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That is, the GN iterates is given by

(1.3) xk+1 := xk − f ′(xk)
†f(xk),

where f ′(xk)
† is the Moore-Penrose inverse of f ′(xk). The local as well as semi-local

convergence properties of the GN method have been explored extensively; see for
example [9, 11, 14, 16–18, 20].

In the present paper, we particularly focus on the NLSP (1.1) for the underde-
termined case (i.e., m ≤ n), which is found to be applicable in various areas; see
[4, 5, 10, 18, 20] and references therein. Note that the underlying problem size of
(1.2) will be large in the case when m ≪ n. In order to overcome this disadvantage,
under the full row rank assumption of the Jacobian f ′(xk), Bao et al. [4] proposed
another approach to obtain dk, in which one first finds sk by solving the subproblem

f ′(xk)f
′(xk)

T s = −f(xk)

and then takes dk := f ′(xk)
T sk. Based on this technique, we consider the following

inexact truncated GN method for solving underdetermined NLSP.

Algorithm 1.1

Step 0: Choose an initial point x0 ∈ Rn, ϵ > 0, ν ∈ [1, 2], and a non-negative
sequence {θk}. Set k := 0.

Step 1: If ∥f(xk)∥ ≤ ϵ, then stop.
Step 2: Approximately solve

(1.4) f ′(xk)f
′(xk)

T s = −f(xk)

to find sk to satisfy

(1.5) ∥rk∥ ≤ θk∥f(xk)∥ν ,

where rk := f ′(xk)f
′(xk)

T sk + f(xk).
Step 3: Set dk := f ′(xk)

T sk and xk+1 := xk + dk. Set k := k + 1 and go to
Step 1.

Algorithm 1.1 was proposed in [4] for ν = 1 and 2, but, instead of (1.5), with the
following residual controls:

(1.6) ∥f ′(x0)
†rk∥ ≤ θk∥f ′(x0)

†f(xk)∥ or ∥f ′(x0)
†rk∥ ≤ θk∥f ′(x0)

†f(xk)∥2

for ν = 1 or 2, respectively. Under certain mild conditions, local convergence results
of sequences generated by Algorithm 1.1 with (1.6) in place of (1.5) were established
in [4]; see [4, Theorems 3.1 and 3.2]. Numerical results presented in [4] showed that
Algorithm 1.1 satisfying (1.6), based on the formation (1.4), is more efficient than
the methods based on (1.2).

In the present paper, we develop a different technique, which works for all ν ∈
[1, 2], to study the local convergence property of Algorithm 1.1. More precisely,
under the assumption that f ′ is Lipschitz continuous around a solution x∗ of (1.1)
and f ′(x∗) is of full row rank, we show that Algorithm 1.1 converges locally to a
solution of (1.1). Furthermore, the convergence rate is at least ν if ν ∈ (1, 2] and
superlinearly if ν = 1 and θk → 0. This extends/improves the corresponding results
in [4, Theorems 3.2 and 3.4] where it was only showed that this algorithm converges
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locally to a solution of (1.1), and the convergence rate is at least quadratic in the
case when ν = 2.

The paper is organized as follows. In section 2, we present some notions and
preliminary results. In section 3, we use another approach which is quite different
from [4] to establish the local convergence rate of Algorithm 1.1 under more general
assumption of parameter ν ∈ [1, 2].

2. Preliminaries and auxiliary results

Let ∥ · ∥ be the Euclidean norm on Rn. For x ∈ Rn and r > 0, we use B(x, r)

(resp. B(x, r)) to denote the open (resp. closed) ball with radius r and center x.
For W ⊆ Rn, the distance function associated with W and the projection onto W
are denoted by d(x,W ) and PW (x), respectively, and defined by

d(x,W ) := inf{∥x− y∥| y ∈ W} and PW (x) := {y ∈ W | ∥x− y∥ = d(x,W )}.

Let f : Rn → Rm be a continuous Fréchet differentiable function with its Fréchet
derivative denoted by f ′. Recall that f ′ is Lipschitz continuous on B(x̂, r) with
modulus L if

(2.1) ∥f ′(y)− f ′(x)∥ ≤ L∥y − x∥ for each x, y ∈ B(x̂, r),

and f ′ is local Lipschitz continuous around x̂ if there exist r, L > 0 such that f ′ is
Lipschitz continuous on B(x̂, r) with modulus L.

Remark 2.1. Suppose that f ′ is Lipschitz continuous on B(x̂, r) with modulus L.
Then, by (2.1), one has that

(2.2) ∥f(y)− f(x)− f ′(x)(y − x)∥ ≤ L

2
∥y − x∥2 for each x, y ∈ B(x̂, r)

and

∥f(y)− f(x)∥ ≤ Kr∥y − x∥ for each x, y ∈ B(x̂, r),

where Kr := supx∈B(x̂,r) ∥f ′(x)∥.

Let A ∈ Rm×n be an m×n real matrix and AT ∈ Rn×m denote its transpose. We
say that A† ∈ Rn×m is the Moore-Penrose inverse of A if it satisfies the following
four equalities:

AA†A = A, A†AA† = A†, (AA†)T = AA†, (A†A)T = A†A.

In particular, if A has full row rank, then

(2.3) A† = AT (AAT )−1 and AA† = Im,

where Im ∈ Rm×m is the identity matrix. Moreover, by the definition of the Moore-
Penrose inverse, one can easily check that (A†B)† = B†A if both A and B have full
row rank; see [12, 21] for more details.

The following lemma about the matrix perturbation is well known (see [12, 21]).

Lemma 2.2. Let A,B ∈ Rm×n be matrices. Assume that

1 ≤ rank(A) ≤ rank(B) and ∥B†∥ · ∥A−B∥ < 1.
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Then

rank(A) = rank(B) and ∥A†∥ ≤ ∥B†∥
1− ∥B†∥ · ∥A−B∥

.

Throughout the whole paper, the solution set of the equation f(x) = 0 is denoted
by S, namely

S := {x| f(x) = 0}.
Fixing the triple (x∗; r̄, L) with x∗ ∈ Rn and r̄, L ∈ (0,+∞), we consider the
following assumption for f associated with the triple (x∗; r̄, L):
(2.4)
• f ′(x∗) is of full row rank;
• f ′(·) is Lipschitz continuous on B(x∗, r̄) with modulus L.

Below, we recall the following proposition on the convergence property of GN
method (1.3), which is taken from [16, Corollary 5.1]. Let α > 0, µ > 0 and
t∗0 > 0, and assume that

(2.5) αµ ≤ 1

2
and t∗0 =

1−
√
1− 2αµ

µ
.

Obviously,

t∗0 =
2α

1 +
√
1− 2αµ

≤ 2α.

Proposition 2.3. Assume (2.5), and let x0 ∈ Rn be such that ∥f ′(x0)
†f(x0)∥ ≤ α

and f ′(x0) is of full row rank. Suppose that f ′(x0)
†f ′(·) is Lipschitz continuous on

B(x0, t
∗
0) with modulus µ. Then, the sequence {xk} generated by GN method (1.3)

with initial point x0, converges to a solution z∗ ∈ S and ∥x0 − z∗∥ ≤ t∗0; hence
d(x0, S) ≤ 2α.

The following proposition is crucial in the convergence analysis in section 3. As
usual, we use κ(A) := ∥A∥∥A†∥ to denote the generalized condition number of a
matrix A.

Proposition 2.4. Let x∗ ∈ S. Suppose that f satisfies assumption (2.4) associated

with (x∗; r̄, L). Let r0 = min
{
r̄, 1

2L∥f ′(x∗)†∥

}
. Then, there exists r̃ ∈ (0, r0) such

that, for each x ∈ B(x∗, r̃), f ′(x) is of full row rank, and the following inequalities
hold:

(2.6)
1

2
∥f ′(x)†∥ ≤ ∥f ′(x∗)†∥ ≤ 2∥f ′(x)†∥,

d(x, S) ≤ 4∥f ′(x∗)†∥∥f(x)∥,(2.7)

and

(2.8) ∥f ′(y)∥∥f ′(x∗)†∥ ≤ 2κ(f ′(x)) + 4 for each y ∈ B(x∗, r0).

Proof. Recall that Kr0 = supx∈B(x∗,r0) ∥f
′(x)∥, and set

(2.9) r̃ := min

{
r0
2
,

1

4L∥f ′(x∗)†∥
,

1

8LKr0∥f ′(x∗)†∥2
,

r̄

8Kr0∥f ′(x∗)†∥

}
.
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Below we will show that r̃ is as desired. To do this, let x ∈ B(x∗, r̃). Then,

(2.10) L∥f ′(x∗)†∥∥x− x∗∥ <
1

4
.

Combining this with assumption (2.4) yields that

∥f ′(x∗)†∥ · ∥f ′(x)− f ′(x∗)∥ ≤ L∥f ′(x∗)†∥∥x− x∗∥ <
1

2
.

Thus, applying Lemma 2.2 to f ′(x) and f ′(x∗) in place of A and B, respectively,
one has that f ′(x) is of the same rank as that of f ′(x∗) (and so is of full row rank),
and

(2.11) ∥f ′(x)†∥ ≤ ∥f ′(x∗)†∥
1− ∥f ′(x∗)†∥∥f ′(x)− f ′(x∗)∥

≤ 2∥f ′(x∗)†∥;

hence, the first inequality of (2.6) is checked. Note again by assumption (2.4) and
(2.11) that

∥f ′(x)†∥ · ∥f ′(x∗)− f ′(x)∥ ≤ L∥f ′(x)†∥∥x∗ − x∥ ≤ 2L∥f ′(x∗)†∥∥x∗ − x∥ <
1

2

(due to (2.10)). Thus, applying again Lemma 2.2, we have that

(2.12) ∥f ′(x∗)†∥ ≤ ∥f ′(x)†∥
1− ∥f ′(x)†∥ · ∥f ′(x∗)− f ′(x)∥

≤ 2∥f ′(x)†∥.

Then, the second inequality of (2.6) is seen to hold.
To check (2.7), set µ := 2L∥f ′(x∗)†∥ and α := ∥f ′(x)†f(x)∥. Note by (2.11) and

the definition of Kr̄ that

(2.13) α ≤ ∥f ′(x)†∥∥f(x)− f(x∗)∥ ≤ 2Kr0∥f ′(x∗)†∥∥x− x∗∥,
and so

αµ ≤ 4LKr0∥f ′(x∗)†∥2∥x− x∗∥ ≤ 1

2
,

where the last inequality holds because of (2.9). Below, we show that

(2.14) f ′(x)†f ′(·) is Lipschitz continuous on B(x, t∗0) with modulus µ.

Granting this, applying Proposition 2.3 to x in place x0, one has that d(x, S) ≤ 2α.
Note by (2.11) that

α = ∥f ′(x)†f(x)∥ ≤ 2∥f ′(x∗)†∥∥f(x)∥.
Thus, (2.7) is seen to hold. To show (2.14), let y1, y2 ∈ B(x, t∗0). Then, for each
i = 1, 2, it follows from (2.9) that ∥x− x∗∥ < r̄

2 and so

∥yi − x∗∥ ≤ ∥yi − x∥+ ∥x− x∗∥ < t∗0 +
r̄

2
≤ r̄,

where the last inequality holds because

t∗0 ≤ 2α ≤ 4Kr0∥f ′(x∗)†∥∥x− x∗∥ ≤ r̄

2

(due to (2.13) and (2.9)). Hence, it follows from assumption (2.4) and (2.11) that

∥f ′(x)†f ′(y1)− f ′(x)†f ′(y2)∥ ≤ ∥f ′(x)†∥∥f ′(y1)− f ′(y2)∥ ≤ 2L∥f ′(x∗)†∥∥y1 − y2∥,
and so (2.14) is checked by the definition of µ.
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Finally, we show that (2.8) holds. Let y ∈ B(x∗, r0). By assumption (2.4), we
have that

(2.15) ∥f ′(y)∥ ≤ ∥f ′(x)∥+ ∥f ′(y)− f ′(x)∥ ≤ ∥f ′(x)∥+ L∥y − x∥.
Note further that

L∥y − x∥ ≤ L(∥y − x∗∥+ ∥x− x∗∥) ≤ 2Lr0 <
1

∥f ′(x∗)†∥
≤ 2

∥f ′(x)†∥
,

where the third inequality holds by (2.9) and the last by (2.11). Combining this
with (2.15) yields that

∥f ′(y)∥ ≤ ∥f ′(x)∥+ 2

∥f ′(x)†∥
.

This, together with (2.12), implies that

∥f ′(y)∥∥f ′(x∗)†∥ ≤
(
∥f ′(x)∥+ 2

∥f ′(x)†∥

)
2∥f ′(x)†∥ = 2κ(f ′(x)) + 4.

Thus, (2.8) is seen to hold and the proof is complete. □

3. Local convergence analysis of Algorithm 1.1

In this section, we show that a sequence generated by Algorithm 1.1 converges
to a solution at rate of ν when ν ∈ (1, 2], and superlinearly when ν = 1 and θk → 0.
Let {xk} be a sequence generated by Algorithm 1.1 with initial piont x0 (together
with the associated sequence {dk}). In view of Algorithm 1.1, one has that, for each
k ∈ N,

(3.1) xk+1 = xk + dk and dk = f ′(xk)
T sk = f ′(xk)

†(−f(xk) + rk).

Throughout the whole paper, we always assume that

(3.2) θ := sup
k≥0

θk < +∞,

and recall that S = {x| f(x) = 0}. The following lemma is about some properties
related to the sequences {xk} and {dk}.

Lemma 3.1. Assume (3.2) and let x∗ ∈ S. Suppose that f satisfies assump-

tion (2.4) associated with (x∗; r̄, L). Let r0 = min
{
r̄, 1

2L∥f ′(x∗)†∥

}
and Kr0 =

supx∈B(x∗,r0) ∥f
′(x)∥. Then, there exist positive constant c > 0 and 0 < r1 ≤ r0

such that the following two assertions hold:
(i) If xk ∈ B(x∗, r1), then

(3.3) ∥dk∥ ≤ cd(xk, S).

(ii) If xk, xk+1 ∈ B(x∗, r1), then

(3.4) d(xk+1, S) ≤
{

cd(xk, S)
ν , ν ∈ (1, 2];

c(d(xk, S) + θk)d(xk, S), ν = 1;

hence,

(3.5) d(xk+1, S) ≤
1

2
d(xk, S)
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if it is additionally assumed that θk ≤ 1
16Kr0∥f ′(x∗)†∥ for ν = 1.

Proof. Write

c1 := 2∥f ′(x∗)†∥
(
Kr0 + θKν

r0

)
and c2 := 2∥f ′(x∗)†∥

(
Lc21 + 2θKν

r0

)
.

Take

(3.6) c := max
{
c1, c2, 2Lc

2
1∥f ′(x∗)†∥, 4Kr0∥f ′(x∗)†∥

}
.

Note that Proposition 2.4 is applicable to concluding that there exists r̃ > 0 such
that all the conclusions of Proposition 2.4 hold. Set

(3.7) r1 := min

{
r̄

4
,

1

2L∥f ′(x∗)†∥
, r̃,

1

4c
,

(
1

2c

) 1
ν−1

}
.

By the definition of Kr0 , we have that c ≥ 4, and so 0 < r1 < 1. Below we show
that c and r1 are as desired. To do this, let xk ∈ B(x∗, r1) and let x̄k ∈ PS(xk).
Then, we have

(3.8) d(xk, S) = ∥xk − x̄k∥ ≤ ∥xk − x∗∥ ≤ r1 < 1

and

∥x̄k − x∗∥ ≤ ∥x̄k − xk∥+ ∥xk − x∗∥ ≤ 2∥xk − x∗∥ ≤ 2r1 < r̄.

Then, it follows from the definition of Kr0 that

∥f(xk)∥ = ∥f(xk)− f(x̄k)∥ ≤ Kr0∥xk − x̄k∥ = Kr0d(xk, S).(3.9)

This, together with (1.5), implies that

∥rk∥ ≤ θk∥f(xk)∥ν ≤ θk(Kr0d(xk, S))
ν .(3.10)

Since ∥xk − x∗∥ < r̃ (due to (3.7)), it follows from (3.1) and (2.6) that

∥dk∥ ≤ ∥f ′(xk)
†∥(∥f(xk)∥+ ∥rk∥) ≤ 2∥f ′(x∗)†∥(∥f(xk)∥+ ∥rk∥).

This, together with (3.10) and (3.9), implies that

(3.11)
∥dk∥ ≤ 2∥f ′(x∗)†∥(Kr0d(xk, S) + θkK

ν
r0d(xk, S)

ν)
≤ 2∥f ′(x∗)†∥(Kr0 + θkK

ν
r0)d(xk, S)

= c1d(xk, S),

where the second inequality holds because of (3.8) and ν ≥ 1, and so (3.3) is checked
by the definition of c.

To check (3.4), noting by (3.1) and (2.3), one has that

∥f(xk) + f ′(xk)dk∥ = ∥rk∥.
Combing this with (3.10) yields that

∥f(xk) + f ′(xk)dk∥ ≤ θkK
ν
r0d(xk, S)

ν .(3.12)

Since xk, xk+1 ∈ B(x∗, r1) and xk+1 = xk + dk, it follows from (2.2) and (3.12) that

∥f(xk+1)∥ ≤ ∥f(xk + dk)− f(xk)− f ′(xk)dk∥+ ∥f(xk) + f ′(xk)dk∥
≤ L

2 ∥dk∥
2 + θkK

ν
r0d(xk, S)

ν

≤ Lc21
2 d(xk, S)

2 + θkK
ν
r0d(xk, S)

ν ,
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where the last inequality holds because of (3.11). Combining this with (2.7) yields
that

d(xk+1, S) ≤ 4∥f ′(x∗)†∥∥f(xk+1)∥ ≤ 4∥f ′(x∗)†∥
(
Lc21
2

d(xk, S)
2 + θkK

ν
r0d(xk, S)

ν

)
.

Thus, for the case when ν = 1, (3.4) follows directly from (3.6), while for the case
when ν ∈ (1, 2], (3.4) follows from (3.8), thanks to the definitions of θ and c2, and
(3.4) is proved.

Finally, we check (3.5). In the case when ν = 1 and θk ≤ 1
16Kr0∥f ′(x∗)†∥ , it follows

that 4Kr0θk∥f ′(x∗)†∥ ≤ 1
4 . Noting further that d(xk, S) ≤ r1 ≤ 1

4c (due to (3.8) and
(3.7)), one has from the second inequality of (3.4) that

d(xk+1, S) ≤
1

4
d(xk, S) +

1

4
d(xk, S) =

1

2
d(xk, S).

In the case when ν ∈ (1, 2], it follows from the first inequality of (3.4) that

d(xk+1, S) ≤ cd(xk, S)
ν ≤ cd(xk, S)

ν−1d(xk, S) ≤ crν−1
1 d(xk, S) ≤

1

2
d(xk, S),

where the last inequality holds because of (3.7). Hence, (3.5) is seen to hold. The
proof is completed. □

Lemma 3.2. Assume (3.2) and let x∗ ∈ S. Suppose that f satisfies assumption
(2.4) associated with (x∗; r̄, L). Then, for any r > 0, there exist r̂ > 0 such that, for
any x0 ∈ B(x∗, r̂), any sequence {xk} generated by Algorithm 1.1 with initial point
x0 stays in B(x∗, r), and satisfies the following estimate:

(3.13) d(xk+1, S) ≤
1

2
d(xk, S) for each k ≥ 0,

if it is assumed additionally for ν = 1 that

(3.14) θ ≤ 1

16(2κ(f ′(x0)) + 4)
.

Proof. Note that Lemma 3.1 and Proposition 2.4 are applicable to concluding that
there exist c, r1, r̃ such that all the conclusions of Lemma 3.1 and Proposition 2.4
hold. Let r > 0. Without loss of generality, we assume that r ≤ min{r1, r̃}.
Let r̂ := r

1+2c . Let x0 ∈ B(x∗, r̂). Below, we show by mathematical induction

that xk ∈ B(x∗, r) for each k ≥ 0 and (3.13) holds. In fact, by definition of r̂,
x0 ∈ B(x∗, r) and so (3.3) holds for k = 0. This implies that

∥x1 − x∗∥ ≤ ∥x1 − x0∥+ ∥x0 − x∗∥ ≤ ∥d0∥+ r̂ ≤ cd(x0, S) + r̂ ≤ (1 + c)r̂ ≤ r ≤ r1.

Note by (2.8) that 1
16(2κ(f ′(x0))+4) ≤

1
16Kr0∥f ′(x∗)†∥ , whereKr0 = supx∈B(x∗,r0) ∥f

′(x)∥

and r0 = min
{
r̄, 1

2L∥f ′(x∗)†∥

}
. Thus, in the case when ν = 1, (3.14) implies that

(3.15) θ = sup
k≥0

θk ≤ 1

16Kr0∥f ′(x∗)†∥
.

Consequently, (3.5) holds for k = 0, that is, (3.13) holds for k = 0. Assume that
x0, · · · , xk ∈ B(x∗, r) and (3.13) holds for 0, 1, · · · , k − 1. Then, (3.3) holds for
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0, 1, · · · , k. Consequently, it follows that

∥xk+1 − x∗∥ ≤ ∥x0 − x∗∥+
k∑

i=0

∥di∥ ≤ r̂ + c
k∑

i=0

d(xi, S)

≤ r̂ + cr̂

k∑
i=0

(
1

2

)i

≤ (1 + 2c) r̂ ≤ r

(by definition of r̂). Hence, xk+1 ∈ B(x∗, r). This, together with (3.15), implies
that (3.5) holds for k, that is, (3.13) holds for k. This completes the proof. □

Now, we are ready to present the following local convergence result of Algorithm
1.1.

Theorem 3.3. Assume (3.2) and let x∗ ∈ S. Suppose that f satisfies assump-
tion (2.4) associated with (x∗; r̄, L). Then, there exists r̂ > 0 such that, for any
x0 ∈ B(x∗, r̂), any sequence {xk} generated by Algorithm 1.1 with initial point x0
converges to some point x̄ ∈ S if (3.14) is assumed additionally for ν = 1. Moreover,
one has the following convergence rates:

(i) If ν = 1 and θk → 0, then the convergence rate of {xk} is at least superlinear:

lim
k→∞

∥xk+1 − x̄∥
∥xk − x̄∥

= 0.

(ii) If ν ∈ (1, 2], then the convergence rate of {xk} is at least ν:

lim sup
k→∞

∥xk+1 − x̄∥
∥xk − x̄∥ν

≤ +∞.

Consequently, if ν = 2, then the convergence rate is at least quadratic.

Proof. Since f ′ is local Lipschitz continuous around x∗, there exist r̄, L > 0 such
that f ′ is Lipschitz continuous on B(x∗, r̄) with modulus L. Hence, f satisfies
assumption (2.4) associated with (x∗; r̄, L). Thus, Lemmas 3.1 and 3.2 are applicable
to concluding that there exist c, r1, r̂ such that if x0 ∈ B(x∗, r̂), then xk ∈ B(x∗, r1)
for each k ≥ 0, and (3.3), (3.4) and (3.13) hold for each k ≥ 0. Hence, it follows
from (3.3) and (3.13) that

(3.16)
∞∑
k=0

∥dk∥ ≤ c
∞∑
k=0

d(xk, S) ≤ cr̂
∞∑
k=0

(
1

2

)k

≤ 2cr̂ < +∞.

This means that {xk} is a Cauchy sequence. Suppose that {xk} converges to some
point x̄. Note further by (3.16) that

(3.17) lim
k→∞

d(xk, S) = 0.

As S is closed, it follows that x̄ ∈ S. Below, we divide the proof into two cases.
Case 1. ν ∈ (1, 2]. We show that there exists a positive integer N1 such that for

all k ≥ N1,

(3.18) ∥dk+1∥ ≤ 2νc2∥dk∥ν
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and

(3.19) lim
k→∞

∥
∑∞

i=k+1 di∥
∥dk+1∥

= 1.

Granting this, we have that

lim
k→∞

∥xk+1 − x̄∥
∥xk − x̄∥ν

= lim
k→∞

∥
∑∞

i=k+1 di∥
∥
∑∞

i=k di∥ν
= lim

k→∞

∥dk+1∥
∥dk∥ν

≤ 2νc2,

which implies that {xk} converges to x̄ at rate of ν. To proceed, note that

(3.20) d(xk, S) ≤ d(xk+1, S) + ∥xk+1 − xk∥ = d(xk+1, S) + ∥dk∥.
Combining this with (3.13) yields that d(xk, S) ≤ 2∥dk∥. This, together with (3.3)
and (3.4), gives that

∥dk+1∥ ≤ cd(xk+1, S) ≤ c2d(xk, S)
ν ≤ 2νc2∥dk∥ν ,

which means that (3.18) holds. Note that (3.16) implies limk→∞ ∥dk∥ = 0, and so

there exists a positive integer N1, such that for each k ≥ N1, p := 2νc2∥dk∥
ν−1
3 < 1.

This, together with (3.18), yields that

(3.21) ∥dk+1∥ ≤ p∥dk∥1+
2ν−2

3 for each k ≥ N1.

Fix k ≥ N1. It follows inductively from (3.21) that for each i ≥ 2,

∥dk+i∥ ≤ p

(1+2ν−2
3 )

i−1
−1

2ν−2
3 ∥dk+1∥(1+

2ν−2
3 )

i−1

.

This, together with (3.16), implies that

(3.22) lim
k→∞

∞∑
i=2

∥dk+i∥
∥dk+1∥

≤ lim
k→∞

∞∑
i=2

(
p

3
2ν−2 ∥dk+1∥

)(1+ 2ν−2
3 )

i−1−1
= 0.

Observe further that

(3.23) 1−
∑∞

i=k+2 ∥di∥
∥dk+1∥

≤
∥
∑∞

i=k+1 di∥
∥dk+1∥

≤ 1 +

∑∞
i=k+2 ∥di∥
∥dk+1∥

.

Hence, (3.19) follows directly from (3.22) and (3.23). This completes the proof of
(ii).

Case 2. ν = 1 and θk → 0. Note by (3.20) and (3.13) that d(xk, S) ≤ 2∥dk∥ for
each k ≥ 0. Combining this with (3.3) and (3.4) yields that, for each k ≥ 0,

(3.24) ∥dk+1∥ ≤ cd(xk+1, S) ≤ 2c2 (d(xk, S) + θk) ∥dk∥.
Let ϵ ∈ (0, 1). By (3.17) and the fact that θk → 0, there exists a positive integer K,
such that for each k ≥ K, 2c2 (d(xk, S) + θk) ≤ ϵ and so it follows from (3.24) that
∥dk+1∥ ≤ ϵ∥dk∥ for each k ≥ K. This implies that, for each k ≥ K,

(3.25) 0 ≤
∑∞

i=k+2 ∥di∥
∥dk+1∥

≤
∥dk+1∥

∑∞
i=1 ϵ

i

∥dk+1∥
≤ ϵ

1− ϵ
.

As 0 < ϵ < 1 is arbitrary, letting ϵ → 0 and k → +∞ in (3.25), we obtain that

lim
k→∞

∑∞
i=k+2 ∥di∥
∥dk+1∥

= 0.
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This, together with (3.23), yields that (3.19) holds. Thus, we have

lim
k→∞

∥xk+1 − x̄∥
∥xk − x̄∥

= lim
k→∞

∥
∑∞

i=k+1 di∥
∥
∑∞

i=k di∥
= lim

k→∞

∥dk+1∥
∥dk∥

= 0,

which implies that {xk} converges to x̄ superlinearly. This completes the proof. □

Remark 3.4. Note that in the case when ν = 2, that is, the residuals control (1.5)
is reduced to the following one:

∥rk∥ ≤ θk∥f(xk)∥2 for each k ≥ 0.

As pointed out in [4, p. 108] that in the case when f ′(x0) is of full row rank, then
the residual ∥f ′(x0)

†rk∥ ≤ θk∥f ′(x0)
†f(xk)∥2 is equivalent to ∥rk∥ ≤ ηk∥f(xk)∥2

(with possible different constants {ηk}). Thus, the local convergence result of [4,
Theorem 3.4] follows from Theorem 3.3.
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