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Abstract

In the present paper, we consider the varying stepsize CQ algorithm for solving
the split feasibility problem in Hilbert spaces, investigate the linear convergence issue
and explore an application in systems biology. In particular, we introduce a notion
of bounded linear regularity property for the split feasibility problem, and use it to
establish the linear convergence property for the varying stepsize CQ algorithm when
using some suitable types of stepsizes, which covers most types of stepsizes used in the
literature of CQ algorithms. We also provide some mild sufficient conditions for ensuring
this bounded linear regularity property, and then conclude the linear convergence rate
of the varying stepsize CQ algorithm for many application cases. To the best of our
knowledge, this is the first work to study the linear convergence rate of CQ algorithms.
In the aspect of application, we consider the gene regulatory network inference arising
in systems biology, which is formulated as a group Dantzig selector and then cast into
a split feasibility problem. The numerical study on gene expression data of mouse
embryonic stem cell shows that the varying stepsize CQ algorithm is applicable to gene
regulatory network inference in the sense that it obtains a reliable solution matching
with biological standards.
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1 Introduction

Let H1 and H2 be (finite- or infinite-dimensional) Hilbert spaces, and let A be a bounded
linear operator from H1 to H2. Let C and Q be nonempty closed convex subsets of H1 and
H2, respectively. The split feasibility problem (SFP for short) is to find a point x such that

x ∈ C and Ax ∈ Q. (1.1)

The SFP was introduced by Censor and Elfving [13] to solve the phase retrieval problems,
and it provides a unified framework for many inverse problems. Recently, the SFP has
received a great amount of attention due to its wide applications in signal processing [7],
image reconstruction [20,31] and intensity-modulated radiation therapy [12,14].

The development of numerical algorithms for solving the SFP (1.1) has attracted much
attention. One of the most popular and practical algorithms for solving the SFP is the CQ
algorithm, which was proposed by Byrne [6, 7] and has the following iterative form:

xn+1 = PC(xn − βA∗(I − PQ)Axn),

where A∗ is the adjoint of A, β > 0 is the stepsize, while PC and PQ denote the metric
projections onto C and Q, respectively.

As remarked in [6] (also see [30, 41]), one of the main advantages of the CQ algorithm
is that it involves only the computations of the metric projections onto C and Q, which are
usually easily calculated in many applications (e.g., when C and Q are the closed balls or
half-spaces); and it avoids the difficulty of calculating the matrix inverses at each iteration in
the algorithm proposed in [13]. Benefitting from this advantage, the CQ algorithm becomes
a popular tool for solving the SFP, and various variants of CQ algorithms by using different
types of stepsizes have been widely studied in the literature; one can refer to a recent book of
Byrne [8]. Some works in the finite-dimensional spaces and infinite-dimensional spaces can
be found in [14,43,47] and [30,35,40,41], respectively. In particular, Xu [41] studied the weak
convergence of the CQ algorithm for solving the SFP in infinite-dimensional Hilbert spaces
by virtue of fixed point theory. López et al. [30] introduced the following dynamic stepsize
CQ algorithm and established its weak convergence in the infinite-dimensional setting:

xn+1 = PC(xn − βnA
∗(I − PQ)Axn),

where

βn :=

{
0, if xn ∈ C ∩A−1Q,
ρn∥(I−PQ)Ax∥2
∥A∗(I−PQ)Ax∥2 , otherwise,

and {ρn} ⊆ (0, 2). (1.2)

The advantage of the dynamic stepsize CQ algorithm is that it does not require any prior
knowledge about the norm of operator (matrix) A. It was pointed out that the CQ algorithm
and the dynamic stepsize CQ algorithm may fail to converge strongly in infinite-dimensional
Hilbert spaces; see [41, Example 3.7] and [30, pp. 7]. Therefore, modifications of CQ algo-
rithm and dynamic stepsize CQ algorithm, together with their strong convergence property,
were proposed in [41] and [30], respectively; and the modification of dynamic stepsize CQ
algorithm was further extended in [36] to solve the split common fixed-point problem in-
volving a solution set of equilibrium problem. Under some additional assumptions, the
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strong convergence property of the CQ algorithms was studied in [11,16,46] as special cases
of some generalized CQ-type algorithms; see Remark 2.9 for more details. However, to the
best of our knowledge, there is still no paper devoted to establishing the convergence rate
for the CQ algorithm or the dynamic stepsize CQ algorithm.

The aim of the present paper is to continue the convergence study of the CQ algorithm,
but from a new perspective, in (not necessarily finite-dimensional) Hilbert spaces; in par-
ticular, we contribute to investigating the linear convergence issue for the following varying
stepsize CQ algorithm (V-CQ algorithm for short):

Algorithm 1.1. Let x0 ∈ H be given. Having x0, x1, · · · , xn, we choose a stepsize βn > 0
and determine xn+1 as follows:

xn+1 = PC(xn − βnA
∗(I − PQ)Axn).

Clearly, Algorithm 1.1 includes the CQ algorithm and the dynamic stepsize CQ algorithm
as special cases; e.g., when βn ≡ β > 0 or {βn} is given by (1.2).

The main contribution of the present paper is to establish the linear convergence prop-
erty for the V-CQ algorithm. For this purpose, we introduce a notion of bounded linear
regularity property for the SFP, and use it to prove the linear convergence property, meaning
that the generated sequence converges linearly to a feasible solution of the SFP, of the V-CQ
algorithm by using some suitable types of stepsizes. The established convergence results
cover the linear convergence property of the CQ algorithm and that of the dynamic step-
size CQ algorithm. In order to popularize the applications of the established convergence
results, we provide some mild sufficient conditions for ensuring this regularity property for
the SFP. Some of these sufficient conditions are satisfied for several applications, such as
the (group) Dantzig selector [29], which is popular in the fields of compressive sensing,
statistics and machine learning. As far as we know, this is the first work to study the linear
convergence rate of the CQ algorithm for solving the SFP (1.1). Furthermore, two examples
are provided to show the case where the strong convergence of the V-CQ algorithm may fail
in the infinite-dimensional Hilbert space, and the case where the linear convergence of the
V-CQ algorithm may fail in the Euclidean space if the SFP does not satisfy the bounded
linear regularity property, respectively.

Another contribution of the present paper is to infer gene regulatory network of mouse
embryonic stem cell (mESC) from gene expression data. Gene regulatory network inference
is vital in systems biology to understand complex biological processes, which is to identify
the regulatory relationship among the transcription factor complexes (TF complexes) and
the target genes from expression data at whole genome level. Due to the molecular biology
process, gene regulatory network inference can be understood as a group feature selection
problem based on the dependencies between the expression data of TF complexes and
that of target genes; see section 3 for the explanation. More specifically, let D ∈ Rm×n

and B ∈ Rm×s denote the expression data of the potential TF complexes and that of the
target genes of mESC in biological experiments, respectively, and let Z ∈ Rn×s denote the
regulatory relationship of all the TF-target gene pairs, which is to be predicted. Then, the
regulatory relationship between TF complexes and target genes at whole genome level can
be represented approximately by a linear system

DZ = B + ε.
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Equivalently, gene regulatory network inference of mESC at whole genome level consists of
a series of inverse problems, each of which is to infer regulatory network for a certain target
gene:

DZ·j = B·j + ε·j , j = 1, 2, . . . , s, (1.3)

where Z·j is the j-th column of Z, denoting the regulatory relationship between TF com-
plexes and the j-th target gene, and B·j is the j-th column of B, designating the expression
profile of the j-th target gene in the biological experiments. Fixing j ∈ {1, 2, . . . , s} and
using the ℓ∞,1 norm to measure the group sparsity of TF complexes, inferring regulatory
network for the j-th target gene can be formulated as a group Dantzig selector:

min ∥Z·j∥∞,1

s.t. ∥D⊤(DZ·j −B·j)∥∞ ≤ ϵj .
(1.4)

By letting D̃ := D⊤D and B̃·j := D⊤B·j , and selecting suitable parameter δj , problem (1.4)
could be approached by solving the following SFP

Z·j ∈ Cj := {Z·j : ∥Z·j∥∞,1 ≤ δj} and D̃Z·j ∈ Qj := Box(B̃·j , ϵj), (1.5)

where Box(x, r) denotes a closed box of radius r centered at x. Therefore, due to (1.3),
gene regulatory network inference of mESC can be formulated as a series of SFPs ((1.5)
with j = 1, 2, . . . , s).

We collect the expression data of mESC, and apply the V-CQ algorithm to sequentially
solve a series of SFPs (1.5) resulting from gene regulatory network inference at whole genome
level, and compare with some state-of-the-art algorithms. The numerical results exhibit
that exploiting the group structure of TF complexes can improve the accuracy of the gene
regulation network forecasting, and that the V-CQ algorithm is applicable to gene regulatory
network inference in the sense that it obtains more biologically accurate solutions than the
existing methods do (improving at least 30% on the AUC value), which may facilitate
biologists to study the gene regulation mechanism of higher model organisms in a genome-
wide scale.

The paper is organized as follows. In section 2, we establish the linear convergence
property for the V-CQ algorithm when using different types of stepsizes and under the
assumption of the bounded linear regularity property for the SFP. Applications to gene
regulatory network inference and numerical experiments on gene expression data of mESC
are demonstrated in section 3. A conclusion is presented in section 4. The proof of some
sufficient conditions ensuring the regularity property is provided in Appendix.

2 Linear convergence of CQ algorithms

The notation used in the present paper is standard. Let H be a Hilbert space with inner
product ⟨·, ·⟩ and norm ∥ · ∥. For a set Ω ⊆ H, we denote the closure, interior, relative
interior and conical hull of Ω by clΩ, intΩ, riΩ and coneΩ, respectively. For x ∈ H and
r > 0, we use B(x, r) and B(x, r) to denote the open metric ball and the closed metric ball
at x with radius r, respectively, that is,

B(x, r) := {y ∈ H : ∥x− y∥ < r} and B(x, r) := {y ∈ H : ∥x− y∥ ≤ r}.
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In particular, we use B and B to denote the unit open metric ball and the unit closed
metric ball at the origin, respectively. For a point x and a set Ω ⊆ H, the classical metric
projection of x onto Ω and the distance of x from Ω, denoted by PΩ(x) and dΩ(x), are
respectively defined by

PΩ(x) := argmin{∥x− y∥ : y ∈ Ω} and dΩ(x) := inf{∥x− y∥ : y ∈ Ω}.

The following proposition is about some well-known properties of the projection operator,
in which (i) is taken from [4, Theorem 3.14]; (ii) and (iii) from [4, Proposition 4.8]; while
(iv) and (v) are known in [4, Corollary 4.10].

Proposition 2.1. Let Ω be a nonempty closed convex set in H, x, y ∈ H and z ∈ Ω. Then
the following assertions hold:

(i) ⟨PΩ(x)− x, z − PΩ(x)⟩ ≥ 0.

(ii) ∥PΩ(x)− PΩ(y)∥2 ≤ ⟨PΩ(x)− PΩ(y), x− y⟩.

(iii) ∥PΩ(x)− z∥2 ≤ ∥x− z∥2 − ∥PΩ(x)− x∥2.

(iv) ⟨(I − PΩ)x− (I − PΩ)y, x− y⟩ ≥ ∥(I − PΩ)x− (I − PΩ)y∥2.

(v) ∥(I − PΩ)x− (I − PΩ)y∥ ≤ ∥x− y∥.

The objective of this section is to investigate the linear convergence of the V-CQ algo-
rithm (Algorithm 1.1) for solving the SFP (1.1). Throughout this section, we always assume
that the solution set S of the SFP is nonempty, that is,

S := C ∩A−1Q ̸= ∅.

Then the following equivalence holds for any z ∈ C:

[z ∈ S] ⇔ [(I − PQ)Az = 0]. (2.1)

Regularity conditions have been widely used to analyze the convergence rates of many
algorithms; see [9,23] and references therein. In order to establish the linear convergence of
the V-CQ algorithm, we introduce a notion of bounded linear regularity property for the
SFP.

Definition 2.2. The SFP (1.1) is said to satisfy the bounded linear regularity property if,
for any r > 0 such that S ∩B(0, r) ̸= ∅, there exists γr > 0 such that

γrdS(x) ≤ dQ(Ax) for any x ∈ C ∩B(0, r). (2.2)

Now, under the assumption of bounded linear regularity property, we establish the
convergence rate of the V-CQ algorithm using different types of stepsizes.
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Theorem 2.3. Suppose that the SFP (1.1) satisfies the bounded linear regularity property.
Let {xn} be a sequence generated by Algorithm 1.1 with {βn} ⊆ (0,+∞). Then {xn}
converges to a solution x∗ of the SFP (1.1) satisfying

∥xn − x∗∥ ≤ c q
∑n

k=1 βk for any n ∈ N, (2.3)

for two constants c ≥ 1 and 0 < q < 1, provided that one of the following conditions is
assumed:

(a) {βn} satisfies

0 < lim inf
n→+∞

βn ≤ lim sup
n→+∞

βn <
2

∥A∥2
. (2.4)

(b) {βn} is given by (1.2) with {ρn} satisfying

0 < lim inf
n→+∞

ρn ≤ lim sup
n→+∞

ρn < 2. (2.5)

(c) {βn} satisfies

lim
n→+∞

βn = 0 and
+∞∑
n=1

βn = +∞. (2.6)

Consequently, {xn} converges to x∗ linearly in the case when (a) or (b) is assumed.

Proof. Without loss of generality, we assume that xn /∈ S for any n ≥ 0 (otherwise, the
V-CQ algorithm terminates in finite iterations and then the conclusions follow trivially).
Then, in view of Algorithm 1.1, one sees that Axn /∈ Q for any n ≥ 0. Fix z ∈ S and n ∈ N.
For simplicity, we write

∇xn := A∗(I − PQ)Axn. (2.7)

Then, one checks that

∥∇xn∥ ≤ ∥A∥dQ(Axn) and ⟨xn − z,∇xn⟩ ≥ d2Q(Axn)
1. (2.8)

In fact, the first inequality is trivial; while the second one holds because, by Proposition
2.1(iv) and (2.1) (and so (I − PQ)Az = 0),

⟨xn − z,∇xn⟩ = ⟨A(xn − z), (I − PQ)Axn⟩ ≥ ∥(I − PQ)Axn∥2 = d2Q(Axn). (2.9)

Since PC is nonexpansive, we have

∥xn+1 − z∥2 = ∥PC(xn − βn∇xn)− z∥2
≤ ∥xn − βn∇xn − z∥2
= ∥xn − z∥2 − 2βn⟨xn − z,∇xn⟩+ β2

n∥∇xn∥2.

Hence, by (2.9), one has that

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − βn

(
2− βn

∥∇xn∥2

d2Q(Axn)

)
d2Q(Axn). (2.10)

1This inequality could be also concluded from [38, Lemma 3.1].
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This in particular implies the following implication:

[βn ∥∇xn∥2 ≤ 2d2Q(Axn)] ⇒ [∥xn+1 − z∥ ≤ ∥xn − z∥]. (2.11)

Below, we show that {xn} converges to a solution x∗ of the SFP and (2.3) holds. To do
this, suppose that one of (a), (b) and (c) holds. Then we have the following assertions:

(i) If (a) or (c) holds, then there exist η > 0 and M ∈ N such that

βn ≤ η <
2

∥A∥2
for any n ≥ M. (2.12)

(ii) If (a) or (b) holds, then
lim inf
n→∞

βn > 0. (2.13)

Indeed, assertions (i) and (ii) for (a) are trivial; assertion (i) for (c) follows from (2.6); while,

for (b), assertion (ii) holds by (2.5) because βn =
ρnd2Q(Axn)

∥∇xn∥2
≥ ρn

∥A∥2 by (1.2) and (2.8).

Note that there exists M ∈ N such that

βn ∥∇xn∥2 ≤ 2d2Q(Axn) for any n ≥ M, (2.14)

(this fact follows from (1.2) and (2.7) if (b) is assumed and from (2.12) and (2.8) otherwise).
Therefore, {∥xn−z∥}n≥M is monotone decreasing by (2.11), and so the sequence {∥xn−z∥}
is bounded. Hence, there exists r > 0 such that {xn} ⊆ C ∩B(0, r). By assumption that
the SFP satisfies the bounded linear regularity property, it follows from Definition 2.2 that
there exists γr > 0 such that

dQ(Axn) ≥ γrdS(xn) for any n ≥ 0.

Then it follows from (2.10) and (2.14) that

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − γ2rβn

(
2− βn

∥∇xn∥2

d2Q(Axn)

)
d2S(xn)

holds for each z ∈ S; hence

d2S(xn+1) ≤

(
1− γ2r βn

(
2− βn

∥∇xn∥2

d2Q(Axn)

))
d2S(xn) for any n ≥ M. (2.15)

We claim that

lim inf
n→+∞

(
2− βn

∥∇xn∥2

d2Q(Axn)

)
> 0. (2.16)

Note by (2.8) that

2− βn
∥∇xn∥2

d2Q(Axn)
≥ 2− βn∥A∥2.

Thus, (2.16) is true by assertion (i) (see (2.12)) in the case of (a) or (c), and by (2.5) in the
case of (b) because, by (1.2),

2− βn
∥∇xn∥2

d2Q(Axn)
= 2− ρn for any n ≥ 0
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(noting that each Axn /∈ Q by (2.1) as xn /∈ S by the earlier assumption). Therefore, (2.16)
is checked; hence

lim inf
n→+∞

{
γ2r

(
2− βn

∥∇xn∥2

d2Q(Axn)

)}
> 0.

Then there exists N ≥ M such that

δ := inf
n≥N

{
γ2r

(
2− βn

∥∇xn∥2

d2Q(Axn)

)}
> 0.

From (2.15), it follows that

d2S(xn+1) ≤ (1− δβn)d
2
S(xn) ≤ d2S(xN )

n∏
k=N+1

(1− δβk) for any n ≥ N. (2.17)

Now fix n ≥ N . Recalling that {∥xm−PS(xn+1)∥}m≥n is monotone decreasing, we conclude,
for any m > n, that

∥xm−xn+1∥ ≤ ∥xm−PS(xn+1)∥+∥xn+1−PS(xn+1)∥ ≤ 2∥xn+1−PS(xn+1)∥ = 2dS(xn+1).

This, together with (2.17), implies that

∥xm − xn+1∥ ≤ 2dS(xN )
n∏

k=N+1

√
1− δβk for any m > n > N. (2.18)

Note that ln(1− t) ≤ −t for any t ∈ [0, 1). It follows, for any n > N , that

n∏
k=N+1

√
1− δβk = exp

(
1

2

n∑
k=N+1

ln(1− δβk)

)
≤ q

∑n
k=N+1 βk ,

where q := e−
δ
2 ∈ (0, 1). This, together with (2.18), yields that

∥xm − xn+1∥ ≤ 2dS(xN ) q
∑n

k=N+1 βk for any m > n > N.

Since
∑+∞

n=1 βn = +∞ by (2.6) and assertion (ii), it follows that {xn} is a Cauchy sequence
and converges to a solution x∗ of the SFP satisfying

∥xn+1 − x∗∥ ≤ 2dS(xN ) q
∑n

k=N+1 βk for any n > N.

Then (2.3) holds with c is given by

c := max

{
2dS(xN ) q−

∑N
k=1 βk , max

i=1,...,N
∥xi − x∗∥q−

∑i
k=1 βk

}
> 0.

Consequently, by (2.13), one has that {xn} converges to x∗ linearly, if (a) or (b) is assumed.
The proof is complete.

8



Remark 2.4. The sequence {βn} satisfying (2.6) is also called the diminishing stepsize in the
literature of gradient methods; see, e.g., [5,24,25]. In particular, if we choose {βn} := { 1

nα }
with α ∈ (0, 1), which satisfies (2.6), then any sequence {xn} generated by Algorithm 1.1
converges to a solution x∗ of the SFP at a rate of 1− α, that is,

∥xn − x∗∥ ≤ c qn
1−α

for any n ∈ N.

Indeed,

n∑
k=1

βk =
n∑

k=1

1

kα
=

n∑
k=1

∫ k+1

k

1

kα
dx ≥

n∑
k=1

∫ k+1

k

1

xα
dx =

1

1− α

(
(n+ 1)1−α − 1

)
.

To popularize the applications of the established convergence results, we provide some
sufficient conditions ensuring the regularity property for the SFP (1.1) in the following
proposition. For the convenience of readers, we give the proof of the proposition in Ap-
pendix.

Proposition 2.5. The SFP (1.1) satisfies the bounded linear regularity property provided
one of the following conditions holds:

(i) C and Q are polyhedrons.

(ii) AC ∩ intQ ̸= ∅.

(iii) A(riC) ∩Q ̸= ∅ and Q is a polyhedron.

(iv) AC ∩ riQ ̸= ∅, C is a polyhedron and Q is finite-codimensional.

(v) A(riC) ∩ riQ ̸= ∅, and Q is finite-codimensional.

The following corollary, which seems new to the best of our knowledge, is a direct
consequence of Proposition 2.5 and Theorem 2.3.

Corollary 2.6. Suppose that one of statements (i)-(v) of Proposition 2.5 holds. Let {xn}
be a sequence generated by Algorithm 1.1. Then {xn} converges to a solution x∗ of the
SFP satisfying (2.3), provided that one of conditions (a), (b) and (c) in Theorem 2.3. In
particular, in the case of (a) or (b), {xk} converges to x∗ linearly.

Examples 2.7 and 2.8 below illustrate that the bounded linear regularity property may
fail if none of conditions (i)-(v) in Proposition 2.5 is satisfied. In particular, Example
2.8 in the Euclidean space shows further that the V-CQ algorithm may fail to linearly
converge (even though it converges), if the SFP does not satisfy the bounded linear regularity
property. Recall that Example 2.7 is taken from [26].

Example 2.7. Let {ei}∞i=1 denote the orthonormal basis of the Hilbert space l2. Consider
the SFP (1.1) with

C := {x ∈ l2 : ⟨x, e1⟩ ≤ 0}, Q := cl (cone{f(x) : x ∈ R+}) and A := I,
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where f : R → l2 is defined by

f(x) := e⌈x⌉+2 cos
(π
2
(x− ⌈x⌉)

)
+ e⌈x⌉+3 sin

(π
2
(x− ⌈x⌉)

)
+ e1 exp(−100x3),

and ⌈x⌉ denotes the largest integer not greater than x. Note that C ∩ Q = {0}. Chosen
x0 ̸= 0 and βn ≡ 1, the sequence generated by Algorithm 1.1 is formulated by

xn = PC(PQ(xn−1)) = (PCPQ)
nx0.

It was reported by [26, Theorem 1] that this sequence {xn} fails to converge strongly to
0. Thus, by Theorem 2.3, one sees that the bounded linear regularity property cannot be
satisfied for this problem.

Example 2.8. Consider the SFP (1.1) with

C := R× {1}, Q := B and A := I.

It is clear that the solution set of the SFP is S = {(0, 1)}. Let x := (u, 1). Then we have

lim
u→0

dQ(Ax)

dS(x)
= lim

u→0

√
1 + u2 − 1

|u|
= 0.

Thus there does not exist γr > 0 such that (2.2) holds, and so the bounded linear regularity
property is not satisfied for this problem.

Let x0 = (u0, 1) with u0 > 0, βn = β ∈ (0, 2) (as ∥A∥ = 1), and let {xn} be a sequence
generated by Algorithm 1.1. We have by [6, Theorem 2.1] that {xn} converges to (0, 1),
the unique solution of the SFP. Below, we show that {xn} does not linearly converge to the
solution of the SFP. In view of Algorithm 1.1, we have that xn = (un, 1),

PQ(xn) =

(
un√
1 + u2n

,
1√

1 + u2n

)
,

and

xn+1 = PC(xn − β(xn − PQ(xn))) =

(
un

(
1− β +

β√
1 + u2n

)
, 1

)
.

Recalling that {xn} converges to (0, 1), we have that limn→∞ un = 0, and then

lim
n→∞

dS(xn+1)

dS(xn)
= lim

n→∞

(
1− β +

β√
1 + u2n

)
= 1.

That is, {xn} does not linearly converge to (0, 1), the unique solution of the SFP.

We end this section with a remark to mention some relevant works on the strong con-
vergence issue of CQ algorithms.
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Remark 2.9. Several generalized CQ-type algorithms, together with their strong conver-
gence, were proposed and studied recently for solving more general problems than the SFP,
such as the multiple-set split feasibility problem [16], and the variational inequality problem
on a solution set of a split common fixed-point problem [11,46]; these generalized CQ-type
algorithms particularly include the CQ algorithm or dynamic stepsize CQ algorithm (i.e.,
the V-CQ algorithm with stepsizes satisfying (1.2)) as special cases. Thus, as direct conse-
quences, the strong convergence result of the CQ algorithm, under the semicompact assump-
tion and the demiclosed assumption, was obtained by [16, Theorem 3.1] and [46, Theorem
2.1] respectively; while the strong convergence result of the dynamic stepsize CQ algorithm
was obtained by [11, Theorem 6.1] under the assumption of the bounded regularity property
there. Although the bounded linear regularity property assumed in Theorem 2.3 is stronger
than the bounded regularity, demiclosed or semicompact condition, Theorem 2.3 provides a
clear convergence rate for the V-CQ algorithm; in particular, the linear convergence result is
established for CQ algorithm and dynamic stepsize CQ algorithm, which partially improve
the convergence results mentioned above for the SPF.

3 Gene regulatory network inference

Inferring gene regulatory networks from gene expression data at whole genome level is an
arduous challenge in systems biology, especially for higher organisms in which the number of
genes is large but the number of experimental samples is small. Gene transcriptional regu-
lation network describes the regulatory relationship among transcription factors (TFs) and
target genes in systems biology. It is reported in [21,39] that TFs often act in combination
to form TF complexes and control the transcription of target genes collaboratively. Hence
this kind of networks intrinsically has a group structure, that is, a TF complex consists of
several collaborative TFs, which are all active for the transcription of a certain target gene.
Gene regulatory network inference is the process to search a small number of TF complexes
(or TFs) from a pool of thousands of TF complexes (or TFs) for the transcription of each
target gene. In mathematics, the solution of gene regulatory network has a natural grouping
of its components such that the components (i.e., TFs) within each group (i.e., TF complex)
are likely to be either all zeros or all nonzeros, and this solution has only a small number of
nonzero groups (i.e., active TF complexes). Therefore, gene regulatory network inference
can be understood as a group feature selection problem based on the dependencies between
the expression of TF complexes (or TFs) and that of target gene.

3.1 Description of real data

The aim of our numerical study is to predict the gene regulatory network in mouse em-
bryonic stem cell (mESC) by considering the TF complex (group) information. Expression
of TFs and target genes have been measured in a genome-wide scale under multiple bi-
ological experiments on mESC, and the expression data of mESC are downloaded from
http://jjwanglab.org/LpRGNI/. In particular, the matrix A ∈ R245×939 includes the log2
transformed gene expression fold changes between control and TF perturbation samples of
939 TFs in 245 experiments. Each row of A is the expression profile of 939 TFs in each
experiment, and each column of A is the expression profile of each TF in 245 experiments.
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The matrix B ∈ R245×12488 includes the log2 transformed gene expression fold changes be-
tween control and TF perturbation samples of 12488 target genes in 245 experiments. Each
row of B is the expression profile of 12488 target genes in each experiment, and each column
of B is the expression profile of each target gene in 245 experiments (Figure 1A). Let the
matrix X ∈ R939×12488 denote the regulatory relationship of all the TF-target gene pairs,
which is to be predicted. Then, the regulatory relationship between TFs and target genes
can be represented approximately by a linear system

AX = B + ε. (3.1)

To guide the search of biologically meaningful solution, ChIP-seq (Chromatin immunopre-
cipitation followed by sequencing) data are converted into an initial matrix X0 (cf. [32]) by
calculating a prior value for each TF-target gene pair, according to the presence or absence
of a binding site of each TF within the promoter of each target gene. The data of X0 are
also downloaded from http://jjwanglab.org/LpRGNI/.

Two independent golden standards, named low-throughput golden standard and high-
throughput golden standard, are used to evaluate the accuracy of the inferred gene regu-
latory network. They are downloaded from iScMiD2 and ChIP-Array3, respectively. Low-
throughput golden standard includes 97 TF-target gene interactions, which has been verified
by biological experiments. High-throughput golden standard contains 40006 TF-target gene
interactions evidenced by a in vivo binding site of the TF on the target gene’s promoter
and the expression change of the target gene under the perturbation of the TF (Figure 1C);
cf. [33, 37].

3.2 Group structure in gene regulatory networks

Several bioinformatics methods and optimization algorithms have been developed for in-
ferring gene regulatory networks, such as NARROMI [45], ISTA [17], YALL1 [42], etc.
However, most of the existing methods usually consider each TF separately and only se-
lect TFs at the individual feature level (see, e.g., [32, 45]), and their performance is not
satisfactory. It was demonstrated in Figure 2 (i.e., [32, Figure 2]) that they are of poor
performance in a genome-wide scale inference, in which the AUCs4 are close to that of a
random prediction on both evaluation data. The poor performance of the existing methods
might stem from the fact that the group structure of TF complexes is not exploited in gene
regulatory network inference; see, e.g., [21, 39].

It is well-known in the machine learning literature that exploiting the group structure
can reduce the degrees of freedom in the solution, thereby leading to better performance;
see [1, 22, 44] and references therein. Inspired by this idea, we add the group structure of
TF complexes into the linear system (3.1) to improve the accuracy of inference as follows.
As remarked in [19], the TF complex information can be inferred from the ChIP-seq data.
Following the method proposed in [19], we infer the group structure (TF complexes) from

2The iScMiD data is available at http://amp.pharm.mssm.edu/iscmid/.
3The ChIP-Array data is available at http://jjwanglab.org/chip-array/.
4The area under the curve (AUC) of a receiver operating characteristic (ROC) curve is widely recognized

as an important index of the overall classification performance of an algorithm; see [18]. In general, the
larger the AUC, the better the performance.
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Figure 1: Workflow of gene regulatory network inference via SFP.
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(a) Evaluation with high-throughput golden stan-
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Figure 2: ROC curves and AUCs of existing methods on gene regulatory network inference.

ChIP-seq data of mESC. In detail, note that multiple TFs that bind at the same position
in the genome are regarded as a TF complex. By this principle, we collect the binding sites
of TFs from ChIP-seq/chip data of mESCs (see [32, Table 2] and [37, Table S3]), and define
a TF complex by consisting of the collaborative TFs, whose binding sites are overlapped
in the genome. Following this, we obtain 500 candidates of TF complexes in mESC as
shown in Figure 3, where each row denotes a TF complex and each column symbolizes a
TF component. In Figure 3, a pixel is marked as blue if the TF component is included
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in the TF complex; otherwise, it is marked as white; we observe from Figure 3 that there
may be overlaps in different TF complexes. Therefore, after adding the group structure of
TF complexes, the regulatory relationship between the TF complexes and target genes is
denoted by a matrix Z ∈ R2257×12488, in which each row denotes the regulatory relationship
between a TF in TF complex and target genes. Let the group structure of mESC be denoted
by an indicator matrix W ∈ R2257×939, in which Wij = 1 if the i-th TF in Z (i.e., i-th row
of Z) is the j-th TF in X, and equals to zero otherwise. Then it follows that

Z = WX, (3.2)

which converts the gene regulatory network between TFs and genes to those between TF
complexes and genes. We further use W+ to denote the Moore-Penrose pseudoinverse of
W , and let D := AW+ and Z0 := WX0. Then the linear system (3.1) can be converted
into

DZ = B + ε, (3.3)

where D ∈ R245×2257 denotes expression profiles of TF complexes (Figure 1A).

Figure 3: TF complexes in mESC. Each row is a TF complex, and each column is a TF
component (marked with a symbol). Blue denotes that the TF component is included in
the TF complex, and white denotes that it is absent.

Since the expression data of mESC consists of 12488 target genes, system (3.3) consists
of 12488 linear inverse problems, each of which is to infer regulatory network for a certain
target gene:

DZ·j = B·j + ε·j , j = 1, 2, . . . , 12488, (3.4)
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where Z·j ∈ R2257 is the j-th column of Z, denoting the regulatory relationship between TF
complexes and the j-th target gene, and B·j ∈ R245 is the j-th column of B, designating
the expression profile of the j-th target gene in the experiments. Hence, gene regulatory
network inference of mESC is to approach the group sparse solutions of a series of problem
(3.4), according to the expression data of TF complexes and that of target genes. Fixing j ∈
{1, 2, . . . , 12488}, inferring regulatory network of j-th target gene (3.4) can be formulated
as a group Dantzig selector [29] with the prior knowledge of TF complexes being the pre-
defined group structure, which is to solve the following problem

min ∥Z·j∥∞,1

s.t. ∥D⊤(DZ·j −B·j)∥∞ ≤ ϵj ,
(3.5)

where ∥x∥p,1 :=
∑r

i=1 ∥ωi∥∞ is a group sparsity promoting norm (with x := (ω⊤
1 , . . . , ω

⊤
r )

⊤

standing for the group structure of x). By letting D̃ := D⊤D and B̃·j := D⊤B·j , and
selecting suitable parameter δj , the group Dantzig selector (3.5) could be approached by
solving the following SFP

Z·j ∈ Cj := {Z·j : ∥Z·j∥∞,1 ≤ δj} and D̃Z·j ∈ Qj := Box(B̃·j , ϵj). (3.6)

Therefore, due to (3.4), gene regulatory network inference of mESC can be formulated as a
series of SFPs (Figure 1B).

We apply the V-CQ algorithm to sequentially solve SFPs ((3.6) with j = 1, 2, . . . , 12488),
and hence to infer the gene regulatory network of mESC. All numerical experiments are
implemented in MATLAB R2009a and executed on a personal desktop (Intel Core Duo
E8500, 3.16 GHz, 4.00 GB of RAM). It is worth noting that we use the ℓ∞,1 norm to
characterize the group sparsity in the group Dantzig selector (3.5) so as to achieve the
high efficiency of the V-CQ algorithm. Indeed, the feasible sets Cj and Qj in (3.6) are
polyhedrons, and thus, it follows from Corollary 2.6 that the V-CQ algorithm linearly
converges to a feasible solution of (3.6). The projection onto Cj , an ℓ∞,1 ball, is implemented
by an efficient algorithm from [34]. In the following subsection, we will show the numerical
results of applying the V-CQ algorithm to solve the SFPs and validating by the biological
golden standards.

3.3 Numerical results

In this numerical study, we conduct several numerical experiments to show the performance
of the V-CQ algorithm in inferring gene regulatory networks of mESC, compare with some
state-of-the-art algorithms, and demonstrate the sensitivity analysis of the V-CQ algorithm
on initial points and stepsizes, by evaluation with the biological golden standards. Note that
these two biological golden standards only measure the regulations between TFs and genes;
however, the biological golden standards on regulations between TF complexes and genes
are not available at this moment (because, in most biological experiments, only regulations
between single TF and its target genes are investigated). Hence, to evaluate the obtained
results, we convert the inferred regulations between TF complexes and genes to those be-
tween TFs and genes, that is, X = W+Z (by (3.2)), and then use the available golden
standards to evaluate our results. To calculate the AUC of this X, a score Scoreij := |Xij |
is adopted as the predictor for TF i on target gene j.
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The first experiment is to show the performance of the V-CQ algorithm to solve SFPs
((3.6) with j = 1, 2, . . . , 12488), by using four types of stepsizes5 and starting from the
initial matrix Z0, and compare the numerical results with that of the existing methods
via matching with the biological golden standards. Matching with the high-throughput
and low-throughput golden standards, we draw in Figure 4 the ROC curves of the V-CQ
algorithm with the four types of stepsizes, as well as that of the existing methods, to
evaluate their accuracy. It is illustrated from Figure 4 that the V-CQ algorithm (plotted
in solid) using the four types of stepsizes perform almost the same (as indicated by the
almost same AUC value), and significantly outperforms the existing methods (plotted in
dots) in the sense that there is an increase of at least 30% on the AUC value. Note that the
golden standards we adopt here are obtained from biological experiments, which are well-
accepted as true TF-target gene regulations. The higher the AUC, the more biologically
accurate the obtained gene regulatory network is. Hence, the numerical result in Figure
4 shows that exploiting the group structure of TF complexes can improve the accuracy
of the gene regulation network forecasting, and that the V-CQ algorithm is applicable to
gene regulatory network inference in the sense that it obtains more biologically accurate
solutions.
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Figure 4: ROC curves and AUCs of the V-CQ algorithm on gene regulatory network infer-
ence of mESC.

To illustrate the obtained results, we display the heat maps of the golden stardard, initial
X0 and solution X of the V-CQ algorithm respectively in Figure 5, and the heat maps of
initial Z0 and solution Z of the V-CQ algorithm in Figure 6. It was reported in [32, Table
3] that the high-throughput golden standard is mainly constructed for 28 TFs, including
Cdx2, Ctr9, Esrrb, Jarid2, Kdm1a, Klf4, Myc, Mycn, Nacc1, Nanog, Nr0b1, Nr5a2, Pou5f1,
Rest, Sall4, Sfpi1, Smad1, Sox2, Stat3, Suz12, Tbx3, Tcf3, Tcfcp2l1, Trim28, Wdr5, Whsc2,
Zfp281, Zfp42. Hence, the heat maps of these 28 TFs are plotted in Figure 5 and the ones of

5Constant stepsize βn = 1; Diminishing stepsize βn = n−0.1; Divergent stepsize βn = 1
1+n

; Dynamic
stepsize (1.2) with ρn = 1. Note that both diminishing stepsize and divergent stepsize satisfy condition
(2.6).
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TF complexes that include at least one of the 28 TFs are plotted in Figure 6, and note that
the heat maps plot the transpositions of the relevant matrices. We can observe that X0

has much more false positives than X, so the gene regulatory network gets higher accuracy
after calculation. The AUCs of X and X0 are listed in Table 3 later, in which it is shown
that X is better than X0 matching with the high-throughput biological standard.

(a) Initial X0. (b) Golden standard. (c) Solution X of V-CQ.

Figure 5: Heat maps of gene regulatory networks of key factors.

(a) Initial Z0. (b) Solution Z of V-CQ.

Figure 6: Heat maps of gene regulatory networks of key TF complexes.

We also present the convergence rate of the V-CQ algorithm when inferring gene reg-
ulatory networks of mESC. Note that the biological golden standard consists of only part
of gene regulatory network, and that the true solution of problem (3.6) is unknown. Al-
ternatively, we adopt the violation of the SFPs (3.6), denoted by dQj (D̃Z·j), to evaluate
the convergence behavior of the V-CQ algorithm. The error bar along with the number of
iterations is plotted in Figure 7. It is demonstrated from Figure 7 the V-CQ algorithm for
inferring gene regulatory networks of mESC linearly converges to a feasible solution when
using the four types of stepsizes, which is consistent with the theoretical results provided
in Corollary 2.6.

The second experiment is to compare the V-CQ algorithm with the group Lasso [44] and
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Figure 7: The convergence rate of the V-CQ algorithm with four types of stepsizes.

group Dantzig selector [29] for inferring gene regulatory networks of mESC. The computa-
tion results are displayed in Table 1 with the best one of each method being marked as red.
In this table, the columns of Method and Parameter represent the selected method and the
different parameters used in the method, in which the parameter in the V-CQ algorithm is
δj = η∥Z0

·j∥∞,1 (see (3.6)), parameter λ in the group Lasso is the regularization parameter
(see [44]), and parameter ϵ in group Dantzig selector is the one in (3.5); the columns of
AUCs (high) and AUCs (low) represent the AUC evaluated with the high-throughput and
low-throughput golden standards, respectively; and the column of CPU time denotes the
averaged CPU time (hours) cost to accomplish the gene regulatory networks inference of
the whole genome. From Table 1, it is observed that the V-CQ algorithm outperforms the
group Lasso and group Dantzig selector in the sense that it obtains more reliable solution
matching with biological standards, since its solution has a larger AUC value. It is also
shown that the V-CQ algorithm costs more CPU time than the group Lasso does, and much
less than the group Dantzig selector does. This is because the group Lasso is to solve an
unconstrained optimization problem, which avoids the computation of projection; while the
group Dantzig selector requires to compute the projection onto its constraint set at each
iteration, which costs more time than calculating the projection onto an ℓ∞,1 ball does.

The third experiment is to analyze the sensitivity of the V-CQ algorithm on stepsizes
or initial points, in terms of AUC values. Table 2 shows the variation of AUCs for different
types of stepsizes. Three observations are indicated from Table 2: (i) the convergence of the
V-CQ algorithm may fail when the stepsize is too large, which is consistent with Theorem
2.3(a); (ii) the V-CQ algorithm with diminishing stepsize or divergent stepsize converges to
a feasible solution of the SFP, which verifies Theorem 2.3(c), since both diminishing stepsize
and divergent stepsize satisfy condition (2.6); (iii) the dynamic stepsize V-CQ algorithm
converges to a feasible solution of the SFP, which is consistent with Theorem 2.3(b), and the
best dynamic stepsize is the one satifying (1.2) with ρn = 1. Table 3 lists AUCs of the V-CQ
algorithm with different initial points, as well as their AUCs. The initial points “X10k”
(i.e., X0 used in the preceding experiments), “X200” and “X50k” are taken from [32].
In particular, “X200” contains less false regulations but the less true regulations; “X50k”
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Table 1: Comparison of the V-CQ algorithm and group Lasso/Dantzig selector.
Method Parameter AUCs (high) AUCs (low) CPU time

η = 1 0.734 0.764
V-CQ algorithm η = 1.1 0.660 0.755 10.4 hours

η = 1.2 0.658 0.753

λ =e-2 0.504 0.586
λ =e-3 0.583 0.680

group Lasso λ =e-4 0.701 0.748 7.1 hours
λ =e-5 0.645 0.751
λ =e-6 0.636 0.750

ϵ =e-1 0.576 0.619
ϵ =e-2 0.625 0.627

group Dantzig selector ϵ =e-3 0.675 0.726 30.1 hours
ϵ =e-4 0.597 0.603
ϵ =e-5 0.584 0.673

covers more true regulations but more false regulations; while “X10k” has the specificity
and sensitivity between the above two, whose AUC is 0.534 (see [32, Table 5]). The initial
point “Random” denotes an i.i.d. Gaussian ensemble, and “Zeros” denotes a vector of zeros.
Table 3 illustrates that the V-CQ algorithm may converge to different feasible solutions of
the SFP when starting from different initial points, and it obtains a solution of large AUC
value when starting from an initial point that is of biological sense.

Table 2: Sensitivity of the V-CQ algorithm on stepsizes.
Type of stepsize Stepsize AUCs (high) AUCs (low)

βn = 0.5 0.719 0.725
Constant stepsize βn = 1 0.730 0.733

βn = 5 0.588 0.567

βn = n−0.1 0.730 0.748
Diminishing stepsize βn = n−0.3 0.728 0.722

βn = n−0.5 0.714 0.691

βn = 1
1+n 0.733 0.728

Divergent stepsize βn = 1
1+2n 0.706 0.686

βn = 1
1+3n 0.597 0.579

ρn=0.5 0.731 0.747
Dynamic stepsize (1.2) ρn=1 0.734 0.764

ρn=1.5 0.732 0.715

4 Conclusion

We introduced a notion of bounded linear regularity property for the SFP and, under the
assumption of this property, established the convergence rate for the V-CQ algorithm with
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Table 3: Sensitivity of the V-CQ algorithm on initial points.
Initial point AUCs of V-CQ (high) AUCs of V-CQ (low) AUCs of initials

X10k 0.734 0.764 0.534

X200 0.622 0.646 0.531

X50k 0.681 0.747 0.533

Random 0.511 0.551 -

Zeros 0.449 0.327 -

the bounded, diminishing or dynamic stepsizes; in particular, the linear convergence rate
for the V-CQ algorithm with the stepsizes satisfying (2.4) or (2.5) was obtained. Some
sufficient conditions ensuring the bounded linear regularity property were provided, which
are satisfied in many application problems, especially covering the mathematics problem
arising from gene regulatory network inference discussed in this paper. As an application in
systems biology, the gene regulatory network inference was formulated as a series of SFPs,
by virtue of the group structure of TF complexes. The numerical study on gene expression
data of mESC showed that the V-CQ algorithm is applicable to gene regulatory network
inference, and that it outperforms the group Lasso and group Dantzig selector in the sense
that it obtains a more reliable solution matching with biological standards. This study may
facilitate biologists to study the gene regulation mechanism of higher model organisms in a
genome-wide scale.
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A Appendix: Proof of Proposition 2.5

To furniture the proof of Proposition 2.5, we recall some known facts in the following
proposition: assertion (i) is taken from [3, Corollary 5.26]; while assertion (ii) is known in [2,
Propositions 4.6.1 and 4.6.2] for the finite-dimensional space setting and in [48, Proposition
3.6] for the infinite-dimensional space setting.

Proposition A.1. Let C and D be two closed convex subsets of Hilbert space H. Then the
following assertions hold:

(i) If C and D are polyhedrons, then there exists γ > 0 such that

dC∩D(x) ≤ γmax{dC(x), dD(x)} (A.1)

holds for all x ∈ H.

(ii) If either C ∩ riD ̸= ∅ and C is a polyhedron, or riC ∩ riD ̸= ∅ and D is finite-
codimensional, then for any r > 0, there exists γr > 0 such that (A.1) holds for any
x ∈ rB with γr > 0 in place of γ.
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Now, we provide a complete proof of Proposition 2.5.

Proof of Proposition 2.5. (i) Suppose that C and Q are polyhedrons. Then C and A−1Q
are also polyhedrons. It follows from Proposition A.1(i) that there exists γ > 0 such that

dS(x) ≤ γdA−1Q(x) for any x ∈ C. (A.2)

We will show the following implication:

Q is a polyhedron ⇒ there exists α > 0 such that dA−1Q(x) ≤ αdQ(Ax), ∀x ∈ H1. (A.3)

To do this, since Q is a polyhedron, Q can be represented as Q = ∩m
i=1Qi with Qi being

given by
Qi := {y ∈ H2 : ⟨si, y⟩ ≤ ri},

where si ∈ H2 and ri ∈ R for each i ∈ {1, . . . ,m}. Hence A−1Q =
∩m

i=1A
−1Qi. Fix

i ∈ {1, . . . ,m}, and note that

A−1Qi = {x : ⟨si, Ax⟩ ≤ ri} = {x : ⟨A∗si, x⟩ ≤ ri}.

Without loss of generality, we may assume that A∗si ̸= 0 (and so si ̸= 0). Then

dA−1Qi
(x) =

∥si∥
∥A∗si∥

dQi(Ax) for any x ∈ H1. (A.4)

Indeed, it is trivial if x ∈ A−1Qi; otherwise, one has that

dA−1Qi
(x) =

|⟨A∗si, x⟩ − ri|
∥A∗si∥

=
∥si∥

∥A∗si∥
|⟨si, Ax⟩ − ri|

∥si∥
=

∥si∥
∥A∗si∥

dQi(Ax).

Moreover, applying inductively Proposition A.1(i), one concludes that there exists a con-
stant γ̃ > 0 such that

dA−1Q(x) ≤ γ̃ max
1≤i≤m

dA−1Qi
(x) for any x ∈ H1.

This, together with (A.4), implies that

dA−1Q(x) ≤ γ̃ max
1≤i≤m

∥si∥
∥A∗si∥

dQi(Ax) ≤ γ̃ max
1≤i≤m

∥si∥
∥A∗si∥

dQ(Ax).

Thus, we established the implication (A.3). This, together with (A.2), entails (2.2), and
thus the SFP (1.1) satisfies the bounded linear regularity property.

(ii) Suppose that AC ∩ intQ ̸= ∅. Let x0 ∈ C be such that Ax0 ∈ intQ. Then there
exists δ > 0 such that

B(Ax0, δ) ⊆ Q. (A.5)

Let x ∈ C, and write

y := PQ∩AC(Ax) and z :=
∥Ax− y∥

∥Ax− y∥+ δ
x0 +

δ

∥Ax− y∥+ δ
x;
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ŷ := PQ(Ax) and w :=
∥Ax− ŷ∥

∥Ax− ŷ∥+ δ
Ax0 +

δ

∥Ax− ŷ∥+ δ
Ax.

Consequently, z ∈ C and w ∈ AC. We further have that

z ∈ S and w ∈ AC ∩Q.

To show this, we set x̄ ∈ A−1(y), and write z̄ := x0 +
δ

∥Ax−y∥(x− x̄). Then it follows that

∥Az̄ −Ax0∥ = δ and z =
∥Ax− y∥

∥Ax− y∥+ δ
z̄ +

δ

∥Ax− y∥+ δ
x̄.

Hence, Az̄ ∈ Q by (A.5) and so

Az =
∥Ax− y∥

∥Ax− y∥+ δ
Az̄ +

δ

∥Ax− y∥+ δ
Ax̄ ∈ Q.

This yields that z ∈ S because z ∈ C as noted earlier. Thus, it follows that

dS(x) ≤ ∥x− z∥ =
∥Ax− y∥

∥Ax− y∥+ δ
∥x− x0∥ =

∥x− x0∥
∥Ax− y∥+ δ

dQ∩AC(Ax). (A.6)

Write w̄ := Ax0 +
δ

∥Ax−ŷ∥(Ax− ŷ). Then, ∥w̄ −Ax0∥ = δ and so w̄ ∈ Q. It follows that

w =
∥Ax− ŷ∥

∥Ax− ŷ∥+ δ
w̄ +

δ

∥Ax− ŷ∥+ δ
ŷ ∈ Q.

This shows that w ∈ AC ∩Q, since w ∈ AC as mentioned earlier. Hence we obtain that

dQ∩AC(Ax) ≤ ∥Ax− w∥ =
∥Ax− ŷ∥

∥Ax− ŷ∥+ δ
∥Ax−Ax0∥ ≤ ∥A∥∥x− x0∥

∥Ax− ŷ∥+ δ
dQ(Ax).

This, together with (A.6), yields that

dS(x) ≤
∥x− x0∥

∥Ax− y∥+ δ

∥A∥∥x− x0∥
∥Ax− ŷ∥+ δ

dQ(Ax).

This implies, for any r > 0, that

dS(x) ≤ γrdQ(Ax) for any x ∈ C ∩B(x0, r),

where γr := ∥A∥r2
δ2

. This shows that the SFP (1.1) satisfies the bounded linear regularity
property.

(iii) Suppose that A(riC) ∩Q ̸= ∅ and Q is a polyhedron. Then riC ∩ (A−1Q) ̸= ∅. Let
r > 0. It follows from Proposition A.1(ii) that there exists a constant γr > 0 such that

dS(x) ≤ γrdA−1Q(x) for any x ∈ C ∩ rB. (A.7)

It follows from (A.3) that there exists α > 0 such that dA−1Q(x) ≤ αdQ(Ax) for all x ∈ H1.
This, together with (A.7), implies that

dS(x) ≤ γrαdQ(Ax) for any x ∈ C ∩ rB.
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Hence, the SFP (1.1) satisfies the bounded linear regularity property.
(iv) Suppose that AC ∩ riQ ̸= ∅, C is a polyhedron and Q is finite-codimensional. We

claim that
C ∩ ri(A−1Q) ̸= ∅. (A.8)

Indeed, by assumption, we can choose x0 ∈ C such that Ax0 ∈ riQ. This means that there
exists δ > 0 such that B(Ax0, δ) ∩ affQ ⊆ Q. Consequently,

A−1(B(Ax0, δ)) ∩A−1(affQ) = A−1(B(Ax0, δ) ∩ affQ) ⊆ A−1(Q).

Since by definition that B(x0, δ/∥A∥) ⊆ A−1(B(Ax0, δ)) and that aff(A−1Q) ⊆ A−1(affQ),
it follows that

B(x0, δ/∥A∥) ∩ aff(A−1(Q)) ⊆ A−1(B(Ax0, δ)) ∩A−1(affQ) ⊆ A−1(Q).

This shows that x0 ∈ ri(A−1Q) and so (A.8) is proved. Let r > 0. Proposition A.1(ii) is
applicable to concluding that there exists γr > 0 such that (A.7) holds. Thus we only need
to prove that there exists αr > 0 such that

dA−1Q(x) ≤ αrdQ(Ax) for all x ∈ rB. (A.9)

To do this, write Z := affQ. Then, Z is a polyhedron and, by (A.3), there exists α > 0 such
that

dA−1Z(x) ≤ αdZ(Ax) ≤ αdQ(Ax) for any x ∈ H1. (A.10)

Since riQ ̸= ∅ by assumption, it follows from [27, Lemma 3.1] that there exists a closed
convex subset Q̃ ⊆ H2 such that

Ax0 ∈ intQ̃, intQ̃ ̸= ∅ and Q̃ ∩ Z = Q ⊆ Q̃. (A.11)

This clearly implies that A−1Q = A−1Z ∩ A−1Q̃ and A(A−1Z) ∩ intQ̃ ̸= ∅. Thus the
conclusion under assumption (ii) is application (to A−1Z in place of C), and we conclude
that there exists γ̃r > 0 such that

dA−1Q(x) ≤ dS(x) ≤ γ̃rdQ(Ax) for any x ∈ (A−1Z) ∩ rB.

Now fix x ∈ rB and set x̄ := PA−1Z∩rB(x). Then ∥x− x̄∥ = dA−1Z∩rB(x), and

dA−1Q(x) ≤ ∥x− x̄∥+dA−1Q(x̄) ≤ ∥x− x̄∥+ γ̃rdQ(Ax̄) = dA−1Z∩rB(x)+ γ̃rdQ(Ax̄). (A.12)

Since ∥Ax−Ax̄∥ ≤ ∥A∥∥x− x̄∥ = ∥A∥dA−1Z∩rB(x), it follows that

dQ(Ax̄) ≤ ∥Ax−Ax̄∥+ dQ(Ax) ≤ ∥A∥dA−1Z∩rB(x) + dQ(Ax). (A.13)

Furthermore, by [28, Lemma 4.10], one has that dA−1Z∩rB(x) ≤ 4dA−1Z(x) (noting that
x ∈ rB). This, together with (A.12) and (A.13), implies that

dA−1Q(x) ≤ 4(1 + ∥A∥γ̃r)dA−1Z(x) + γ̃rdQ(Ax). (A.14)

Thus, by (A.10), one sees that (A.9) hods with αr := 4(1 + ∥A∥γ̃r)α + γ̃r, and thus the
proof for (iv) is complete.
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(v) Suppose that A(riC) ∩ riQ ̸= ∅, and Q is finite-codimensional. Write Z := affQ and
let r > 0. Then, by the conclusion under assumption (iii) (applied to Z in place of Q), it
follows that there exists γr > 0 such that

dC∩A−1Z(x) ≤ γrdZ(Ax) ≤ γrdQ(Ax) for any x ∈ C ∩ rB. (A.15)

Similar to the proof of (iv), since riQ ̸= ∅, there exists a closed convex subset Q̃ ⊆ H2

satisfying (A.11). Consequently, S = (C ∩ A−1Z) ∩ A−1Q̃ and A(C ∩ A−1Z) ∩ intQ̃ ̸= ∅.
Hence the conclusion under assumption (ii) is applicable (to (C ∩A−1Z) and Q̃ in place of
C and Q), and we have that there exists γ̃r > 0 such that

dS(x) ≤ γ̃rdQ̃(Ax) ≤ γ̃rdQ(Ax) for all x ∈ rB ∩ (C ∩A−1Z).

Fix x ∈ rB ∩ C. Then, replacing A−1Z by (C ∩ A−1Z) and using the same arguments we
did for (A.14), we have that

dS(x) ≤ 4(1 + ∥A∥γ̃r)dC∩A−1Z(x) + γ̃rdQ(Ax).

This, together with (A.15), shows that the SFP (1.1) satisfies the bounded linear regularity
property. The proof is complete.
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