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Abstract. An interesting problem was raised in [SIAM J. Matrix Anal. Appl. 32 (2011), 412–429]:

whether the Ulm-like method and its convergence result can be extended to the cases of multiple and

zero singular values. In this paper, we study the convergence of a Ulm-like method for solving the

square inverse singular value problem with multiple and zero singular values. Under the nonsingularity

assumption in terms of the relative generalized Jacobian matrices, a convergence analysis for the

multiple and zero case is provided and the quadratical convergence property is proved. Moreover,

numerical experiments are given in the last section to demonstrate our theoretic results.
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1 Introduction

The inverse singular value problem (ISVP) arises in different applications such as the determination

of mass distributions, orbital mechanics, irrigation theory, computed tomography, circuit theory, etc.

[12, 13, 15, 16, 17, 19, 21, 26, 27, 30]. In the present paper, we consider the following special kind

of ISVP. Let p and q be two positive integers. Let Rp denote the p-dimensional Euclidean space and

Rp×q be the set of all real p× q matrices. Let m and n be two positive integers such that m ≥ n. Let

{Ai}ni=0 ⊂ Rm×n. Given c = (c1, c2, . . . , cn)
T ∈ Rn, we define

A(c) := A0 +

n∑
i=1

ciAi (1.1)
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and denote its singular values by {σi(c)}ni=1 with the order σ1(c) ≥ σ2(c) ≥ · · · ≥ σn(c) ≥ 0. The

ISVP considered here is, for n given real numbers {σ∗
i }ni=1 ordering with

σ∗
1 ≥ σ∗

2 ≥ · · · ≥ σ∗
n ≥ 0,

to find a vector c∗ ∈ Rn such that {σ∗
i }ni=1 are exactly the singular values of A(c∗), i.e.,

σi(c
∗) = σ∗

i , for each i = 1, 2, . . . , n. (1.2)

The vector c∗ is called a solution of the ISVP (1.2). This type of ISVP was originally proposed by

Chu [5] in 1992 and was further studied in [2, 3, 5, 14, 24, 28]. In the case when m = n, we call

the problem is square. Obviously, if {Ai}ni=0 are symmetric, the square inverse eigenvalue problem

is reduced to the inverse eigenvalue problem (IEP) which arises in a variety of applications and was

studied extensively in [1, 4, 6, 7, 10, 22, 29].

Define the function f : Rn → Rn by

f(c) := (σ1(c)− σ∗
1 , σ2(c)− σ∗

2 , . . . , σn(c)− σ∗
n)

T , for any c ∈ Rn. (1.3)

Then, as noted in [2, 3, 5, 14, 24, 28], solving the ISVP (1.2) is equivalent to finding a solution c∗ ∈ Rn

of the nonlinear equation f(c) = 0. Recall that, in the case when the given singular values are distinct

and positive, i.e.,

σ∗
1 > σ∗

2 > · · · > σ∗
n > 0, (1.4)

there exists a neighborhood of c∗ where the function f is differentiable around the solution c∗ and

the singular vectors corresponding to {σi(c)}ni=1 are continuous with respect to c around c∗ (cf.

[3]). Thus, in this case, one can certainly apply Newton’s method for solving the nonlinear equation

f(c) = 0 to produce Newton’s method for solving ISVP (1.2). However, Newton’s method for the ISVP

(1.2) requires solving a complete singular value problem for the matrix A(c) at each outer iteration.

This sometimes makes it inefficient from the viewpoint of practical calculations especially when the

problem size is large. Chu designed in [5] a Newton-type method for solving the ISVP (1.2) which

requires computing approximate singular vectors instead of singular vectors at each iteration. Under

the assumption that the given singular values {σ∗
i }ni=1 are distinct and positive, the Newton-type

method was proved in [2] to be quadratically convergent (in the root-convergence sense). To alleviate

the over-solving problem, Bai et al designed in [3] an inexact version of the Newton-type method

for the distinct and positive case where the approximate Jacobian equation was solved inexactly by

adopting a suitable stopping criteria. Also under the assumption that the given singular values are

distinct and positive, a convergence analysis for the inexact Newton-type method was presented in

that paper and the superlinear convergence was proved. Recently, the inexact Newton-type method

(and so the Newton-type method) was extended in [24] to the multiple but positive case:

σ∗
1 = · · · = σ∗

s > σ∗
s+1 > · · · > σ∗

n > 0, (1.5)

and a superlinear convergence result was established there without the distinction assumption of the

given singular values. On the other hand, motivated by the Ulm-like method introduced in [23] for

solving the IEP, Vong, Bai, and Jin presented in [28] a Ulm-like method for the ISVP (1.2). As

noted in [28], the Ulm-like method avoids solving the (approximate) Jacobian equations and hence

can reduce the unstability problem caused by the possible ill-conditioning in solving the (approximate)

Jacobian equations. Moreover, the parallel computation techniques can be applied in the Ulm-like
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method to improve the computational efficiency. Again under the assumption (1.4), they showed that

the proposed method converged at least quadratically. However, they comment that an interesting

topic is to extend the Ulm-like method to the cases of multiple and zero singular values, which needs

further investigation.

As noted in [5], zero singular values indicate rank deficiency and, to find a lower rank matrix in

the generic affine subspace:

A(c) := {A(c)|c ∈ Rn}

is intuitively a more difficult problem. Therefore, to our knowledge, the Ulm-like method has not been

extended to the cases of multiple and zero singular values. In fact, few numerical method for solving

the ISVP (1.2) (and so the square inverse singular value problems) with zero singular values has

been explored. Furthermore, except the work in [24], there is also hardly any work on the numerical

methods for solving the ISVP (1.2) with the multiple and positive case.

Motivated by the comment proposed in [28] (mentioned above), we study in the present paper

the Ulm-like method for solving the square ISVP (i.e., the ISVP (1.2) with m = n) in the case when

multiple and zero singular values present. The condition σ∗
n > 0 is removed and the appearance of

multiple singular values is allowed here. That is, without loss of generality, {σ∗
i }ni=1 satisfies that

σ∗
1 = · · · = σ∗

s > σ∗
s+1 · · · > σ∗

n−t > σ∗
n−t+1 = . . . = σ∗

n = 0. (1.6)

By modifying the Ulm-like method in [28] for the distinct and positive case, a Ulm-like method for

solving the square ISVP with possible multiple and zero singular values is proposed. Under the

nonsingularity assumption used by Shen et al in [24], we show that the proposed method converges

quadratically (in the root sense) even when multiple and zero singular values are presented. It should

be noted that the techniques used here for the convergence analysis are different from the ones for the

distinct and positive case because of the absence of the differentiability of f and the continuity of the

singular vectors as we explained above. Moreover, due to the occurrence of zero singular values, the

techniques used in [24] for the Cayley transform method with multiple and positive singular values

cannot be applied here. Finally, to illustrate our theoretical results, some numerical experiments are

presented.

2 Preliminaries

Let B(x, δ) be the open ball in Rp with center x ∈ Rp and radius δ > 0. Let O(p) denote the set of

all orthogonal matrices in Rp×p and I denote an identity matrix. Let ∥ · ∥ be the Euclidean vector

norm or its induced matrix norm, and let ∥ · ∥F denote the Frobenius norm. Then,

∥M∥ ≤ ∥M∥F ≤ √
q ∥M∥, for each M ∈ Rp×q. (2.1)

For any matrix M ∈ Rp×q, we use M [l]U and M [l]L to denote respectively the l × l upper left and

lower right blocks of the matrix M . The symbol Diag(a1, . . ., an) denotes a diagonal matrix with a1,

. . ., an being its diagonal elements and diag(M) := (m11, . . . , mnn)
T denotes a vector containing the

diagonal elements of an n×n matrix M := (mij). Let {σ∗
i }ni=1 be the given singular values satisfying

(1.6). Write

σ∗ := (σ∗
1 , . . . , σ

∗
n)

T and Σ∗ := Diag(σ∗
1 , . . . , σ

∗
n) ∈ Rn×n. (2.2)
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Let {Ai}ni=0 ⊂ Rn×n. Let c ∈ Rn and A(c) be defined by (1.1). Let {σi(c)}ni=1 stand for the singular

values of A(c) with the order σ1(c) ≥ σ2(c) ≥ · · · ≥ σn(c) ≥ 0. Write

Σ(c) := Diag(σ1(c), . . . , σn(c)) ∈ Rn×n.

Define

W(c) := {[U(c), V (c)] | U(c)TA(c)V (c) = Σ(c), U(c), V (c) ∈ O(n)}.

As in [28], we ignore the choice of possible sign for [U(c), V (c)]. For each [U(c), V (c)] ∈ W(c),

we write U(c) := [U (1)(c), U (2)(c), U (3)(c)] and V (c) := [V (1)(c), V (2)(c), V (3)(c)], where U (1)(c),

V (1)(c) ∈ Rn×s and U (3)(c), V (3)(c) ∈ Rn×t. Throughout this paper, we suppose that c∗ is a solution

of the square ISVP. For i = 1 and i = 3, define

ΠU,i = U (i)(c∗)U (i)(c∗)T and ΠV,i = V (i)(c∗)V (i)(c∗)T . (2.3)

We first present some auxiliary lemmas. In particular, Lemma 2.1 gives a perturbation bound

for the inverse which is known in [11, pp.58–59]; Lemma 2.2 is a direct consequence of the Cholesky

factorization (cf. [10, Lemma 3.1]); while Lemmas 2.3 and 2.4 have been presented respectively in [2,

Lemma 2] and [22, Lemma 4.1].

Lemma 2.1. Let A, B ∈ Rp×p. Assume that B is nonsingular and ∥B−1∥ · ∥A−B∥ < 1. Then A is

nonsingular and moreover

∥A−1∥ ≤ ∥B−1∥
1− ∥B−1∥ · ∥A−B∥

.

Lemma 2.2. Let M ∈ Rp×q where p ≥ q. Let W = (wij) be a q×q nonsingular upper triangle matrix

such that w11 > 0 and WTW = I −MTM . Then there exist two numbers ϵ ∈ (0, 1) and α ∈ (0,+∞)

such that the following implication holds:

∥M∥ ≤ ϵ =⇒ ∥I −W∥ ≤ α∥M∥2. (2.4)

Lemma 2.3. There exists a constant α ∈ (0,+∞) such that for any c, c̄ ∈ Rn,

∥A(c)−A(c̄)∥ ≤ α∥c− c̄∥.

Lemma 2.4. Suppose that Â ∈ S(n). Then there exist positive constants β and κ such that

min
Q̂∈O(n), Q̂T ÂQ̂∈D(n)

∥Q−Q̂∥ ≤ β∥A−Â∥, whenever A ∈ S(n), Q ∈ O(n), QTAQ ∈ D(n), ∥A−Â∥ ≤ κ.

The following lemma is also needed, the proof of which is similar to that of [24, Lemma 2.4]. For

the sake of completeness, we present the proof.

Lemma 2.5. Let Z ∈ Rn×n. Suppose that the skew-symmetric matrices H ∈ Rn×n and K ∈ Rn×n

satisfy

HΣ∗ − Σ∗K = Z. (2.5)

Then we have

[H]ij =
[Z]ij
σ∗
j

, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t, (2.6)

[K]ij = − [Z]ij
σ∗
i

, 1 ≤ i ≤ n− t, n− t+ 1 ≤ j ≤ n, (2.7)
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[H]ij =
1

(σ∗
j )

2 − (σ∗
i )

2

(
σ∗
j [Z]ij + σ∗

i [Z]ji
)
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j. (2.8)

[K]ij =
1

(σ∗
j )

2 − (σ∗
i )

2

(
σ∗
j [Z]ji + σ∗

i [Z]ij
)
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j. (2.9)

Proof. Let Σ(11) := Diag(σ∗
1 , . . . , σ

∗
n−t). Then, by the definition of Σ(11), one sees that

Σ∗ =

[
Σ(11) 0

0 0

]
,

where 0 is a zero matrix of appropriate size. Write

H :=

[
H(11) H(12)

H(21) H(22)

]
, K :=

[
K(11) K(12)

K(21) K(22)

]
, and Z :=

[
Z(11) Z(12)

Z(21) Z(22)

]
,

where H(11), K(11), Z(11) ∈ R(n−t)×(n−t). Then it follows from (2.5) that

H(11)Σ(11) − Σ(11)K(11) = Z(11), (2.10)

−Σ(11)K(12) = Z(12)

and

H(21)Σ(11) = Z(21).

Thus, (2.6) and (2.7) are seen to hold. It remains to prove (2.8) and (2.9). Indeed, noting that

(H(11))T = −H(11) and (K(11))T = −K(11), we have by (2.10) that

−Σ(11)H(11) +K(11)Σ(11) = (Z(11))T . (2.11)

Eliminating the matrix K(11) in (2.10) and (2.11) gives rise to

H(11)(Σ(11))2 − (Σ(11))2H(11) = Z(11)Σ(11) +Σ(11)(Z(11))T .

Equating the off-diagonal elements yields

[H(11)]ij =
1

(σ∗
j )

2 − (σ∗
i )

2

(
σj [Z

(11)]ij + σi[Z
(11)]ji

)
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j.

Similarly, we can prove

[K(11)]ij =
1

(σ∗
j )

2 − (σ∗
i )

2

(
σj [Z

(11)]ji + σi[Z
(11)]ij

)
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j.

Consequently, (2.8) and (2.9) are shown; hence the proof is complete.

The following lemma describes the continuity properties of the singular vectors. Recall that we

ignore the choice of possible sign for [U(c), V (c)] where U(c) := [U (1)(c), U (2)(c), U (3)(c)] and

V (c) := [V (1)(c), V (2)(c), V (3)(c)]. Recall also that ΠU,i and ΠV,i are defined by (2.3) for i = 1, 3.

Lemma 2.6. There exist two numbers δ ∈ (0, 1) and γ ∈ [1,+∞) such that for any c ∈ B(c∗, δ)

and [U(c), V (c)] ∈ W(c) , the following assertions hold:

(i) ∥U (2)(c)− U (2)(c∗)∥ ≤ γ∥c− c∗∥ and ∥(I −ΠU,i)U
(i)(c)∥ ≤ γ∥c− c∗∥ for i = 1, 3;
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(ii) ∥V (2)(c)− V (2)(c∗)∥ ≤ γ∥c− c∗∥ and ∥(I −ΠV,i)V
(i)(c)∥ ≤ γ∥c− c∗∥ for i = 1, 3.

Proof. The proof of assertions (i) and (ii) are similar and so we only prove assertion (ii) for brevity.

In fact, the estimate of ∥U (2)(c)− U (2)(c∗)∥ is clear and can be found in [2, 28]. For the estimate of

∥(I −ΠU,i)U
(i)(c)∥, define

V(c) := {V (c) ∈ O(n) | [U(c), V (c)] ∈ W(c) for some U(c) ∈ O(n)}, for any c ∈ Rn,

and

Ṽ(c) := {V (c) ∈ O(n) | V (c)TA(c)TA(c)V (c) = Σ(c)TΣ(c)}, for any c ∈ Rn.

Then V(c) = Ṽ(c) (see the arguments of [22, Proposition 2.4]). Let α, β, and κ be determined by

Lemmas 2.3 and 2.4. Let δ satisfy

0 < δ < min

{
1,

κ

α2 + 2α∥A(c∗)∥

}
. (2.12)

Suppose that c ∈ B(c∗, δ) and [U(c), V (c)] ∈ W(c). Then, V (c) ∈ V(c) and so V (c) ∈ Ṽ(c). Note

by Lemma 2.3 that

∥A(c)−A(c∗)∥ ≤ α∥c− c∗∥. (2.13)

Since ∥c− c∗∥ ≤ δ < 1 and

A(c)A(c)T−A(c∗)A(c∗)T = (A(c)−A(c∗))(A(c)−A(c∗))T+A(c∗)(A(c)−A(c∗))T+(A(c)−A(c∗))A(c∗)T ,

we deduce by (2.13) that

∥A(c)A(c)T −A(c∗)A(c∗)T ∥ ≤ α2∥c−c∗∥2+2α∥A(c∗)∥·∥c−c∗∥ ≤ (α2+2α∥A(c∗)∥)∥c−c∗∥. (2.14)

Thus, using (2.12) and the fact of ∥c− c∗∥ ≤ δ, we further derive that

∥A(c)A(c)T −A(c∗)A(c∗)T ∥ ≤ (α2 + 2α∥A(c∗)∥)δ ≤ κ.

Hence, thanks to Lemma 2.4, there exists a V (c∗) ∈ Ṽ(c∗) (and so V (c∗) ∈ V(c∗)) such that the

following inequality holds:

∥V (c)− V (c∗)∥ ≤ β∥A(c)A(c)T −A(c∗)A(c∗)T ∥

which together with (2.14) gives that

∥V (c)− V (c∗)∥ ≤ β(α2 + 2α∥A(c∗)∥)∥c− c∗∥. (2.15)

By (2.3), one checks that ∥I −ΠV,i∥ ≤ 1 and (I −ΠV,i)V
(i)(c) = (I −ΠV,i)[V

(i)(c)− V (i)(c∗)]. Then

it follows from (2.15) that

∥(I −ΠV,i)V
(i)(c)∥ ≤ ∥V (i)(c)− V (i)(c∗)∥ ≤ ∥V (c)− V (c∗)∥ ≤ β(α2 + 2α∥A(c∗)∥)∥c− c∗∥

Therefore, we conclude that there exist positive numbers δ ∈ (0, 1) and γ ∈ [1,+∞) such that for

any c ∈ B(c∗, δ) assertion (ii) hold.
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Suppose that U := [U (1), U (2), U (3)] and V := [V (1), V (2), V (3)] ∈ O(n) where U (1), V (1) ∈
Rn×s and U (3), U (3) ∈ Rn×t. Let us construct two orthogonal matrices of singular vectors of A(c∗),

Ũ(c∗) := [Ũ (1)(c∗), U (2)(c∗), Ũ (3)(c∗)] and Ṽ (c∗) := [Ṽ (1)(c∗), V (2)(c∗), Ṽ (3)(c∗)],

which is, in some sense, close to U and V respectively. To find Ũ (1)(c∗) and Ṽ (1)(c∗), we start by

considering the matrix ΠU,1U
(1) and ΠV,1V

(1) whose columns are singular vectors for σ1(c
∗). Using

the similar way, we can find Ũ (3)(c∗) and Ṽ (3)(c∗). Then, for i = 1 and i = 3, we form the QR

factorization of ΠU,iU
(i) and ΠV,iV

(i):

ΠU,iU
(i) = Ũ (i)(c∗)R

(i)
U , ΠV,iV

(i) = Ṽ (i)(c∗)R
(i)
V , (2.16)

where R
(i)
U R

(i)
V are nonsingular upper triangular matrices, and Ũ (i)(c∗), Ṽ (i)(c∗) are matrices whose

columns are orthonormal. Clearly, the columns of Ũ(c∗) and Ṽ (c∗) are singular vectors of A(c∗).

That is, [Ũ(c∗) Ṽ (c∗)] ∈ W(c∗). Let the skew-symmetric matrices X̃ and Ỹ defined by

eX̃ = UT Ũ(c∗) and eỸ = V T Ṽ (c∗). (2.17)

Finally, let us define the error matrices EU and EV :

EU := [E
(1)
U , E

(2)
U , E

(3)
U ] and EV := [E

(1)
V , E

(2)
V , E

(3)
V ], (2.18)

where

E
(i)
U := (I −ΠU,i)U

(i) and E
(i)
V := (I −ΠV,i)V

(i), i = 1, 3, (2.19)

and

E
(2)
U := U (2) − U (2)(c∗) and E

(2)
V := V (2) − V (2)(c∗). (2.20)

The following lemma plays an important role in the convergence analysis of the Ulm-like method.

Lemma 2.7. There exist two numbers δ ∈ (0, 1) and γ ∈ [1,+∞) such that

(i) for any matrix U ∈ O(n) with ∥EU∥ < δ , the skew-symmetric matrix X̃ defined by (2.17)

satisfies

∥X̃∥F ≤ γ∥EU∥, ∥X̃ [s]U ∥F ≤ γ∥EU∥2 and ∥X̃ [t]L∥F ≤ γ∥EU∥2

(ii) for any matrix V ∈ O(n) with ∥EV ∥ < δ, the skew-symmetric matrix Ỹ defined by (2.17)

satisfies

∥Ỹ ∥F ≤ γ∥EV ∥, ∥Ỹ [s]U ∥F ≤ γ∥EV ∥2 and ∥Ỹ [t]L∥F ≤ γ∥EV ∥2.

Proof. Since the proofs of assertions (i) and (ii) are similar, we only provide the proof of assertion (i).

For this purpose, let U ∈ O(n). Note that

eX̃ = UT Ũ(c∗) =

 (U (1))T Ũ (1)(c∗) (U (1))TU (2)(c∗) (U (1))T Ũ (3)(c∗)

(U (2))T Ũ (1)(c∗) (U (2))TU (2)(c∗) (U (2))T Ũ (3)(c∗)

(U (3))T Ũ (1)(c∗) (U (3))TU (2)(c∗) (U (3))T Ũ (3)(c∗)

 .

Since eX̃ = I + X̃ +O(∥X̃∥2), it suffices to prove

UT Ũ(c∗) =

 (U (1))T Ũ (1)(c∗) (E
(1)
U )TU (2)(c∗) (E

(1)
U )T Ũ (3)(c∗)

(E
(2)
U )T Ũ (1)(c∗) I + (E

(2)
U )TU (2)(c∗) (E

(2)
U )T Ũ (3)(c∗)

(E
(3)
U )T Ũ (1)(c∗) (E

(3)
U )TU (2)(c∗) (U (3))T Ũ (3)(c∗)

 .
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and, to prove there exist δ > 0 and γ > 0 such that, if ∥EU∥ ≤ δ, then

max{∥I − (U (1))T Ũ (1)(c∗)∥, ∥I − (U (3))T Ũ (3)(c∗)∥} ≤ γ∥EU∥2. (2.21)

Note by (2.16), (2.19) and the orthogonality of the matrix [Ũ (1)(c∗), U (2)(c∗), Ũ (3)(c∗)] that

(U (1))TU (2)(c∗) = (E
(1)
U + Ũ (1)(c∗)R

(1)
U )TU (2)(c∗) = (E

(1)
U )TU (2)(c∗). (2.22)

Similarly, one can prove that

(U (1))T Ũ (3)(c∗) = (E
(1)
U )T Ũ (3)(c∗), (2.23)

(U (3))T Ũ (1)(c∗) = (E
(3)
U )T Ũ (1)(c∗), (2.24)

and

(U (3))TU (2)(c∗) = (E
(3)
U )TU (2)(c∗). (2.25)

Using (2.20) and the orthogonality of the matrix [Ũ (1)(c∗) U (2)(c∗) Ũ (3)(c∗)], we get that

(U (2))T Ũ (1)(c∗) = (E
(2)
U + U (2)(c∗))T Ũ (1)(c∗) = (E

(2)
U )T Ũ (1)(c∗). (2.26)

Similarly, we can also prove that

(U (2))TU (2)(c∗) = I + (E
(2)
U )TU (2)(c∗) and (U (2))T Ũ (3)(c∗) = (E

(2)
U )T Ũ (3)(c∗).

It remains to prove that there exist δ > 0 and γ > 0 such that

∥EU∥ ≤ δ =⇒ max{∥I − (U (1))T Ũ (1)(c∗)∥, ∥I − (U (3))T Ũ (3)(c∗)∥} ≤ γ∥EU∥2. (2.27)

Note by the definition of E
(1)
U that E

(1)
U = (I −ΠU,1)U

(1). Then, thanks to the fact ΠT
U,1ΠU,1 = ΠU,1,

one has that (E
(1)
U )TΠU,1U

(1) = 0 which gives

(E
(1)
U )TU (1) = (E

(1)
U )T (E

(1)
U +ΠU,1U

(1)) = (E
(1)
U )TE

(1)
U .

Since (U (1))TU (1) = I, one can easily check that

(ΠU,1U
(1))T (ΠU,1U

(1)) = (U (1) − E
(1)
U )T (U (1) − E

(1)
U ) = I − (E

(1)
U )TE

(1)
U . (2.28)

Noting that the columns of Ũ (1)(c∗) are orthonormal, we get from (2.16) that

(R
(1)
U )TR

(1)
U = (ΠU,1U

(1))TΠU,1U
(1).

This, together with (2.28), implies that

(R
(1)
U )TR

(1)
U = I − (E

(1)
U )TE

(1)
U . (2.29)

To proceed, we apply Lemma 2.2 to choose ϵ1 ∈ (0, 1) and α1 ∈ (0,+∞) such that implication (2.4)

holds with ϵ1, α1 in place of ϵ, α. In particular, applying (2.4) to {R(1)
U , E

(1)
U } in place of {W,M}, we

have that

∥E(1)
U ∥ ≤ ϵ1 =⇒ ∥I −R

(1)
U ∥ ≤ α1∥E(1)

U ∥2 (2.30)
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thanks to (2.29) (noting that the first element of R
(1)
U is positive). Since ∥E(1)

U ∥ ≤ ∥EU∥ by (2.18), it

follows from (2.30) that

∥EU∥ ≤ ϵ1 =⇒ ∥I −R
(1)
U ∥ ≤ α1∥EU∥2. (2.31)

Furthermore, noting that ΠU,1Ũ
(1)(c∗) = Ũ (1)(c∗) and ΠT

U,1 = ΠU,1, we have by (2.16) that

R
(1)
U = (Ũ (1)(c∗))TΠU,1U

(1) = (Ũ (1)(c∗))TU (1).

Substituting this into (2.31), one has that

∥EU∥ ≤ ϵ1 =⇒ ∥I − (Ũ (1)(c∗))TU (1)∥ ≤ α1∥EU∥2, (2.32)

With the similar arguments for proving (2.32), we can prove that there exist ϵ1 > 0 and α1 > 0 such

that

∥EU∥ ≤ ϵ1 =⇒ ∥I − (Ũ (3)(c∗))TU (3)∥ ≤ α1∥EU∥2. (2.33)

This together with (2.32) implies that (2.27) holds for 0 < δ ≤ ϵ1 and γ ≥ max{1, α1}. Therefore,

the proof is complete.

Now we present the definitions and some properties of the B-differential Jacobian, the generalized

Jacobian and the relative generalized Jacobian. For this, let g : Rp → Rq be a locally Lipschitz

continuous function. Let g′ be the Fréchet derivative of g whenever it exists and Dg be the set of

differentiable points of g. Recall from [8, 20] that the B-differential Jacobian of g at x ∈ Rp is defined

by

∂Bg(x) := {J ∈ Rq×p | J = lim
xk→x

g′(xk), xk ∈ Dg}.

Consider the composite nonsmooth function:

g := φ ◦ ψ, (2.34)

where φ : Rl → Rq is nonsmooth but of special structure and ψ : Rp → Rl is continuously differen-

tiable. Let S be a subset of Rn and clS denote the closure of S. The generalized Jacobian ∂Qg(·) and
relative generalized Jacobian ∂Q|Sg(·) at x ∈ Rp, which were introduced respectively in [18] and [25],

are defined as follows:

∂Qg(x) := ∂B(φ(ψ(x)))ψ
′(x);

∂Q|Sg(x) := {J | J is a limit of Gk ∈ ∂Qg(yk), yk ∈ S, yk → x}.

The following lemma is known in [24, Proposition 2.1].

Lemma 2.8. Let x̄ ∈ Rp and let S be a subset of Rp. Let g be defined by (2.34). Then ∂Bg(x̄) and

∂Qg(x̄) are nonempty and compact, and so is ∂Q|Sg(x̄) if x̄ ∈ clS.

In the remainder of the present paper, let

S := {c ∈ Rn | A(c) has positive and distinct singular values}.

For any matrix M ∈ Rn×n, we use {σi(M)}ni=1 to denote the eigenvalues of M with σ1(M) ≥ . . . ≥
σn(M) ≥ 0. Define the operator σ : Rn×n −→ Rn by

σ(M) := (σ1(M), . . . , σn(M))T , for any M ∈ Rn×n.
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Recall that the operators A and f are defined by (1.1) and (1.3) respectively. Then

f = σ ◦A− σ∗.

Thus we have the following two lemmas. In particular, Lemma 2.9, which has been proved in [24],

gives the B-differential Jacobian, generalized Jacobian, and relative generalized Jacobian of f at c.

While Lemma 2.10, which is a direct consequence of [22, Lemma 2.1], gives a perturbation bound for

the inverses of B-differential Jacobian, the generalized Jacobian and the relative generalized Jacobian.

Lemma 2.9. Let f be defined by (1.3). Then we have the following assertions:

(i) If c ∈ Rn such that σn(c) > 0, then ∂Qf(c) = {J | [J ]ij = ui(c)
TAjvi(c), [U(c), V (c)] ∈

W(c)}.

(ii) If c ∈ S, then f is continuously differentiable at c and moreover ∂Bf(c) = ∂Qf(c) = {f ′(c)};

(iii) ∂Q|Sf(c) = {J | J = lim
k→+∞

f ′(yk) with {yk} ⊂ S and yk → c}.

Lemma 2.10. Let c∗ ∈ clS such that the matrix A(c∗) has singular values given by (1.6). Suppose

that each J ∈ ∂Q|Sf(c
∗) (resp. each J ∈ ∂Bf(c

∗), each J ∈ ∂Qf(c
∗)) is nonsingular. Then there exist

two numbers δ ∈ (0, 1) and γ ∈ [1, +∞) such that for any c ∈ B(c∗, δ),

sup
J∈∂Q|Sf(c)

∥J−1∥(resp. sup
J∈∂Bf(c)

∥J−1∥, sup
J∈∂Qf(c)

∥J−1∥
)
≤ γ, (2.35)

where we adopt the convention that sup∅ = −∞.

3 The Ulm-like method and convergence analysis

In this section, we begin with the Ulm-like method for solving the square ISVP with the singular

values given by (1.6). For the original idea of the Ulm-like method, one may refer to [28]. Compared

with the Newton-type methods for solving the ISVP (1.2), the advantage of the Ulm-like method is

that approximate Jacobian equations are not required to solve in each step. Clearly, in the case when

s = 1 and t = 0, the method presented below is reduced to the Ulm-like method proposed in [28]

(with m = n) for the positive and distinct case.

The Ulm-like method

1. Given c0 ∈ Rn and B0 ∈ Rn×n. Compute the singular values {σi(c0)}ni=1, the orthonormal left

singular vectors {ui(c
0)}mi=1 and right singular vectors {vi(c

0)}ni=1 of A(c0). Write

U0 := [u0
1, . . . ,u

0
m] = [u1(c

0), . . . ,um(c0)],

V0 := [v0
1, . . . ,v

0
n] = [v1(c

0), . . . ,vn(c
0)].

Form the Jacobian matrix J0 and the vector b0:

[J0]ij := (u0
i )

TAjv
0
i , [b0]i := (u0

i )
TA0v

0
i , 1 ≤ i, j ≤ n.

2. For k = 0, 1, 2, . . . until convergence, do:
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(a) Compute the vector ck+1 by

ck+1 := ck −Bk(Jkc
k + bk − σ∗). (3.1)

(b) Form the matrix Wk := UT
k A(c

k+1)Vk.

(c) Calculate the skew-symmetric matrices Xk and Yk:

[Xk]ij := 0, 1 ≤ i, j ≤ s or n− t+ 1 ≤ i, j ≤ n,

[Xk]ij := −[Xk]ji =
[Wk]ij
σ∗
j

, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t,

[Xk]ij := −[Xk]ji =
σ∗
i [Wk]ji + σ∗

j [Wk]ij

(σ∗
j )

2 − (σ∗
i )

2
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j,

[Yk]ij := 0, n− t+ 1 ≤ i, j ≤ n,

[Yk]ij := −[Yk]ji = − [Wk]ij
σ∗
i

, 1 ≤ i, j ≤ s, i > j,

[Yk]ij := −[Yk]ji = − [Wk]ij
σ∗
i

, 1 ≤ i ≤ n− t, n− t+ 1 ≤ j ≤ n,

[Yk]ij := −[Yk]ji =
σ∗
i [Wk]ij + σ∗

j [Wk]ji

(σ∗
j )

2 − (σ∗
i )

2
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j.

(d) Compute Uk+1 := [uk+1
1 , . . . ,uk+1

m ] and Vk+1 := [vk+1
1 , . . . ,vk+1

n ] by solving(
I +

1

2
Xk

)
UT
k+1 =

(
I − 1

2
Xk

)
UT
k (3.2)

and (
I +

1

2
Yk

)
V T
k+1 =

(
I − 1

2
Yk

)
V T
k . (3.3)

(e) Form the approximate Jacobian matrix Jk+1 and the vector bk+1:

[Jk+1]ij := (uk+1
i )TAjv

k+1
i , 1 ≤ i, j ≤ n; (3.4)

[bk+1]i := (uk+1
i )TA0v

k+1
i , 1 ≤ i ≤ n. (3.5)

(f) Compute the matrix Bk+1:

Bk+1 := 2Bk −BkJk+1Bk.

Now we present a convergence analysis for the Ulm-like method. Recall that we have assumed

that the given singular values satisfy (1.6). There is no difficulty in generalizing all our results to an

arbitrary set of given positive singular values. For the remainder of the present paper, let {ck}, {Uk},
{Vk}, {Xk}, {Yk}, {Bk}, and {Jk} be generated by the Ulm-like method with initial point c0. Let

{X̃k}, {Ỹk} be the skew-symmetric matrices defined by (2.16)–(2.17) with {U = Uk} and {V = Vk}
respectively. Let EUk

, EVk
be defined by (2.18)-(2.20) with {U = Uk} and {V = Vk} respectively.

Then we have the following lemma.
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Lemma 3.1. There exist two numbers δ ∈ (0, 1) and γ ∈ [1, +∞) such that for any k ≥ 0 and

[U(c∗) V (c∗)] ∈ W(c∗) with max{∥EUk
∥, ∥EVk

∥} < δ, the following assertions hold:

(i) ∥Σ∗ + X̃kΣ
∗ − Σ∗Ỹk − UT

k A(c
∗)Vk∥ ≤ γ(∥EUk

∥2 + ∥EVk
∥2);

(ii) max{∥Uk+1 − Uk∥, ∥Vk+1 − Vk∥} ≤ γ(∥ck+1 − c∗∥+ ∥EUk
∥+ ∥EVk

∥), if ck+1 ∈ B(c∗, δ);

(iii) max{∥EUk+1
∥, ∥EVk+1

∥} ≤ γ[∥ck+1 − c∗∥+ (∥EUk
∥+ ∥EVk

∥)2], if ck+1 ∈ B(c∗, δ).

Proof. By Lemma 2.7, let δ1 ∈ (0, 1) and γ1 ∈ [1, +∞) be such that for any k ≥ 0,

∥X̃k∥F ≤ γ1∥EUk
∥, ∥X̃ [s]U

k ∥F ≤ γ1∥EUk
∥2, ∥X̃ [t]L

k ∥F ≤ γ1∥EUk
∥2, (3.6)

∥Ỹk∥F ≤ γ1∥EVk
∥, ∥Ỹ [s]U

k ∥F ≤ γ1∥EVk
∥2, ∥Ỹ [s]L

k ∥F ≤ γ1∥EVk
∥2, (3.7)

when max{∥EUk
∥, ∥EVk

} < δ1. Let α the positive number determined in Lemma 2.3. Write

η1 := (n2 − s2 − t2) max
s≤i<n−t

{
1

σ∗
i+1 − σ∗

i

,
1

σ∗
i

}
, η2 := max {2η1α, 4 + 2γ1 + 8γ1η1∥σ∗∥} . (3.8)

Set

γ := max

{
4γ21∥σ∗∥, 9

2

√
nγ1η2

}
and δ := min

{
δ1,

2

3γ

}
. (3.9)

Clearly, δ ∈ (0, 1) and γ ∈ [1, +∞). Below we prove that δ and γ are as desired. For this purpose,

we assume that [U(c∗), U(c∗)] ∈ W(c∗). Let k ≥ 0 be such that max{∥EUk
∥, ∥EVk

∥} < δ. Then one

has by (3.6), (3.7), and (3.9) that

∥X̃k∥F ≤ γ1∥EUk
∥ < γδ < 1 and ∥Ỹk∥F ≤ γ1∥EUk

∥ < γδ < 1.

Thus, by direct computations, we have∥∥∥∥∥
∞∑

m=2

X̃m−2
k

m!

∥∥∥∥∥
F

<
∞∑

m=2

1

m!
≤

∞∑
m=2

1

m(m− 1)
= 1. (3.10)

Similarly,∥∥∥∥∥
∞∑

m=2

(−Ỹk)m−2

m!

∥∥∥∥∥
F

< 1,

∥∥∥∥∥
∞∑

m=1

(−Ỹk)m−1

m!

∥∥∥∥∥
F

< 2,

∥∥∥∥∥
∞∑

m=0

(−Ỹk)m

m!

∥∥∥∥∥
F

< 3. (3.11)

Write

Rk := −X̃2
k

( ∞∑
m=2

X̃m−2
k

m!

)
Σ∗

( ∞∑
m=0

(−Ỹk)m

m!

)
−Σ∗Ỹ 2

k

∞∑
m=2

(−Ỹk)m−2

m!
+X̃kΣ

∗Ỹk

∞∑
m=1

(−Ỹk)m−1

m!
. (3.12)

Hence, one has by (3.10)–(3.12) that

∥Rk∥F ≤ (3∥X̃k∥2F + ∥Ỹk∥2F + 2∥X̃k∥F · ∥Ỹk∥F ) · ∥Σ∗∥F ≤ 4(∥X̃k∥2F + ∥Ỹk∥2F ) · ∥Σ∗∥F . (3.13)

It follows from (2.2), (3.6), (3.7), and (3.13) that

∥Rk∥F ≤ 4γ21∥σ∗∥(∥EUk
∥2 + ∥EVk

∥2). (3.14)
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On the other hand, noting that eX̃k := UT
k Ũ(c∗), eỸk := V T

k Ṽ (c∗), and [Ũ(c∗), Ṽ (c∗)] ∈ W(c∗), we

derive

eX̃kΣ∗e−Ỹk = UT
k A(c

∗)Vk. (3.15)

Thus, by (3.12) and the fact of eX =
∞∑

m=0

Xm

m! , we can write (3.15) into the form

Σ∗ + X̃kΣ
∗ − Σ∗Ỹk = UT

k A(c
∗)Vk +Rk. (3.16)

This together with (2.1), (3.14) as well as the definition of γ implies that assertion (i) holds.

For the proof of assertions (ii) and (iii), we assume further that ck+1 ∈ B(c∗, δ) (and so ∥ck+1 −
c∗∥ < δ). The estimates of ∥X̃k − Xk∥, ∥Xk∥, and

∥∥∥(I − 1
2Xk

)−1
∥∥∥ are needed first. Indeed, using

(3.16) and applying Lemma 2.5 (to X̃k, Ỹk, U
T
k A(c

∗)Vk +Rk − Σ∗ in place of H, K and Z), one has

that

[X̃k]ij =
(uk

i )
TA(c∗)vk

j + [Rk]ij

σ∗
j

, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t

and

[X̃k]ij =
σ∗
j [(u

k
i )

TA(c∗)vk
j + [Rk]ij ] + σ∗

i [(u
k
j )

TA(c∗)vk
i + [Rk]ji]

(σ∗
j )

2 − (σ∗
i )

2
, s+1 ≤ i ≤ n−t, 1 ≤ j ≤ n−t, i > j.

This together with the formulation of Xk in the Ulm-like method yields that

[X̃k]ij − [Xk]ij =
(uk

i )
T∆k+1v

k
j + [Rk]ij

σ∗
j

, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t, (3.17)

and

[X̃k]ij − [Xk]ij

=
σ∗
j (u

k
i )

T∆k+1v
k
j + σ∗

i (u
k
j )

T∆k+1v
k
i + σ∗

j [Rk]ij + σ∗
i [Rk]ji

(σ∗
j )

2 − (σ∗
i )

2
, s+ 1 ≤ i ≤ n− t, 1 ≤ j ≤ n− t, i > j.

(3.18)

where and in sequel ∆k+1 := A(c∗)−A(ck+1). Note that {uk
i }ni=1 and {vk

i }ni=1 are orthonormal and

that, by Lemma 2.3,

∥∆k+1∥ ≤ α∥ck+1 − c∗∥.

One has by (3.17) and (3.18) that

|[X̃k]ij − [Xk]ij | ≤
1

σ∗
j

(
α∥ck+1 − c∗∥+ ∥Rk∥F

)
, n− t+ 1 ≤ i ≤ n, 1 ≤ j ≤ n− t, (3.19)

|[X̃k]ij− [Xk]ij | ≤
1

σ∗
j − σ∗

i

(
α∥ck+1 − c∗∥+ ∥Rk∥F

)
, s+1 ≤ i ≤ n−t, 1 ≤ j ≤ n−t, i > j. (3.20)

Since [Xk]ij = 0 for each 1 ≤ i, j ≤ s or n− t+ 1 ≤ i, j ≤ n, we have by (2.1), (3.19), (3.20) and the

definition of η1 that

∥X̃k −Xk∥ ≤ ∥X̃k −Xk∥F ≤ ∥X̃ [s]U
k ∥F + ∥X̃ [t]L

k ∥F + η1
(
α∥ck+1 − c∗∥+ ∥Rk∥F

)
,

Combining this with (3.6) and (3.14), we further derive that

∥X̃k −Xk∥ ≤ 2γ1∥EUk
∥2 + η1

[
α∥ck+1 − c∗∥+ 4γ21∥σ∗∥(∥EUk

∥2 + ∥EVk
∥2)

]
, (3.21)
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∥Xk∥ ≤ γ1∥EUk
∥+ 2γ1∥EUk

∥2 + η1
[
α∥ck+1 − c∗∥+ 4γ21∥σ∗∥(∥EUk

∥2 + ∥EVk
∥2)

]
.

Thus, by the fact of γ1 max{∥EUk
∥, ∥EVk

∥} ≤ γ1δ < 1, one has

∥Xk∥ ≤ η1α∥ck+1 − c∗∥+ (2 + γ1 + 4γ1η1∥σ∗∥)∥EUk
∥+ 4γ1η1∥σ∗∥ · ∥EVk

∥; (3.22)

hence,

∥Xk∥ ≤ η2
2

(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)
≤ γ

2

(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)

(3.23)

(noting that γ ≥ η2 = max{2η1α, 4 + 2γ1 + 8γ1η1∥σ∗∥}). Since max{∥EUk
∥, ∥EVk

∥} ≤ δ and

∥ck+1 − c∗∥ ≤ δ, we derive further by (3.9) and (3.23) that ∥Xk∥ ≤ 1. Therefore, applying Lemma

2.1 (for A = I − 1
2Xk and B = I), one has∥∥∥(I − 1

2Xk

)−1
∥∥∥ ≤ 1

1− 1
2∥Xk∥

≤ 2. (3.24)

Consequently, the estimates of ∥X̃k − Xk∥, ∥Xk∥, and
∥∥∥(I − 1

2Xk

)−1
∥∥∥ are complete. By a similar

argument, we can have the following estimates:

∥Ỹk − Yk∥ ≤ 2γ1∥EVk
∥2 + η1

[
α∥ck+1 − c∗∥+ 4γ21∥σ∗∥(∥EUk

∥2 + ∥EVk
∥2)

]
,

∥Yk∥ ≤ γ

2

(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)
, (3.25)

and ∥∥∥(I − 1
2Yk

)−1
∥∥∥ ≤ 2. (3.26)

Now we offer the estimates of ∥Uk+1 − Uk∥, ∥Vk+1 − Vk∥, ∥EUk+1
∥, and ∥EVk+1

∥. Note by (3.2)

that

Uk+1 − Uk = Uk[(I +
1
2Xk)− (I − 1

2Xk)](I − 1
2Xk)

−1 = UkXk(I − 1
2Xk)

−1.

This together with (3.23), (3.24), and the orthonormal property of Uk gives rise to

∥Uk+1 − Uk∥ ≤ γ
(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)
.

Similarly, using (3.3), (3.25), and (3.26), we obtain

∥Vk+1 − Vk∥ ≤ γ
(
∥ck+1 − c∗∥+ ∥EUk

∥+ ∥EVk
∥
)
.

Thus, assertion (ii) holds. It remains to prove assertion (iii). The arguments for the estimates of

EUk+1
and EVk+1

are similar and so we only estimate EUk+1
. For this, note by (3.2) and the definition

of X̃k that

Uk+1 − Ũ(c∗) = Uk[(I +
1
2Xk)(I − 1

2Xk)
−1 − eX̃k ] = Uk[(I +

1
2Xk)− eX̃k(I − 1

2Xk)](I − 1
2Xk)

−1.

Then, using the equality eX̃k =
∞∑

m=0

X̃m
k

m! , it is easy to check that

Uk+1 − Ũ(c∗) = Uk

[
Xk − X̃k + 1

2X̃kXk −
(
X̃2

k

∞∑
m=2

X̃m−2
k

m!

)(
I − 1

2
Xk

)](
I − 1

2
Xk

)−1

= Uk(Xk − X̃k)(I − 1
2Xk)

−1 + 1
2UkX̃kXk(I − 1

2Xk)
−1 − UkX̃

2
k

∞∑
m=2

X̃m−2
k

m!
.

(3.27)
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Noting that Uk is orthonormal, we deduce from (3.27), (3.10), (3.24), and (2.1) that

∥Uk+1 − Ũ(c∗)∥ ≤ 2∥Xk − X̃k∥+ ∥X̃k∥ · ∥Xk∥+ ∥X̃k∥2 ≤ 2∥Xk − X̃k∥+ ∥X̃k∥F · ∥Xk∥+ ∥X̃k∥2F .

Thus, one has by (3.6), (3.21), and (3.23) that

∥Uk+1 − Ũ(c∗)∥ ≤ (4γ1 + γ21 + 8γ21η1∥σ∗∥+ 1
2γ1η2)(∥EUk

∥+ ∥EVk
∥)2

+(2η1α+ 1
2η2)∥c

k+1 − c∗∥. (3.28)

Recall from (3.8) that η2 = max{2η1α, 4 + 2γ1 + 8γ1η1∥σ∗∥}. We then have by (3.28) that

∥Uk+1 − Ũ(c∗)∥ ≤ 3

2
γ1η2(∥EUk

∥+ ∥EVk
∥)2 + 3

2
η2∥ck+1 − c∗∥ ≤ 1

3
γ[∥ck+1 − c∗∥+(∥EUk

∥+ ∥EVk
∥)2].

(3.29)

where the last inequality holds because, by the definitions of γ and γ1, γ ≥ 9
2γ1η2 ≥ 9

2η2. To proceed,

write Uk+1 := [U
(1)
k+1, U

(2)
k+1, U

(3)
k+1] where U

(1)
k+1 ∈ Rn×s and U

(3)
k+1 ∈ Rn×t. Since (I−ΠU,i)Ũ

(i)(c∗) = 0

and ∥I −ΠU,i∥ ≤ 1 hold for i = 1, 3, one has

∥(I −ΠU,i)U
(i)
k+1∥ = ∥(I −ΠU,i)(U

(i)
k+1 − Ũ (i)(c∗))∥ ≤ ∥Uk+1 − Ũ(c∗)∥, i = 1, 3. (3.30)

Noting that EUk+1
= [(I −ΠU,1)U

(1)
k+1, U

(2)
k+1 −U (2)(c∗), (I −ΠU,3)U

(3)
k+1], we obtain from (2.1), (3.29)

and (3.30) that

∥EUk+1
∥ ≤ ∥(I −ΠU,1)U

(1)
k+1∥F + ∥U (2)

k+1 − U (2)(c∗)∥F + ∥(I −ΠU,3)U
(3)
k+1∥F

≤ 3
√
n∥Uk+1 − Ũ(c∗)∥.

(3.31)

Therefore, thanks to (3.29) and (3.31), one sees that

∥EUk+1
∥ ≤ γ[∥ck+1 − c∗∥+ (∥EUk

∥+ ∥EVk
∥)2];

hence, assertion (iii) holds. The proof is complete.

Now we present the main result of this paper which shows that the Ulm-like method proposed

here converges quadratically for solving the square ISVP. Recall from Lemma 2.8 that ∂Q|Sf(c
∗) is

nonempty if c∗ ∈ clS.

Theorem 3.1. Let c∗ ∈ clS such that the matrix A(c∗) has singular values given by (1.6). Suppose

that each J ∈ ∂Q|Sf(c
∗) is nonsingular. Then there exist δ ∈ (0, 1) and µ ∈ (0, 1) such that for each

c0 ∈ B(c∗, δ) ∩ S and each B0 satisfying

∥I −B0J0∥ ≤ µ, (3.32)

the sequence {ck} generated by the Ulm-like method with initial point c0 converges quadratically to c∗.

Proof. By Lemma 3.1, let δ1 ∈ (0, 1) and γ ∈ [1, +∞) such that for any k ≥ 0 and [U(c∗) V (c∗)] ∈
W(c∗), if max{∥EUk

∥, ∥EVk
} < δ1, the assertions (i)–(iii) in Lemma 3.1 hold with δ = δ1. Moreover,

thanks to Lemmas 2.6 and 2.10, we assume without loss of generality that for any c ∈ B(c∗, δ1), (2.35)

and the assertions (i)–(iv) in Lemma 2.6 hold. Write

q := 6
√
nγ.
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Take δ and µ such that

0 < δ < min

2δ1
q
,

1

qγ(5 + 8
√
nγ2)

,
1

q(2 + 1152n2γ4 ·max
j

∥Aj∥)

 , 0 ≤ µ ≤ δ. (3.33)

Clearly, δ ∈ (0, 1) and µ ∈ (0, 1). Below we shall show that δ and µ are as desired. For this purpose,

let c0 ∈ B(c∗, δ)
∩
S and B0 satisfy ∥I − B0J0∥ ≤ µ. Then, thanks to Lemma 2.9 and the definition

of J0, one has that ∂Q|Sf(c
0) = {f ′(c0)} = {J0}. In addition, by Lemma 2.10 (as δ < 2δ1

q ≤ δ1), we

have

∥J−1
0 ∥ ≤ γ. (3.34)

It suffices to prove that for any k = 0, 1, . . . ,

∥ck − c∗∥ ≤ qδ

(
1

2

)2k

, (3.35)

max{∥EUk
∥, ∥EVk

∥} ≤ qδ

(
1

2

)2k

, (3.36)

and

∥I −BkJk∥ ≤ qδ

(
1

2

)2k

. (3.37)

We proceed by mathematical induction. Since ∥c0 − c∗∥ < δ, ∥I − B0J0∥ ≤ µ ≤ δ and q ≥ 2, (3.35)

and (3.37) are trivial for k = 0. Noting that EU0 = [(I −ΠU,1)U
(1)
0 , U

(2)
0 −U (2)(c∗), (I −ΠU,3)U

(3)
0 ],

one has by (2.1) and Lemma 2.6 that

∥EU0∥ ≤ ∥EU0∥F ≤ ∥(I −ΠU,1)U
(1)
0 ∥F + ∥U (2)

0 − U (2)(c∗)∥F + ∥(I −ΠU,3)U
(3)
0 ∥F ≤ 3

√
nγδ =

1

2
qδ,

where the equality holds because of the definition of q. Similarly, one can prove that ∥EV0
∥ ≤ 1

2qδ;

hence, (3.36) is shown for k = 0. Assume that (3.35)–(3.37) hold for all k ≤ m. Then, by (3.33),

∥ck − c∗∥ ≤ 1

2
qδ < δ1 and max{∥EUk

∥, ∥EVk
∥ ≤ 1

2
qδ < δ1, for each k ≤ m. (3.38)

Thus, applying Lemma 3.1, we get that

∥Σ∗ + X̃mΣ∗ − Σ∗Ỹm − UT
mA(c

∗)Vm∥ ≤ γ(∥EUm∥2 + ∥EVm∥2) (3.39)

and

max{∥Uk+1 − Uk∥, ∥Vk+1 − Vk∥} ≤ γ(∥ck+1 − c∗∥+ ∥EUk
∥+ ∥EVk

∥), for each k ≤ m− 1. (3.40)

Considering the diagonal entries of Σ∗ + X̃mΣ∗ − Σ∗Ỹm − UT
mA(c

∗)Vm, one sees from (3.39) that

|(um
i )TA(c∗)vm

i − σ∗
i | ≤ γ(∥EUm

∥2 + ∥EVm
∥2), for each 1 ≤ i ≤ n.

Therefore, by the definitions of σ∗, Jm, bm, and A(c∗),

∥Jmc∗ + bm − σ∗∥ ≤
√
nγ(∥EUm∥2 + ∥EVm∥2). (3.41)
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Noting that

∥Um − U0∥ ≤
m−1∑
k=0

∥Uk+1 − Uk∥ and ∥Vm − V0∥ ≤
m−1∑
k=0

∥Vk+1 − Vk∥,

we have by (3.40), (3.35) (with k ≤ m− 1), and (3.36) (with k ≤ m− 1) that

max{∥Um − U0∥, ∥Vm − V0∥} ≤ 3γqδ

[(
1

2

)
+

(
1

2

)2

+

(
1

2

)22

+ · · ·+
(
1

2

)2m−1]
.

Since 2n ≥ n+ 1 for each n ≥ 0, it follows that

max{∥Um − U0∥, ∥Vm − V0∥} ≤ 3γqδ

[(
1

2

)
+

(
1

2

)2

+

(
1

2

)3

+ · · ·+
(
1

2

)m
]
≤ 3γqδ.

This together with (3.33) yields

2nγ ·max
j

∥Aj∥ ·max{∥Um − U0∥, ∥Vm − V0∥} ≤ 6nγ2qδ ·max
j

∥Aj∥ <
1

2
, (3.42)

where the last inequality holds because, by the definition of δ and the fact of γ ≥ 1,

12nγ2qδ ·max
j

∥Aj∥ < qδ(2 + 1152n2γ4 ·max
j

∥Aj∥) ≤ 1.

Moreover, by the definition of [Jm]ij (cf. (3.5)), one has∣∣[Jm]ij − [J0]ij
∣∣ = ∣∣(um

i − u0
i )

TAjv
m
i + (u0

i )
TAj(v

m
i − v0

i )
∣∣ ≤ 2∥Aj∥ ·max{∥um

i − u0
i ∥, ∥vm

i − v0
i ∥}.

Then, thanks to (2.1), we get that

∥Jm − J0∥ ≤ ∥Jm − J0∥F ≤ 2nmax
j

∥Aj∥ ·max{∥Um − U0∥, ∥Vm − V0∥}.

It follows from (3.34) and (3.42) that

∥J−1
0 ∥ · ∥Jm − J0∥ ≤ 2nγ ·max

j
∥Aj∥ ·max{∥Um − U0∥, ∥Vm − V0∥} <

1

2
.

Thus, applying Lemma 2.1 (for A = Jm and B = J0) and using (3.34) again, we obtain

∥J−1
m ∥ ≤ ∥J−1

0 ∥
1− ∥J−1

0 ∥ · ∥Jm − J0∥
< 2γ. (3.43)

On the other hand, by using the inductive assumption of (3.37) (with k = m), one has

∥BmJm∥ = ∥I −BmJm − I∥ ≤ 1 + ∥I −BmJm∥ ≤ 1 + qδ

(
1

2

)2m

.

This and (3.43) give rise to

∥Bm∥ ≤ ∥BmJm∥ · ∥J−1
m ∥ < 2γ

[
1 + qδ

(
1

2

)2m
]
≤ 4γ (3.44)
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(noting that qδ ≤ 1 by (3.33)). Now, we show that (3.35)–(3.37) hold for k = m+ 1. By (3.1) (with

k = m),

cm+1 − c∗ = cm − c∗ −BmJmcm −Bmbm +Bmσ∗

= (I −BmJm)(cm − c∗)−Bm(Jmc∗ + bm − σ∗).

Then, by (3.41), (3.44), and the inductive assumptions with k = m, we obtain

∥cm+1 − c∗∥ ≤ ∥I −BmJm∥ · ∥cm − c∗∥+ ∥Bm∥ · ∥Jmc∗ − σ∗ + bm∥

≤ (qδ)2
(
1

2

)2m+1

+ 8
√
nγ2(qδ)2

(
1

2

)2m+1

.
(3.45)

Thus, (3.35) holds for k = m+ 1 and moreover ∥cm+1 − c∗∥ ≤ δ1 as qδ ≤ min{2δ1, 1/(1 + 8
√
nγ2)}

by (3.33). Hence, noting (3.38), Lemma 3.1 (ii) and (iii) (with k = m) are applicable to concluding

that

max{∥Um+1 − Um∥, ∥Vm+1 − Vm∥} ≤ γ(∥cm+1 − c∗∥+ ∥EUm∥+ ∥EVm∥) (3.46)

and

max{∥EUm+1∥, ∥EVm+1∥} ≤ γ[∥cm+1 − c∗∥+ (∥EUm∥+ ∥EVm∥)2]

Therefore we derive from (3.45) and the inductive assumption (3.36) (with k = m) that

max{∥EUm+1∥, ∥EVm+1∥} ≤ γ

[
5(qδ)2

(
1

2

)2m+1

+ 8
√
nγ2(qδ)2

(
1

2

)2m+1]
.

Thus, (3.36) holds for k = m+1 because of γ(5+8
√
nγ2)qδ ≤ 1 by (3.33). On the other hand, thanks

to (3.46), (3.35) (with k = m+ 1), and (3.36) (with k = m+ 1) just proved, one can see that

max{∥Um+1 − Um∥, ∥Vm+1 − Vm∥} ≤ 3γqδ

(
1

2

)2m

,

which implies

max{∥um+1
i − um

i ∥, ∥vm+1
i − vm

i ∥} ≤ 3γqδ

(
1

2

)2m

, for each 1 ≤ i ≤ n.

Consequently, for any 1 ≤ i, j ≤ n,

| [Jm+1]ij − [Jm]ij | = | (um+1
i − um

i )TAjv
m+1
i − (um

i )TAj(v
m
i − vm+1

i ) |
≤ 2max

j
∥ Aj ∥ ·max{∥um+1

i − um
i ∥, ∥vm+1

i − vm
i ∥}

≤ 6γqδ ·max
j

∥ Aj ∥
(
1

2

)2m

;

hence

∥Jm+1 − Jm∥ ≤ ∥Jm+1 − Jm∥F ≤ 6nγqδ ·max
j

∥ Aj ∥
(
1

2

)2m

. (3.47)

Since Bk = 2Bk−1 −Bk−1JkBk−1 for each k = 1, 2, . . . , one has

I −Bm+1Jm+1 = (I −BmJm+1)
2 = [I −BmJm −Bm(Jm+1 − Jm)]2.
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Then, by (3.44), (3.47) and using the inductive assumption (3.37) with k = m, we derive

∥I −Bm+1Jm+1∥ ≤ 2∥I −BmJm∥2 + 2∥Bm∥2 · ∥Jm+1 − Jm∥2

≤
(
2 + 1152n2γ4 ·max

j
∥Aj∥2

)
(qδ)2

(
1

2

)2m+1

.
(3.48)

Note by (3.33) that (2 + 1152n2γ4 ·max
j

∥Aj∥2)qδ ≤ 1. It follows from (3.48) that

∥I −Bm+1Jm+1∥ ≤ qδ

(
1

2

)2m+1

.

This verifies (3.37) holding for k = m+ 1 and the proof is complete.

Theorems 3.2 and 3.3 below, the proofs of which are similar to that of Theorems 3.1, show that

the condition c∗ ∈ clS is not required if the nonsingularity assumption for each J ∈ ∂Q|Sf(c
∗) is

replaced by the nonsingularity assumption for each J ∈ ∂Qf(c
∗) or each J ∈ ∂Bf(c

∗).

Theorem 3.2. Let c∗ ∈ Rn be such that the matrix A(c∗) has singular values given by (1.6). Suppose

that each J ∈ ∂Qf(c
∗) is nonsingular. Then there exist δ ∈ (0, 1) and µ ∈ (0, 1) such that for each

c0 ∈ B(c∗, δ)
∩
S and each B0 satisfying (3.32), the sequence {ck} generated by the Ulm-like method

with initial point c0 converges quadratically to c∗.

Theorem 3.3. Let c∗ ∈ Rn be such that the matrix A(c∗) has singular values given by (1.6). Suppose

that each J ∈ ∂Bf(c
∗) is nonsingular. Then there exist δ ∈ (0, 1) and µ ∈ (0, 1) such that for each

c0 ∈ B(c∗, δ) ∩ S and each B0 satisfying (3.32), the sequence {ck} generated by the Ulm-like method

with initial point c0 converges quadratically to c∗.

4 Numerical tests

In this section, we report some numerical tests to illustrate the convergence performance of the Ulm-

like method. In all tests, multiple and zero singular values are present in the given singular values.

Our aim is, for the inverse singular value problems with multiple and zero singular values, to illustrate

the validity of the Ulm-like method. All the tests were implemented in MATLAB 7.0 on a Genuine

Intel(R) PC with 1.6 GHz CPU.

Let {Ti}ni=1 be Toeplitz matrices given by

T1 = I, T2 =



0 1 0 . . . 0

1 0 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 . . . 0 1 0


, . . . , Tn =



0 0 . . . 0 1

0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

1 0 . . . 0 0


.

Let H1 ⊂ O(n), H2 ⊂ O(n) be orthonormal bases for the range of R1 ⊂ Rn×n and R2 ⊂ Rn×n

respectively which are generated by Matlab-provided randn function. Define A0 = 0 and {Ai}ni=1 ⊂
Rm×n as follows

Ai = H1TiH2, for each i = 1, 2, . . . , n,
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Here we focus on the following cases: 50 × 50, 100 × 100, and 200 × 200. To present multiple and

zero singular values, we first generate in each test a vector ĉ∗ randomly such that there exist integers

p and q such that the singular values of matrix A(c̃∗) satisfying |σp+1(c̃
∗) − σp(c̃

∗)| < 5e − 5 and

σq(c̃
∗) < 1e− 4, where c̃∗ := ĉ∗ ∗ 10−4. Set

σ∗
i =


σp(c̃

∗), i = p, p+ 1;

0, i = q;

σi(c̃
∗), otherwise.

Then we choose {σ∗
i }ni=1 as the prescribed singular values.

Since the Newton-type method is locally convergent, c0 is formed by chopping the components

of c̃∗ to five decimal places for the cases of 50 × 50, 100 × 100, and to six decimal places for the

cases of 200 × 200. Note by (3.32) that B0 is an approximation to J0. For simplicity, here we

take B0 by perturbing J−1
0 . However, in the case when J−1

0 is difficult to obtained, one may set

B0 = [z1, . . . , zn]
T where for each 1 ≤ i ≤ n, zi is an approximate solution of the equation

JT
0 x = ei

such that ∥ei − JT
0 zi∥ ≤ µ/n (note that with such choice of B0, (3.32) is seen to hold). Here ei is

the i-th column of the identity matrix I. In all test problems, systems (3.2) and (3.3) were solved

by the QMR method [9] via the MATLAB QMR function, where the maximal number of iterations

is set to be 1000. Also, for these two systems, we use the right-hand side vector as the initial guess.

Moreover, to guarantee the orthogonality of Uk and Vk, systems (3.2) and (3.3) are solved up to

machine precision eps. Finally, the outer iteration for the Ulm-like method is stopped when

∥UT
k A(c

k)Vk − Σ∗∥F < 10−13.

We now report our experimental results. Table 1 illustrates the values of dk := ∥UT
k A(c

k)Vk−Σ∗∥F
for all test problems. For simplicity, we only choose µ = 0.001 in Table 1. To further illustrate the

influence of µ to the convergence performance of the Ulm-like method, we present the numerical results

for different µs in Table 2 where the values of dk for the problem of size 50 × 50 are illustrated. We

can see from Tables 1 and 2 that the Ulm-like method converges superlinearly. This confirms the

theoretical results of our paper. Moreover, the convergence performances the Ulm-like method with

µ ≤ 0.01 are comparable to that of the Ulm-like method with µ = 0. Thus, the Ulm-like method with

small µ is more effective than that with large µ.

5 Conclusions

Noting the interesting problem rased in [SIAM J. Matrix Anal. Appl. 32 (2011), 412–429], we proposed

in this paper an Ulm-like method for solving the square inverse singular value problems (a special

case of the inverse singular value problems ) with multiple and zero singular values, and proved that

it converges at least quadratically under some nonsingularity assumptions. However, we don’t know

whether the proposed method is still work for the inverse singular value problems which needs further

study.
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Table 1: The values of dk with µ = 0.001

k 50× 50 100× 100 200× 200

0 3.08e− 04 6.04e− 05 2.26e− 04

1 5.39e− 06 9.39e− 06 1.21e− 05

2 1.21e− 07 1.30e− 07 3.23e− 07

3 9.02e− 11 6.91e− 11 1.29e− 10

4 1.03e− 16 1.12e− 16 7.90e− 17

5
...

...
...

Table 2: Values of dk for different µs.

dk µ = 0 µ = 0.0001 µ = 0.001 µ = 0.01 µ = 0.05 µ = 0.1

d0 3.42e− 04 3.42e− 04 3.42e− 04 3.42e− 04 3.42e− 04 3.42e− 04

d1 8.10e− 06 8.04e− 06 7.92e− 06 2.66e− 05 1.35e− 04 2.71e− 04

d2 6.42e− 08 6.39e− 08 6.17e− 08 9.64e− 08 1.02e− 05 8.15e− 05

d3 4.76e− 12 4.72e− 12 4.30e− 12 3.84e− 12 1.25e− 7 1.69e− 05

d4 3.00e− 18 1.00e− 18 1.00e− 18 2.00e− 18 4.77e− 08 2.01e− 06

d5
...

...
...

... 1.20e− 17 4.42e− 08

d6
...

...
...

...
... 2.12e− 11

d7
...

...
...

...
... 5.00e− 18

d8
...

...
...

...
...

...
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