergence behav-
ior of the StoSM, QSM and AQSM by using the constant and diminishing
stepsize rules, where the problem size is fixed to be 100× 100. The numeri-
cal results, plotted in Figure 1, illustrate that the StoSM achieves a better
estimation than the AQSM does, which is consistent with Remarks 3.3 and
3.5. In particular, Figure 1(a) and (b) demonstrate the exact convergence
of the StoSM to an optimal objective value, while the AQSM only obtain
the convergence to an approximate objective value.
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Table 2. Computation results for maximizing the Cobb-
Douglas production efficiency.

BSM AQSM StoSM

Projects Factors fopt CPU time fopt CPU time fopt CPU time

10 10 0.2171 6.75 0.2252 0.06 0.2267 0.04

50 50 0.0477 34.0 0.0502 0.08 0.0547 0.08

100 100 0.0285 66.5 0.0286 0.11 0.0347 0.12

500 500 0.0038 5297 0.0045 0.72 0.0055 0.69

1000 1000 fails - 0.0021 1.66 0.0025 1.65

2000 2000 fails - 0.0010 6.24 0.0012 5.86
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(a) The constant stepsize rule.
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(b) The diminishing stepsize rule.

Figure 1. The convergence behavior of the StoSM, QSM
and AQSM.

Finally, we conduct 500 simulations to show the stability of the StoSM,
which start from the same initial point and solve the same problem, but
follow the different stochastic processes. Figure 2 plots the error bars of the
StoSM in such 500 simulations. It is shown that the StoSM is highly stable
and converges to an optimal objective value almost surely.
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Figure 2. The error bars of the StoSM in 500 simulations.
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[36] F. Yousefian, A. Nedić, and U. V. Shanbhag. On stochastic gradient and subgradient
methods with adaptive steplength sequences. Automatica, 48(1):56–67, 2012.

(Y. H. Hu) College of Mathematics and Statistics, Shenzhen University,
Shenzhen 518060, P. R. China

E-mail address: mayhhu@szu.edu.cn

(Carisa K. W. Yu) Department of Mathematics and Statistics, Hang Seng
Management College, Hong Kong

E-mail address: carisayu@hsmc.edu.hk

(C. Li) Department of Mathematics, Zhejiang University, Hangzhou 310027,
P. R. China

E-mail address: cli@zju.edu.cn


