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Abstract
The nonnegative ℓ1 regularization problem has been widely studied for finding non-
negative sparse solutions of linear inverse problems and gained successful applica-
tions in various application areas. In the present paper, we propose an iterative
positive thresholding algorithm (IPTA) to solve the nonnegative ℓ1 regularization
problem and investigate its convergence properties in finite- or infinite-dimensional
Hilbert spaces. The significant advantage of the IPTA is that it is very simple and of
low computation cost, and thus, it is practically attractive, especially for large-scale
problems. The global convergence of the IPTA is achieved under some mild assump-
tions on algorithmic parameters. Furthermore, we introduce a notion of positive
orthogonal sparsity pattern, and use it to establish the linear convergence rate of
the IPTA to a global minimum. Finally, the numerical study on compressive sensing
shows that the proposed IPTA is efficient in approaching the nonnegative sparse
solutions of linear inverse problems and outperforms several existing algorithms in
sparse optimization.

KEYWORDS
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1. Introduction

Nowadays, sparse optimization has become a very popular research topic in many
disciplines of applied science and gained successful applications in a wide range of
fields, which aims to find a sparse approximate solution of an underdetermined linear
system from the underlying data. The ℓ1 regularization problem, also called Lasso [39]
or Basis Pursuit [8], has been accepted as one of the most useful methodologies for
sparse optimization, that is,

min
x∈Rn

1

2
∥Ax− b∥2 + λ∥x∥1, (1)
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where ∥x∥1 :=
∑n

i=1 |xi| is a sparsity promoting norm, and λ is a regularization pa-
rameter providing a tradeoff between accuracy and sparsity. The ℓ1 regularization
problem has been successfully and widely applied in various application areas, such
as machine learning [1], systems biology [33], image science [15], compressive sensing
[7,13]. It has also been investigated in infinite-dimensional Hilbert spaces [4,11] and
applied in Fourier analysis [6] and Harmonic analysis [12].

Motivated by its successful applications, a great amount of attention has been at-
tracted to the development of optimization algorithms, and many efficient algorithms
have been proposed to solve the ℓ1 regularization problem; see [3,10,18,21,24,26,27,
30,43] and references therein. In particular, the iterative soft thresholding algorithm
(ISTA) independently proposed by [11,17] is one of the most widely studied first-order
iterative algorithms for solving problem (1). Tremendous efforts have been devoted to
investigating the convergence properties of the ISTA; see [3,4,20,31,38] and references
therein. In [11], the global (strong) convergence result of the ISTA was established
under some assumptions on the algorithmic parameters. Moreover, the linear conver-
gence of the ISTA has been well investigated under some additional assumptions. For
example, Hale et al. [20] proved a linear convergence of the ISTA to a solution of
problem (1) in Euclidean spaces under the assumption that A satisfies a basis injec-
tivity (BI) property or that a strict complementary condition (SCC) is satisfied at the
solution. Extending to the infinite-dimensional Hilbert spaces, Bredies and Lorenz in
[4] showed the linear convergence of the ISTA under the assumption of a finite basis
injectivity (FBI) property or a strict sparsity pattern (SSP). Improving these results,
Zhang et al. [45] introduced a notion of orthogonal sparsity pattern (OSP) that is
weaker than either FBI or SSP, and established the linear convergence of the ISTA
under the assumption of OSP in either finite- or infinite-dimensional spaces.

In recent years, a great amount of attention has been attracted to the structured
sparse optimization, that is to enhance the sparse recovery capability by employing the
special structures of practical applications; see [1,16,23,37,41] and references therein.
One important structure is the nonnegativity of sparse variables. That is, a nonneg-
ative ℓ1 regularization problem (i.e., (1) with an additional nonnegative constraint)
is solved to approach a nonnegative sparse solution of the linear inverse problem.
The nonnegative ℓ1 regularization problem was originally introduced by Donoho and
Tanner in [14] and widely investigated in [5,9,16,19] and references therein. Numer-
ous applications have been discovered in many fields, such as face recognition [22],
compress sensing [25], statistics [44] and spectrometry analysis [16,35]. Several opti-
mization algorithms have been proposed to solve the nonnegative ℓ1 regularization
problem, such as nonnegative OMP [42] and nonnegative ADMM [16].

The present paper aims to continue the development of optimization algorithms for
nonnegative sparse optimization. In order to include the studies in finite- and infinite-
dimensional spaces in a unified framework, we adopt the following notations. Let H
be a Hilbert space, and let ℓ2 be the Hilbert space consisting of all square-summable
sequences. Let N ∈ N ∪ {+∞} be fixed, and write

ℓ2N :=

{
RN , if N ∈ N,
ℓ2, otherwise,

and IN :=

{
{1, . . . , N}, if N ∈ N,

N, otherwise,
(2)

and ℓ+N := {u ∈ ℓ2N : u ≥ 0}. In the present paper, we consider the following nonnega-
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tive ℓ1 regularization problem

min
u∈ℓ+N

1

2
∥Ku− h∥2 +

N∑
k=1

ωkuk, (3)

where K : ℓ2N → H is a bounded linear operator and ω := (ωk) is a sequence of weights
satisfying

ωk ≥ ω > 0 for each k ∈ IN . (4)

Let S denote the solution set of problem (3). Inspired by the ideas of the ISTA [11], we
propose an iterative positive thresholding algorithm (IPTA) to solve the nonnegative
ℓ1 regularization problem (3). The main difference is that the IPTA employs a positive
thresholding operator to replace the soft thresholding operator in the ISTA. Conse-
quently, the IPTA inherits the remarkable advantages of the ISTA that it is very simple
and of low computation cost, and hence, the IPTA is practically attractive, especially
for large-scale problems. A clear convergence analysis of the IPTA is provided to ad-
vance our understanding of its strength for solving the nonnegative ℓ1 regularization
problem (3). In particular, the global convergence result of the IPTA is achieved under
some mild assumptions on algorithmic parameters, which are same as the ones in [4,
Theorem 1] for the ISTA. Furthermore, we introduce a notion of positive orthogonal
sparsity pattern (POSP), and use it to establish the linear convergence of the IPTA
to a global minimum of problem (3). As a byproduct, some sufficient conditions for
ensuring the POSP are provided in terms of the FBI/SCC/OSP.

Furthermore, we conduct some numerical experiments in the simulation of com-
pressive sensing to demonstrate the numerical performance of the proposed IPTA.
The numerical results validate the linear convergence rate of the IPTA, and show
that the IPTA is efficient in approaching the nonnegative sparse solutions of linear
inverse problems and outperforms several existing algorithms in sparse optimization,
including ISTA [11], NADMM [16], ADMM [43], NOMP [42] and OMP [40], on both
accuracy and robustness.

The paper is organized as follows. In Section 2, we present the notations and pre-
liminary results to be used in the present paper. In Section 3, we propose the IPTA
to solve the nonnegative ℓ1 regularization problem (3) and investigate its convergence
properties, including the global convergence and the linear convergence rate to a global
minimum of problem (3). Finally, numerical results of the IPTA on compressive sensing
are demonstrated in Section 4.

2. Notation and preliminary results

In the present paper, we consider a Hilbert space H with inner product ⟨· , ·⟩ and the
associated norm ∥ · ∥. As usual, R+ denotes the set of all non-negative real numbers,
and, for u ∈ ℓ2N , u+ denotes the vector with entries equal to max{ui, 0} and supp(u)
denotes the support set of u, i.e.,

supp(u) := {k ∈ IN : uk ̸= 0}.
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Recall that ℓ2N and IN are defined by (2). For C ⊆ ℓ2N and I ⊆ IN , the orthogonal
complement of C and the complementary of I are denoted by C⊥ and Ic, respectively.
We denote a subspace EI by

EI := {u ∈ ℓ2N : uk = 0 for each k ∈ Ic}.

For x ∈ ℓ2N , the classical metric projection of x onto C and the distance of x from C,
denoted by PC(x) and dC(x), are respectively defined by

PC(x) := argmin{∥x− y∥ : y ∈ C} and dC(x) := inf{∥x− y∥ : y ∈ C}.

We adopt the convention that P∅(x) = 0. It is trivial to see that, for each u ∈ ℓ2N ,

(PEI
(u))i = ui when i ∈ I, and (PEI

(u))i = 0 otherwise.

The following lemma recalls some basic properties of the projection operator, in which
(a) is taken from [2, Theorem 3.14]; (b) and (c) are from [2, Corollary 3.22(iii)(vi)];
while (d) is known in [2, Proposition 3.19].

Lemma 2.1. Let C be a closed linear subspace of ℓ2N and x ∈ ℓ2N . Then the following
assertions hold:

(a) z = PC(x) if and only if z ∈ C and x− z ∈ C⊥;
(b) PC is a linear and continuous operator with ∥PC∥ ≤ 1;
(c) P ∗

C = PC ;
(d) PC is idempotent, i.e., P 2

C = PC .

Let K : ℓ2N → H be a bounded linear operator. The conjugate of K is denoted by
K∗, and the kernel and image of K are respectively defined by

kerK := {u ∈ ℓ2N : Ku = 0} and imK := {Ku : u ∈ ℓ2N}.

The restriction of K on C ⊆ ℓ2N is denoted by K|C : C → H and defined by

K|C(u) := Ku for each u ∈ C.

In particular, for I ⊆ IN , we write K|I for K|EI
for simplicity. Some useful properties

are recalled in the following lemmas, in which Lemma 2.2 is a direct consequence of
[2, Fact 2.18] and Lemma 2.1(c), while Lemma 2.3 is taken from [45, Lemma 2.3].

Lemma 2.2. Let I ⊆ IN be a finite index set. Then (ker(KPEI
))⊥ = im(PEI

K∗).

Lemma 2.3. Let I1, I2 ⊆ IN be such that I1 ∩ I2 = ∅ and ⟨KPEI1
(u),KPEI2

(u)⟩ = 0

for any u ∈ ℓ2N . Then ⟨KPEI1
(x),KPEI2

(y)⟩ = 0 for any x, y ∈ ℓ2N .

We end this section by recalling the notions of subdifferential and proximal operator
of convex functions, as well as some useful facts. Let u ∈ ℓ2N , and let f : ℓ2N →
R (:= R ∪ {+∞}) be a proper, lower semi-continuous (lsc) and convex function. The
subdifferential of f at u is defined by

∂f(u) := {ξ ∈ ℓ2N : f(v) ≥ f(u) + ⟨ξ, v − u⟩ for each v ∈ ℓ2N} (5)
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The proximal operator of f is defined by

Proxf (u) := arg min
v∈ℓ2N

{
f(v) +

1

2
∥v − u∥2

}
for each u ∈ ℓ2N . (6)

It was shown in [36, Proposition 1] that Proxf is nonexpansive if f is proper, lsc and
convex, that is,

∥Proxf (u)− Proxf (v)∥ ≤ ∥u− v∥ for each u, v ∈ ℓ2N . (7)

3. Iterative positive thresholding algorithm

Inspired by the ideas of the ISTA [11], this section aims to propose an iterative positive
thresholding algorithm (IPTA) to solve the nonnegative ℓ1 regularization problem (3)
and to investigate its convergence properties, including the global convergence and the
linear convergence rate to a solution of problem (3). The IPTA is formally stated as
follows.

Algorithm IPTA. Select an initial point u0 ∈ ℓ+N satisfying
∑N

k=1 ωku
0
k < ∞ and

two constants s and s̄ satisfying 0 < s ≤ s̄ < 2
∥K∥2 . For each n ∈ N, having un, we

choose a stepsize sn ∈ [s, s̄] and determine un+1 by

un+1 := (un − snK
∗(Kun − h)− snω)+ . (8)

By the stepsize rule in Algorithm IPTA, one sees that

0 < s ≤ sn ≤ s <
2

∥K∥2
for any n ∈ N. (9)

The relationships between the IPTA and some well-known numerical algorithms are
provided in the following remark, so as to advance our understanding of the proposed
algorithm.

Remark 1. (i) Algorithm IPTA can be regarded as an application of the well-known
proximal gradient algorithm (PGA) [3,10,23] to solve problem (10), which is equiv-
alent to the nonnegative ℓ1 regularization problem (3). Indeed, problem (3) can be
reformulated as a composite optimization problem:

min
u∈ℓ2N

1

2
∥Ku− h∥2 + φ(u), (10)

where φ : ℓ2N → R is defined by

φ(u) :=

N∑
k=1

(
ωkuk + δR+

(uk)
)

for each u ∈ ℓ2N (11)

(δX denotes an indicator function on X). The PGA for solving problem (10) (see
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[3,10,23] for details) has the iterative formula:

un+1 := Proxsnφ(u
n − snK

∗(Kun − h)). (12)

By (6) and the optimality condition of convex optimization [2, Theorem 16.2], we
obtain that

0 ∈ un+1 − (un − snK
∗(Kun − h)) + sn∂φ(u

n+1). (13)

By definition (5), one checks that

∂δR+
(t) =

 {0}, t > 0,
(−∞, 0], t = 0,

∅, t < 0,
(14)

and by [2, Corollary 16.38] that

(∂φ(u))k = ωk + ∂δR+
(uk) =

 {ωk}, uk > 0,
(−∞, ωk], uk = 0,

∅, uk < 0,
for each k ∈ IN . (15)

This, together with (13), shows that

un+1
k ∈ (un − snK

∗(Kun − h))k − snωk − sn∂δR+
(un+1

k ) for each k ∈ IN ;

consequently, one checks by (14) that un+1 given by (12) is of form (8), as desired.
(ii) The ISTA [11] is a popular iterative algorithm for solving the ℓ1 regularization

problem, i.e., (10) with φ replaced by ψ : ℓ2N → R is defined by

ψ(u) :=

N∑
k=1

ωk|uk| for each u ∈ ℓ2N .

The ISTA has the following iterative formula:

un+1 := Ssnω(u
n − snK

∗(Kun − h)),

where Sτ : ℓ2N → ℓ2N is a soft thresholding operator, defined by

Sτ (v) := sign(v)⊙ (|v| − τ)+ for each v ∈ ℓ2N ,

in which sign(·) and ⊙ operate the entrywise signum and the entrywise product, re-
spectively. Note by (8) that the iterative process of the IPTA can be rewritten as

un+1 := Psnω(u
n − snK

∗(Kun − h)),

where Pτ : ℓ2N → ℓ2N is a positive thresholding operator, defined by

Pτ (v) := (|v| − τ)+ for each v ∈ ℓ2N .

6



Obviously, the main difference between the IPTA and the ISTA is the thresholding
operator, where the IPTA maintains only the positive dominant components, while
the ISTA preserves the dominant components, either positive or negative.

3.1. Global convergence of IPTA

This subsection is devoted to investigating the global convergence of the IPTA to a
solution of problem (3). For the remainder of this section, we use f : ℓ2N → R to denote
the objective function of problem (10), that is,

f(u) :=
1

2
∥Ku− h∥2 + φ(u) for each u ∈ ℓ2N , (16)

where φ is defined by (11). For ū ∈ S (the solution set of problem (3)), we write for
simplicity that

v̄ := −K∗(Kū− h). (17)

The equivalence between problem (3) and problem (10) has been stated in Remark
1(i), and so, S is also the solution set of problem (10). Then, associated to problem
(10), one can directly verify by using the optimality condition that

ū ∈ S ⇔ v̄k

{
= ωk, if ūk > 0,
∈ (−∞, ωk], if ūk = 0,

for any k ∈ IN . (18)

Fix ū ∈ S. An index set J is defined by

J := {k ∈ IN : v̄k = ωk}. (19)

Remark 2. (i) The index set J defined in (19) is a finite set. Indeed, it is trivial when
ℓ2N = RN ; otherwise, by (4) and (19), one has that

|J |ω2 ≤
∑
k∈J

ω2
k ≤

∑
k∈J

(v̄k)
2 ≤ ∥v̄∥2 <∞.

(ii) There exists ρ ∈ (0, 1) such that v̄k ≤ ρωk for each k ∈ Jc. Indeed, set v̄k := 0
and ωk := ω for each k > N in the case when N < ∞. Then v̄ ∈ ℓ2 for each
N ∈ N∪{+∞}. Consequently, one has that limk→∞ v̄k = 0, and hence, it follows from

(4) that limk→∞
|v̄k|
ωk

≤ limk→∞
|v̄k|
ω = 0. Fix η ∈ (0, 1). Then there exists n ∈ N such

that |v̄k|
ωk

≤ η for each k ≥ n. Define ρ := max
{
η,max

{
v̄k

ωk
: k ∈ Jc, k ≤ n

}}
. Then,

one can check that ρ ∈ (0, 1) and v̄k ≤ ρωk for each k ∈ Jc, as desired.

For the convergence analysis of the IPTA, we introduce an auxiliary function R :
ℓ2N → R, defined by

R(u) := φ(u)− φ(ū)− ⟨v̄, u− ū⟩ for each u ∈ ℓ2N . (20)

A lower bound of the function R(·) on a level set is provided in the following lemma,
which is useful in proving the global convergence of the IPTA.
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Lemma 3.1. Let ū ∈ S and α ∈ R. Then there exist τ > 0 and a subspace U ⊆ ℓ2N
such that U⊥ is finite-dimensional and

R(u) ≥ τ∥PU (u− ū)∥2 whenever φ(u) ≤ α. (21)

Proof. Let u ∈ ℓ2N be such that φ(u) ≤ α. By (11), it can be shown that u ∈ ℓ+N .
Then, one has by (11) and (20) that

R(u) =

N∑
k=1

ωkuk −
N∑
k=1

ωkūk − ⟨v̄, u− ū⟩ =
N∑
k=1

(ωk − v̄k)(uk − ūk).

Noting by (19) that ωk = v̄k for each k ∈ J and ūk = 0 otherwise (cf. (18)), it follows
that

R(u) =
∑
k∈Jc

uk(ωk − v̄k). (22)

Note by Remark 2(ii) that there exists ρ ∈ (0, 1) such that v̄k ≤ ρωk for each k ∈ Jc.
Recalling that u ∈ ℓ+N , we obtain by (22) and (4) that

R(u) ≥
∑
k∈Jc

(1− ρ)ωkuk ≥ (1− ρ)ω

(∑
k∈Jc

u2k

) 1

2

.

Note that ω
(∑

k∈Jc u2k
) 1

2 ≤ ω∥u∥ ≤ φ(u) ≤ α and ūk = 0 for each k ∈ Jc, and let

τ := 1
αw

2(1− ρ) and U := EJc (U⊥ = EJ is finite-dimensional, since J is a finite set
by Remark 2(i)). Then, it follows that

R(u) ≥ 1

α
w2(1− ρ)

∑
k∈Jc

(uk − ūk)
2 = τ∥PU (u− ū)∥2,

which verifies (21), and the proof is complete.

Now we establish the global convergence of the IPTA under the mild assumptions
on algorithmic parameters made in Algorithm IPTA, which are same as the ones in
[4, Theorem 1] for the ISTA.

Theorem 3.2. Let {un} be a sequence generated by Algorithm IPTA. Then {un}
strongly converges to a solution of problem (3).

Proof. Let ū ∈ S, and define a sequence of scalars {rn} by

rn := f(un)− f(ū) for each n ∈ N.

Then, one can check by (16), (17) and (20) that, for each n ∈ N,

rn −R(un) =
1

2
∥Kun − h∥2 − 1

2
∥Kū− h∥2 − ⟨K∗(Kū− h), un − ū⟩ ≥ 0. (23)
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Note by (11) that φ is proper lsc and convex and by (16) that f is coercive, and recall
from Remark 1(i) that the IPTA is indeed the PGA for solving problem (10). Then,
we conclude by [4, Proposition 2] that there exists ρ > 0 such that

rn ≤ ρn−1, (24)

and hence,

φ(un) ≤ f(un) = f(ū) + rn ≤ f(ū) + ρ, (25)

for each n ∈ N. Then, one has by Lemma 3.1 (with f(ū) + ρ in place of α) that there
exists τ > 0 and a subspace U ⊆ ℓ2N such that U⊥ is finite-dimensional and

R(un) ≥ τ∥PU (u
n − ū)∥2 for each n ∈ N.

This, together with (23) and (24), shows that ∥PU (u
n − ū)∥2 ≤ ρ

τ n
−1 for each n ∈ N,

and hence,

lim
n→∞

PU (u
n) = PU (ū). (26)

Moreover, note by (4) and (25) that ∥PU⊥(un)∥ ≤ ∥un∥ ≤ ω−1φ(un) ≤ ω−1(f(ū) +
ρ) for each n ∈ N. This shows that {PU⊥(un)} is bounded. Recalling that U⊥ is
finite-dimensional, there exist a subsequence {uni} and ũ ∈ U⊥ such that {PU⊥(uni)}
strongly converges to ũ. This, together with (26), implies that

lim
i→∞

uni = lim
i→∞

PU (u
ni) + lim

i→∞
PU⊥(uni) = PU (ū) + ũ. (27)

Note by (24) that each cluster point of {un} is a solution of problem (3), and thus,
z̄ := PU (ū) + ũ ∈ S. Then, we obtain by Algorithm IPTA (i.e., PGA (12)), (7) and
(9) that

∥un+1 − z̄∥ = ∥Proxsnφ(un − snK
∗(Kun − h))− Proxsnφ(z̄ − snK

∗(Kz̄ − h))∥
≤ ∥(I − snK

∗K)(un − z̄)∥
≤ ∥un − z̄∥,

which, together with (27), ensures the strong convergence of {xn} to z̄ (∈ S). The
proof is complete.

3.2. Linear convergence of IPTA.

This subsection is devoted to the linear convergence issue of the IPTA to a solution
of problem (3). To this end, we first introduce a notion of positive orthogonal sparsity
pattern (POSP). The POSP is inspired by the notion of orthogonal sparsity pattern
(OSP), which was introduced in [45] to establish the linear convergence of the ISTA.
The only difference between these two notions is that the index set J is replaced by
{k ∈ IN : |v̄k| = ωk} in the OSP.
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Definition 3.3. Let ū ∈ S, and let J be defined by (19). A bounded linear operator
K : ℓ2N → H is said to satisfy the POSP at ū, if there exists an index set I ⊆ IN with

{k ∈ J : ūk = 0} ⊆ I ⊆ J (28)

such that K|I is injective and

⟨KPEI
(u),KPEJ\I (u)⟩ = 0 for any u ∈ ℓ2N . (29)

We provide some sufficient conditions for the POSP in terms of J-basis injectivity
property (J-BI), strict complementarity condition (SCC) or OSP.

(S1) J-BI: K has the J-basis injective property (at ū ∈ S), i.e., K|J is injective.
(S2) SCC: The strict complementarity condition is satisfied at ū ∈ S, i.e.,

0 ∈ K∗(Kū− h) + ri(∂φ(ū)), (30)

where riC denotes the relative interior of C.
(S3) OSP: K satisfies the OSP at ū ∈ S, i.e., set Ĵ := {k ∈ IN : |v̄k| = ωk}, there

exists Î ⊆ IN with {k ∈ Ĵ : ūk = 0} ⊆ Î ⊆ Ĵ such that

K|Î is injective and ⟨KPEÎ
(u),KPEĴ\Î

(u)⟩ = 0 for each u ∈ ℓ2N . (31)

Remark 3. (i) The J-BI property is natural to be satisfied in the context of (non-
negative) sparse optimization, since the involved linear operators are often injective.
Prominent examples are the Radon transform [28], solution operators for electrical
impedance tomography [29] and Haar wavelet basis in image processing [3].

(ii) The SCC imposes a regular condition on the optimality condition of problem
(3) (also the associated problem (10)). By (15), one can check that the SCC (30) is
equivalent to either of the following conditions:

(a) supp(ū) = J ;
(b) v̄k < ωk for each k /∈ supp(ū).

It is worth mentioning that the SCC of the ℓ1 regularization problem (1) was used in
[20,38] to establish the linear convergence of the ISTA.

Lemma 3.4. Let K : ℓ2N → H be a bounded linear operator and ū ∈ S, and let J be
defined by (19). Then K satisfies the POSP at ū provided either of (S1)-(S3).

Proof. Suppose that (S1) holds. Then one checks by Definition 3.3 that the POSP is
satisfied with I := J .

Suppose that (S2) holds. Then, by Remark 3(ii), one sees that {k ∈ J : ūk = 0} = ∅;
consequently, the POSP is satisfied with I := ∅.

Suppose that (S3) holds. Then there exists Î ⊆ IN with {k ∈ Ĵ : ūk = 0} ⊆ Î ⊆ Ĵ

such that (31) holds. Let I := J ∩ Î. Clearly, I ⊆ Î, and thus, K|I is injective by (31).

Noting by (19) and the definition of Ĵ in (S3) that J ⊆ Ĵ , we obtain by the definition

of I that (28) holds and J \ I = J \ Î ⊆ Ĵ \ Î. Fix v ∈ ℓ2N . Let u := PEI
(v) +PEJ\I (v).

Then it follows that

⟨KPEI
(v),KPEJ\I (v)⟩ = ⟨KPEÎ

(u),KPEĴ\Î
(u)⟩ = 0
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(due to (31)), that is, (29) holds. Therefore, the POSP is satisfied. The proof is com-
plete.

Below, we provide an example in infinite-dimensional space to show that the POSP
is strictly weaker than the J-BI, SCC or OSP.

Example 3.5. Consider the problem (3) with K : ℓ2 → ℓ2 being defined by

Ku := (u1 + u3, u2 + u4, u5, u6, u7 · · · )T for each u := (uk) ∈ ℓ2,

h := (2,−1, 3, 4, 5, 16 ,
1
7 ,

1
8 , · · · )

T and ω := (1, 1, 1, 1, 3, 1, 1, 15 ,
1
5 ,

1
5 ,

1
5 , · · · )

T . Then it can
be reformulated as

2∑
k=1

min
u≥0

(
1

2
(uk + uk+2 − hk)

2 + uk + uk+2

)
+

∞∑
k=5

min
u≥0

(
1

2
(uk − hk−2)

2 + ωkuk

)
.

(32)
Let ū ∈ S. Clearly, the first two minimizations of problem (32) are equivalent to that
ū1 + ū3 = 1 and ū2 = ū4 = 0, while the others are equivalent to that ū5 = 0, ū6 = 3,
ū7 = 4 and ū8 = 0 for each k ≥ 8. Hence, the solution set of problem (32) is

S =
{
ū = (a, 0, 1− a, 0, 0, 3, 4, 0, 0, · · · )T : 0 ≤ a ≤ 1

}
.

Write x̄ := (1, 0, 0, 0, 0, 3, 4, 0, 0, · · · )T , ȳ := (0, 0, 1, 0, 0, 3, 4, 0, 0, · · · )T . Then we have
that

(i) none of J-BI, SCC or OSP is satisfied at any ū ∈ S;
(ii) POSP is satisfied at each ū ∈ S \ {x̄, ȳ}.

Indeed, for each ū ∈ S, one checks that

supp(ū) =

 {1, 6, 7}, if ū = x̄,
{3, 6, 7}, if ū = ȳ,
{1, 3, 6, 7}, if ū ∈ S \ {x̄, ȳ},

v̄ = (1,−1, 1,−1, 3, 1, 1,
1

6
,
1

7
, · · · )T ,

(33)
which, together with (19), implies that

J = {1, 3, 5, 6, 7} and K|J =



1 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
...

...
...

...
...

 . (34)

From (33) and (34), we observe that K|J is not injective and supp(ū) ̸= J ; conse-
quently, we conclude by (S1) and Remark 3(ii) that neither J-BI or SCC is satisfied

at any ū ∈ S. We write Ĵ0 := {k ∈ Ĵ : ūk = 0} for simplicity. Then one checks by (33)
that

Ĵ = {1, 2, 3, 4, 5, 6, 7} and Ĵ0 =

{3, 2, 4, 5}, if ū = x̄,
{1, 2, 4, 5}, if ū = ȳ,
{2, 4, 5}, if ū ∈ S \ {x̄, ȳ}.
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This, together with (34), says that K|Ĵ0
is not injective, and thus, OSP is not satisfied

at any ū ∈ S. Therefore, assertion (i) is verified.
Fix ū ∈ S \{x̄, ȳ}. Note by (33) and (34) that {k ∈ J : ūk = 0} = {5}. Let I := {5}.

Then one checks by (34) that (28) and (29) hold and K|I is injective. Hence, the POSP
is satisfies at each ū ∈ S \ {x̄, ȳ}, i.e., assertion (ii) is proved.

The main theorem of this subsection is as follows, in which the Q-linear convergence
of the IPTA is guaranteed under the assumption of the POSP.

Theorem 3.6. Let {un} be a sequence generated by Algorithm IPTA. Then {un}
strongly converges to a solution ū of problem (3). Suppose that K satisfies the POSP
at ū. Then, {un} converges linearly to ū, that is, there exist λ ∈ (0, 1) and M ∈ N
such that

∥un+1 − ū∥ ≤ λ∥un − ū∥ for any n > M.

Recall from Remak 1(i) that the IPTA can be regard as an application of the PGA
to problem (10), the properties of the PGA (see [4,45]) can be used to prove Theorem
3.6. The line of proof for Theorem 3.6 is similar to that of [45, Theorem 1.2], but with
some technical differences. In particular, originating from the difference between the
optimality conditions of the investigated models and the one between IPTA and ISTA
(see Remak 1(ii)), the construction of the index set J in (19) is different from the one in

[45] (i.e., Ĵ defined in (S3)); consequently, the index set I satisfying (28) is also different
from the one in [45]. The proof of Theorem 3.6 consists of the analysis of the iterative
procedure restricted on the index sets I, J \ I, and Jc, and {k ∈ IN : v̄k < −ωk}, a
subset of Jc, is no longer empty, as in [45]. Hence there are some technical differences
from that of [45, Theorem 1.2]. To make the paper self-contained, we provide the
complete proof of Theorem 3.6 as follows.

To prove Theorem 3.6, we always assume, for the remainder of this section, that

(A1) {un} is generated by Algorithm IPTA;
(A2) ū := limn→∞ un ∈ S.

Recall that v̄ is defined by (17). For simplicity, we write

vn := −K∗(Kun − h) for each n ∈ N; (35)

consequently, it follows from (A2) that

v̄ = lim
n→∞

vn. (36)

The following four lemmas are presented for the proof of Theorem 3.6.

Lemma 3.7. Let V be a finite-dimensional subspace of ℓ2N and {sn} be a sequence
satisfying (9). Suppose that K|V is injective. Then there exists λ ∈ (0, 1) such that

∥PV − snPVK
∗KPV ∥ ≤ λ for each n ∈ N. (37)
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Proof. We have by definition that

∥PV − snPVK
∗KPV ∥2

= sup
∥u∥=1

⟨(PV − snPVK
∗KPV )(u), (PV − snPVK

∗KPV )(u)⟩

= sup
∥u∥=1

(∥PV (u)∥2 − 2sn⟨PV (u), PVK
∗KPV (u)⟩+ s2n∥PVK

∗KPV (u)∥2)

≤ sup
∥u∥=1

∥PV (u)∥2 − 2sn
(
1− sn

2 ∥K∥2
)
∥KPV (u)∥2,

(38)

where the last inequality follows from Lemma 2.1(b) and (d). By assumptions that V
is finite-dimensional and that K|V is injective, there exists α ∈ (0, ∥K∥2) such that
∥KPV (u)∥ ≥ α∥PV (u)∥ for any u ∈ ℓ2N . Also note by (9) that sn

(
1− sn

2 ∥K∥2
)
≥

s
(
1− s̄

2∥K∥2
)
. Combining the above two inequalities, one deduces by (38) that

∥PV − snPVK
∗KPV ∥2 ≤

(
1− 2s

(
1− s̄

2
∥K∥2

)
α2
)

sup
∥u∥=1

∥PV (u)∥2.

Noting by Lemma 2.1(b) that sup∥u∥=1 ∥PV (u)∥2 ≤ 1, (37) is seen to hold with λ :=√
1− 2s

(
1− s̄

2∥K∥2
)
α2 ∈ (0, 1). The proof is complete.

Lemma 3.8. Let I ⊆ J . Then, there exists M ∈ N such that

PEIc
(un − ū) = PEJ\I (u

n − ū) for any n > M. (39)

Proof. By (18) and (19), one has that

Jc = {k ∈ IN : v̄k < ωk} ⊆ {k ∈ IN : ūk = 0}. (40)

Note by Remark 2(ii) that there exists ρ ∈ (0, 1) such that

v̄k ≤ ρωk for each k ∈ Jc. (41)

By assumption (A2) and (36), there exists M ∈ N such that

∥un − ū∥ ≤ 1− ρ

2
s ω and ∥vn − v̄∥ ≤ 1− ρ

2
ω for each n ≥M. (42)

Fix i ∈ Jc and n ≥M . Note by (40) that ūi = 0 and by (4) that ωi ≥ ω > 0. Then, it
follows from (42) and (9) that

uni ≤ |uni | = |uni − ūi| ≤
1− ρ

2
s ω ≤ 1− ρ

2
snωi,

and from (41)-(42) and (4) that

vni ≤ |vni − v̄i|+ v̄i ≤
1− ρ

2
ω + ρωi ≤

1 + ρ

2
ωi.

Combining the above two inequalities, we obtain that uni + snv
n
i ≤ snωi; hence, one

has by (8) and (35) that un+1
i = (uni + snv

n
i − snωi)+ = 0. Since i ∈ Jc is arbitrary, we
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have that PEJc (un+1) = 0. Note that EJ\I ⊥ EJc and EIc = EJ\I +EJc (since I ⊆ J).
Then, one has that

PEIc
(un+1) = PEJc (u

n+1) + PEJ\I (u
n+1) = PEJ\I (u

n+1),

and by (40) that

PEIc
(ū) = PEJc (ū) + PEJ\I (ū) = PEJ\I (ū).

Hence, (39) is obtained, and the proof is complete.

Lemma 3.9. Let I ⊆ J be such that KI is injective and (29) is satisfied. Then, there
exist λ ∈ (0, 1) and M ∈ N such that

∥PEI
(un+1 − ū)∥ ≤ λ∥PEI

(un − ū)∥ for any n > M. (43)

Proof. By assumption, Lemma 3.8 is applicable to concluding that there existsM ∈ N
such that (39) holds. Fix n > M . In view of Algorithm IPTA (i.e., PGA (12)) and by
(7) and Lemma 2.1(b), one has that

∥PEI
(un+1 − ū)∥

= ∥PEI
(Proxsnφ(u

n − snK
∗(Kun − h)))− PEI

(Proxsnφ(ū− snK
∗(Kū− h)))∥

= ∥Proxsnφ(PEI
(un − snK

∗(Kun − h)))− Proxsnφ(PEI
(ū− snK

∗(Kū− h)))∥
≤ ∥PEI

(un − snK
∗(Kun − h))− PEI

(ū− snK
∗(Kū− h))∥

= ∥PEI
(I − snK

∗K)(un − ū)∥
= ∥PEI

(I − snK
∗K)PEI

(un − ū) + PEI
(I − snK

∗K)PEIc
(un − ū)∥

= ∥(PEI
− snPEI

K∗KPEI
)PEI

(un − ū)− snPEI
K∗KPEIc

(un − ū)∥
(44)

(due to the fact that PEI
PEIc

= 0 and PEI
is linear idempotent). Note by (39) and

Lemma 2.1(c)-(d) that

∥PEI
K∗KPEIc

(un − ū)∥2 = ∥PEI
K∗KPEJ\I (u

n − ū)∥2
= ⟨KPEJ\I (u

n − ū),KPEI
K∗KPEJ\I (u

n − ū)⟩.

By assumption that (29) is satisfied, Lemma 2.3 is applicable (with I, J \ I in place
of I1, I2); hence, we obtain from above that PEI

K∗KPEIc
(un − ū) = 0. Then, (44) is

reduced to

∥PEI
(un+1 − ū)∥ ≤ ∥PEI

− snPEI
K∗KPEI

∥∥PEI
(un − ū)∥.

This, together with Lemma 3.7, confirms (43), and the proof is complete.

Lemma 3.10. Let I ⊆ IN be such that (28) and (29) are satisfied. Then, there exist
λ ∈ (0, 1) and M ∈ N such that

∥PEIc
(un+1 − ū)∥ ≤ λ∥PEIc

(un − ū)∥ for any n > M. (45)

Proof. Define an index set

T := {k ∈ IN : ūk > 0}. (46)
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It follows from (18) and (19) that T ⊆ J , which is a finite set (see Remark 2(i)). Let
τ := min {ūk : k ∈ T} > 0 and fix i ∈ T . Then, we have by (18) that

ūi ≥ τ > 0 and v̄i = ωi. (47)

For this τ > 0, by assumption (A2) and (36), there exists M ∈ N such that

|uni − ūi| ≤
τ

2
and |vni − vi| ≤

τ

2s̄
for any n > M. (48)

Fix n > M . Note that uni + snv
n
i ≥ ūi − |uni − ūi| − sn|vni − v̄i|+ snv̄i. This, together

(9) and (47)-(48), yields that uni + snv
n
i − snωi ≥ 0. Then, one has by (8) and (47)

that

un+1
i = uni + snv

n
i − snv̄i = ((I − snK

∗K)(un − ū))i + ūi

(due to (17) and (35)). Noting by (18), (28) and (46) that J \ I ⊆ T , and recalling
that i ∈ T is arbitrary, we conclude that

PEJ\I (u
n+1) = PEJ\I (I − snK

∗K)(un − ū) + PEJ\I (ū). (49)

Let U := ker(KPEJ\I ). By Lemma 2.2, one has that

U⊥ = im(PEJ\IK
∗). (50)

Employing PU on both sides of (49), we obtain by Lemma 2.1(b) that

PUPEJ\I (u
n+1) = PUPEJ\I (u

n)− snPUPEJ\IK
∗K(un − ū). (51)

Noting by (50) that PEJ\IK
∗K(un − ū) ∈ U⊥, it is easy to see from Lemma 2.1(a)

that PUPEJ\IK
∗K(un − ū) = 0. This, together with (51), implies that

PUPEJ\I (u
n+1) = PUPEJ\I (u

n).

Noting by assumption (A2) that limn→∞ un = ū and that n > M is arbitrary, we
obtain by Lemma 2.1(b) that PUPEJ\I (u

n) = PUPEJ\I (ū), and thus,

PEJ\I (u
n − ū) = PUPEJ\I (u

n − ū) + PU⊥PEJ\I (u
n − ū) = PU⊥PEJ\I (u

n − ū). (52)

Employing PU⊥ on both sides of (49), we have by Lemma 2.1(b) that

PU⊥PEJ\I (u
n+1 − ū)

= PU⊥PEJ\I (I − snK
∗K)PEIc

(un − ū) + PU⊥PEJ\I (I − snK
∗K)PEI

(un − ū)
= PU⊥PEJ\I (I − snK

∗K)PEIc
(un − ū)− snPU⊥PEJ\IK

∗KPEI
(un − ū).

(53)
By assumption, Lemma 3.8 is applicable to concluding (39). Then it follows that

PU⊥PEJ\I (I − snK
∗K)PEIc

(un − ū) = PU⊥PEJ\I (I − snK
∗K)PEJ\I (u

n − ū)
= (PU⊥ − snPU⊥PEJ\IK

∗KPU⊥)PEJ\I (u
n − ū)

(54)
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(due to (52)). By definition of U⊥ (cf. (50)), one has that PU⊥PEJ\IK
∗v = PU⊥K∗v

for any v ∈ H. This, together with (54), implies that

PU⊥PEJ\I (I − snK
∗K)PEIc

(un − ū) = (PU⊥ − snPU⊥K∗KPU⊥)PEJ\I (u
n − ū). (55)

On the other hand, by (50) and Lemma 2.1(c)-(d), we have that

∥PU⊥PEJ\IK
∗KPEI

(un − ū)∥2 = ⟨KPEI
(un − ū),KPEJ\IPU⊥PEJ\IK

∗KPEI
(un − ū)⟩.

Since (29) is assumed, one sees by Lemma 2.3 that PU⊥PEJ\IK
∗KPEI

(un − ū) = 0.
Further note by (39) and (52) that PEIc

(un− ū) = PEJ\I (u
n− ū) = PU⊥PEJ\I (u

n− ū).
The above two equalities, together with (53) and (55), yields

PEIc
(un+1 − ū) = (PU⊥ − snPU⊥K∗KPU⊥)PEIc

(un − ū). (56)

Note by (50) that U⊥ is finite-dimensional and K|U⊥ is injective. Thus, by the Lemma
3.7, we conclude that there exists λ ∈ (0, 1) such that ∥PU⊥ − snPU⊥K∗KPU⊥∥ ≤ λ
for each n ∈ N. This, together with (56), derives (45), and the proof is complete.

Now we are ready to provide the proof of the linear convergence of the IPTA as
follows.

Proof of Theorem 3.6. It has been shown in Theorem 3.2 that {un} strongly con-
verges to ū ∈ S, and hence, the assumptions (A1) and (A2) made in this subsection
are satisfied. By the assumption of the POSP, the assumptions of Lemmas 3.9 and
3.10 are satisfied. Then the conclusion follows.

4. Numerical experiments

The purpose of this section is to demonstrate the numerical performance of the pro-
posed IPTA for the nonnegative ℓ1 regularization problem, and to compare with several
state-of-the-art algorithms in the simulation of compressive sensing. All numerical ex-
periments are implemented in Matlab R2014a and executed on a personal desktop
(Intel Core Duo E8500, 3.16 GHz, 4.00 GB of RAM).

In the numerical experiments, the simulation data are generated by the standard
process of compressive sensing. The matrix A is randomly generated via the following
formats, which are popular linear transform matrices in compressive sensing:

• standard Gaussian: it is a standard transform matrix in compressive sensing
[20,23,43], where we randomly generate an i.i.d. Gaussian ensemble A ∈ Rm×n

satisfying A⊤A = I.
• discrete cosine transform (DCT): DCT has been widely used in the digital signal

and image processing [32,34], where A is given by

Aij :=
min(j,

√
2)√

n
cos

(
(2i− 1)(j − 1)π

2n

)
for any 1 ≤ i, j ≤ n.

The nonnegative sparse solution x̄ ∈ Rn is generated via randomly picking k of its
components as active elements, whose entries are drawn from the standard uniform
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(a) Linear convergence of function values.
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(b) Linear convergence of iterates.

Figure 1. Linear convergence rate of IPTA.

Table 1. List of the algorithms compared in the numerical study.

Abbreviations Algorithms
IPTA Iterative Positive Thresholding Algorithm.
ISTA Iterative Soft Thresholding Algorithm [11].
NADMM Nonnegative Alternating Direction Method of Multiplier [16].
ADMM Alternating Direction Method of Multiplier [43].
NOMP Nonnegative Orthogonal Matching Pursuit algorithm [42].
OMP Orthogonal Matching Pursuit algorithm [40].

distribution on (0, 1), while the remaining components are all set to be zeros. Then
we generate the observation data b by the Matlab script

b = A ∗ x̄+ sigma ∗ randn(m, 1),

where sigma is the standard deviation of additive Gaussian noise. The problem size
is set as n = 1024 and m = 256 in all numerical experiments, and the stepsize and the
initial point are respectively set as vk ≡ 1

2 and x0 = 0 in the tests of IPTA.
We first verify the linear convergence rate of IPTA by conducting extensive simula-

tions on standard Gaussian and DCT data, in which the noisy measurement is waived
as sigma = 0. Figure 1 plots the error of function values or iterates along with the
number of iterations at different sparsity levels in a random trial. Figure 1(a) illus-
trates the linear convergence to a minimal value, and Figure 1(b) demonstrates the
linear convergence to a minimum, which are consistent with the theoretical result in
Theorem 3.6. In this experiment, we also note that the short CPU times of IPTA,
about 0.2 second per 500 iterations.

We then compare IPTA with several existing algorithms in the field of sparse op-
timization, including the well-known ISTA, NADMM, ADMM, NOMP and OMP, as
listed in Table 1. Among these solvers, IPTA, NADMM and NOMP are nonnega-
tive solvers for nonnegative sparse optimization problem, while ISTA, ADMM and
OMP are solvers for sparse optimization problem. The noisy measurement is set as
sigma = 0.1%. All these solvers can successfully recover the signal when the solution
is of low sparse level (i.e., k is small). However, some of these solvers fails to obtain the
nonnegative sparse solution along with the sparsity level increases. Figure 2 illustrates
the signals estimated by these algorithms in a random trial on the standard Gaussian
data at a sparsity level of k = 70, and Figure 3 displays the signals estimated by
these algorithms in a random trial on the DCT data at a sparsity level of k = 40, in
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which the true signal is denoted by circles (red), and their estimates are denoted by
asterisks (blue). It is illustrated from Figures 2 and 3 that the nonnegative solvers,
including IPTA, NADMM and NOMP, achieve the nonnegative sparse solutions that
approaches to the true signal, while the other solvers may not obtain the nonnegative
sparse solutions. Among these three nonnegative solvers, it is further observed from
Figure 2 that IPTA achieves a more exact prediction and accurate estimation than
NADMM and NOMP for the standard Gaussian data, in which the former one does
not obtain the accurate estimation of variables while the latter one is not able to
predict the variables of small magnitude. Figure 3 shows that IPTA also outperforms
NADMM and NOMP when dealing with the DCT data. This shows the advantage of
IPTA in approaching the nonnegative sparse solutions of linear inverse problems.
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Figure 2. Simulation of IPTA and several existing algorithms for standard Gaussian.

Finally, we show the robustness analysis of these three nonnegative solvers (IPTA,
NADMM and NOMP) by carrying out extensive simulations on standard Gaussian
and DCT data. In particular, for each sparsity level, we randomly generate the data
A, x̄, b (as above) 500 times, run the solver, and summarize these numerical results to
illustrate the robustness of the solver. The noisy measurement is set as sigma = 0.1%.
The performance is measured by the successful recovery rate, where each recovery
is defined as success when the relative error (RE) between the estimated solution
and the true signal is smaller than 0.5%; otherwise, it is regarded as failure. Figure
4 demonstrates the overall performance of these nonnegative solvers by plotting the
successful recovery rates along with different sparsity levels. It is indicated by Figure
4 that IPTA can achieve a higher successful recovery rate than NADMM and NOMP
for both standard Gaussian and DCT data.
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Figure 3. Simulation of IPTA and several existing algorithms for DCT.
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Figure 4. Probabilities of exact reconstruction by nonnegative solvers.
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