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Abstract. We study in the present paper the characterization issue of the weak sharp minima properties

for convex infinite optimization problems in normed linear spaces. We developed a new approach to establish

several complete geometric characterizations for the global/bounded/local weak sharp minima property, which

extend/improve the corresponding ones in this direction by removing/relaxing the key topological assumptions

made on the index set. As by-products, some complete characterizations of the global/bounded/local weak sharp

minima are obtained for a subset of the level set of a given convex function (not necessarily the level set itself)

in terms of the normal cones and the subdifferentials of the involved convex subset and convex function. These

characterization results are of independent interest in extending/improving the existing ones on characterizing

the weak sharp minima for convex optimization problems.
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1. Introduction. Let X be a normed space, Ω be a nonempty closed and convex subset

of X, and Y be an arbitrary index set. Let f : X → R := R ∪ {+∞} be a proper and lower

semi-continuous (in short, lsc) function, and let ϕ(·)(·) : X × Y → R be such that the function

x 7→ ϕy(x) is lsc for each y ∈ Y . In the present paper, we consider the following infinite

optimization problem

(1.1)

min f(x)

s.t. x ∈ Ω,

ϕy(x) ≤ 0, ∀y ∈ Y.

This kind of problems arises in many practical applications, such as engineering design [31, 32],

control of robots [17, 34], data envelopment analysis [24], statistics [12] and social sciences

[19, 35] (see also the survey paper [20] and books [1, 4, 15, 16, 33]), and has become an active

research area in mathematical programming; see [25, 26, 27, 28, 29, 30, 36, 40, 41, 42, 45]
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and references therein. Our interest in the present paper is focused on the convex infinite

optimization problem, that is, we assume, throughout the whole paper, for problem (1.1) that

• Ω is closed and convex;

• f : X → R and ϕy : X → R are proper, lsc and convex for each y ∈ Y .

Let S denote the solution set of problem (1.1), that is,

(1.2) S := {z ∈ Z|f(z) = inf
x∈Z

f(x)},

where Z := {x ∈ Ω|ϕy(x) ≤ 0 for each y ∈ Y }. Let α > 0 and x0 ∈ S. Then, following [42],

problem (1.1) is said to have the (global) weak sharp minima property with modulus α > 0 if

αdS(x) ≤ f(x)− f(x0) + sup
y∈Y

[ϕy]+(x) + dΩ(x) for each x ∈ X.

One important issue in the development of infinite optimization problem is to provide the

geometric characterizations for the weak sharp minima property, especially in terms of the

normal cones and the subdifferentials of the involved convex subsets and convex functions.

Under the assumptions that

(A1) Y is a compact metric space such that ϕ(·)(x) is continuous for each x ∈ X, and

(A2) ϕ(·)(·) is real-valued and jointly upper semi-continuous (in short, usc) on X × Y ,

Zheng and Yang established in [42, Theorem 3.4] the following characterization result for the

weak sharp minima property for problem (1.1) in a Banach space.

Theorem 1.1. Problem (1.1) has the weak sharp minima property with modulus α if and

only if

αB∗ ∩NS(z) ⊆ ∂f(z) + [0, 1]cl∗co(∪y∈Y0(z)∂ϕy(z)) + NΩ(z) ∩ B∗ for each z ∈ bdS,

where Y0(z) := {y ∈ Y |ϕy(z) = 0} and bdS denotes the boundary of S.

The study of the weak sharp minima property, as well as the boundedly and local weak

sharp minima properties, for the infinite optimization problem seems limited, and, to the best

of our knowledge, it has not been founded for the case when the topological assumptions on the

index set Y in (A1) and/or (A2) are dropped. This motivates us to investigate the geometric

characterization problem of the weak sharp minima property for convex infinite optimization

problem (1.1) without any topological assumptions made on Y . Using the ε-subdifferentials,

instead of the subdifferentials, of the involved functions, we establish some characterization

results similar to Theorem 1.1 for the weak sharp minima property (and also for the boundedly

or local weak sharp minima property) for the general problem (1.1); see Theorems 4.8-4.10. In

particular, as a consequence, we show that Theorem 1.1 remains true in normed linear spaces

under the following weaker assumptions:

(B1) Y is a separated compact topological space, and ϕ(·)(x) is usc on Y for each x ∈ X;

(B2) ϕy(·) is continuous on S for each y ∈ Y .

(Noting that the real-valuedness assumption for ϕ(·)(·) in (A2) implies (B2)). The results

obtained in the present paper contain not only the complete characterizations for the (global)

weak sharp minima property, but also the ones for the bounded and/or local weak sharp minima

property, most of which seem new.
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To furniture the establishment of the proposed results, we shall first introduce and investi-

gate the notion of weak sharp minima for a subset S0 of the level set Lf (λ) := {x ∈ X|f(x) = λ}
(not necessarily the level set Lf (λ) itself): S0 is said to be a set of the (global) weak sharp

minima for the function f with modulus α > 0 if

f(z) ≥ λ+ αdS0(z) for each z ∈ X.

The notions of boundedly weak sharp minima and local weak sharp minima for the function

f are defined similarly; see Definition 3.1 for details. In the special case when S0 = S̄ :=

argminx∈Xf(x), the notion of weak sharp minima for f is reduced to the classical one for the

following optimization problem:

(1.3)
min f(x)

s.t. x ∈ X.

The notion of the classical (global) weak sharp minima for optimization problem (1.3) intro-

duced by Ferris in [13], as well as the notions of boundedly weak sharp minima and local weak

sharp minima introduced by Burke and Deng in [5], have been extensively studied and wide-

ly applied in the sensitivity and convergence analysis of many optimization algorithms; see

[2, 6, 7, 8, 9, 14, 21, 22, 23, 37, 38, 41, 44] and references therein. In particular, the theory

regarding the characterization of the (global) weak sharp minima for problem (1.3) has been

well established; see [5, 8, 39] and references therein. In fact, as presented in [39, Theorem

3.10.1] and [5, Theorem 2.3], one has the following complete characterizations for the solution

set to be a set of weak sharp minima, where J(·) is the duality mapping, P(·|S̄) denotes the

projection onto S̄ and TS̄(·) denotes the tangent cone of S̄; see section 2 for details.

Theorem 1.2. Let α > 0 and S̄ := argminx∈Xf(x). Consider the following statements:

(i) S̄ is a set of weak sharp minima for f with modulus α.

(ii) For any x ∈ X and p ∈ P(x|S̄), f ′(p;x− p) ≥ αdS̄(x).

(iii) For any x̄ ∈ S̄ and u ∈ J−1(NS̄(x̄)), f
′(x̄;u) ≥ ∥u∥.

(iv) For any x̄ ∈ S̄ and u ∈ J−1(NS̄(x̄)) ∩ cone(domf − x̄), f ′(x̄;u) ≥ ∥u∥.
(v) For any x̄ ∈ S̄ and u ∈ X, f ′(x̄;u) ≥ αdTS̄(x̄)(u).

(vi) For any x̄ ∈ S̄, αB∗ ∩NS̄(x̄) ⊆ ∂f(x̄).

Then (i) ⇒ (ii) ⇒ (iii) ⇔ (iv) and (i) ⇔ (v) ⇔ (vi). If X is a reflexive Banach space, then all

above statements are equivalent.

However, to the best of our knowledge, the theory of characterizations for either bounded

or local weak sharp minima for problem (1.3) is still far from being complete as that for the

global one, even in the reflexive Banach space setting; see the explanations before Theorem 3.8.

As by-products, we will also establish the complete characterization results, similar to the ones

as presented in Theorem 1.2, for a subset S0 ⊆ Lf (λ) to be a set of global/boundedly/local

weak sharp minima for f ; see Theorems 3.6-3.9. Our characterization results are of independent

interest in the development of weak sharp minima for convex optimization problem (1.3) and

play a key role in the sequel study of the weak sharp minima property for the infinite convex

optimization problem (1.1). In particular, these results not only extend Theorem 1.2 for the

weak sharp minima from the special case when S0 = S̄ to the general case when S0 is a subset

of a level set, but also provide complete characterizations for the boundedly and/or local weak
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sharp minima, which particularly improve the existing corresponding results even in the special

case when S0 = S̄; see the explanations before Theorems 3.6 and 3.8 for details. The approaches

used here for treating the weak sharp minima property for f or problem (1.1) deviate from that

used in [5, 8, 39]: for the function f , we establish the relationships between the equivalent

characterizations of weak sharp minima for a subset S0 of the level set and the ones for the

minima set S̄ (see Proposition 3.4); for problem (1.1), we introduce an auxiliary function to

develop a bridge connecting the weak sharp minima property for problem (1.1) and the weak

sharp minima for the auxiliary function over the set S defined as in (1.2) (see Proposition 4.2).

The present paper is organized as follows. In section 2, we present some basic notations

and preliminary results used in what follows, mostly for convex functions and sets in normed

spaces. Section 3 is devoted to the completed theory of geometric characterizations for a subset

of a level set to be a set of global/boundedly/local weak sharp minima for a given function. In

section 4, we apply the results obtained in section 3 to investigate the characterization problem

of weak sharp minima property for infinite convex optimization problem (1.1).

2. Notation and preliminary results. Let X be a normed space with norm ∥ · ∥ and

its dual X∗. We use ⟨·, ·⟩ to denote the canonical pairing between X∗ and X, that is, ⟨x∗, x⟩ :=
x∗(x) for each pair (x∗, x) ∈ X∗ × X. The closed ball with radius r > 0 and center x in X

or X∗ is denoted by B(x, r); in particular, B := B(0, 1) stands for the closed unit ball in X or

X∗. The duality mappings J : X → X∗ and J∗ : X∗ → X are the set-valued mappings defined

respectively by

J(x) := {x∗ ∈ X∗|⟨x∗, x⟩ = ∥x∗∥2 = ∥x∥2} for each x ∈ X

and

J∗(x∗) := {x ∈ X|⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2} for each x∗ ∈ X∗.

Clearly, X is reflexive if and only if J is surjective, and in particular, when X is a Hilbert space,

then one has that J = J∗ = I, the identity on X; see for example [3, 11, 39].

For a nonempty set A in X or X∗, the closure (resp. interior, weak∗-closure, convex hull,

convex conical hull, polar) of A is denoted by clA (resp. intA, cl∗A, coA, conA, A◦). As usual,

we use NA(·) and TA(·) to stand for the norm cone mapping and the tangent cone mapping of

A (assuming that A is closed and convex), defined by

NA(x) := {x∗ ∈ X∗|⟨x∗, y − x⟩ ≤ 0, ∀y ∈ A} for each x ∈ A

and

TA(x) := (NA(x))
◦
= cl con(A− x) for each x ∈ A,

respectively. Associated to A, the distance function and the metric projection operator are

denoted by dA(·) and P(·|A), and defined by

dA(x) := inf
z∈A

∥z − x∥ for each x ∈ X

and

P(x|A) := {y ∈ A|∥x− y∥ = dA(x)} for each x ∈ X,
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respectively. Obviously, dA is Lipschitz continuous on X with modulus 1, and it is also well-

known (see, e.g., [39]) that, in the case when A is nonempty closed and convex, A is proximal

(i.e., P(x|A) ̸= ∅ for each x ∈ X) if X is a reflexive space, and P(·|A) is Lipschitz continuous

with modulus 1 if X is a Hilbert space. Some other useful properties are described in the

following lemma; see [39, Theorem 3.8.4 and Corollary 3.8.5] for (i) and (ii), and [5, Theorem

A.1] for (iii).

Lemma 2.1. Let A ⊆ X be a nonempty closed and convex set, and let x̄ ∈ A. Then the

following assertions hold:

(i) For any x ∈ X, x̄ ∈ P(x|A) if and only if J(x− x̄) ∩NA(x̄) ̸= ∅.
(ii) For any v ∈ J∗NA(x̄) and t > 0, x̄ ∈ P(x̄+ tv|A).
(iii) For any x ∈ X, dA(x) = supy∈A dy+TA(y)(x).

For A ⊆ X, the indicator function and the support function of A are defined by

δA(x) :=

{
0, x ∈ A,

+∞, x ∈ X \A

and

δ∗A(x
∗) := sup{⟨x∗, x⟩|x ∈ A} for each x∗ ∈ X∗,

respectively. The following lemma is taken from [5, Theorem A.1], which will be used frequently

in what follows.

Lemma 2.2. Let E and F be two nonempty convex subsets of X∗, and let C be a nonempty

closed and convex cone in X. Then we have that

(2.1) dC(x) = δ∗C◦∩B(x) for each x ∈ X

and

(2.2) [δ∗E(x) ≤ δ∗F (x), ∀x ∈ C] ⇔ [δ∗E(x) ≤ δ∗F+C◦(x), ∀x ∈ X] ⇔ E ⊆ cl∗(F + C◦).

Another useful lemma regarding the distance function and metric projection is as follows.

Lemma 2.3. Let 0 < r ≤ +∞ and S0 be a nonempty closed set. Let x0 ∈ S0 and

x ∈ B(x0, r). Then we have that

(2.3) dS0(x) = dS0∩B(x0,2r)(x) and P(x|S0) ⊆ B(x0, 2r).

Proof. Let y ∈ S0 \ B(x0, 2r). Then one has that 2∥x − x0∥ < ∥y − x0∥ (noting that

∥x− x0∥ ≤ r and ∥y − x0∥ > 2r), and so

dS0∩B(x0,2r)(x) ≤ ∥x0 − x∥ < ∥y − x0∥ − ∥x0 − x∥ ≤ ∥y − x∥.

Hence (2.3) holds, and the proof is complete.

Let f : X → R be a proper and convex function. As usual, the effective domain and the

epigraph of f are denoted by domf and epif , and defined by

domf := {x ∈ X|f(x) < +∞}
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and

epif := {(x, r)|f(x) ≤ r},

respectively. Recall that f is lsc on X if and only if its epigraph epif is closed in X × R, and
its lsc hull (or its closure) is the function clf : X → R satisfying

epi(clf) = cl(epif),

which is the greatest lsc function not exceeding f . We recall in the following definition the

notions of the subdifferential and the ε-subdifferential for a proper and convex function.

Definition 2.4. Let f : X → R be a proper and convex function, and let ε ≥ 0 and

x̄ ∈ domf . The ε-subdifferential of f at x̄ is defined by

∂εf(x̄) := {x∗ ∈ X∗|⟨x∗, x− x̄⟩ ≤ f(x)− f(x̄) + ε, ∀x ∈ X}.

In particular, ∂f(x̄) := ∂0f(x̄) is called the subdifferential of f at x̄.

Remark 2.5. (a) Recall that the directional derivative f ′(x̄; ·) : X → R of f at x̄ is defined

by

f ′(x̄;w) = lim
t↓0

f(x̄+ tw)− f(x̄)

t
= inf

t>0

f(x̄+ tw)− f(x̄)

t
for each w ∈ X.

Then, by [39, Corollary 2.4.15], one has the following relationship between f ′(x̄; ·) and ∂f(x̄):

(2.4) clf ′(x̄; ·) = δ∗∂f(x̄)(·).

(b) In particular, J(x) = ∂( 12∥ · ∥
2)(x) for each x ∈ X and

(2.5) ∂dA(x) = NA(x) ∩ B and ∂δA(x) = NA(x) for each x ∈ A,

where A ⊆ X is a nonempty closed and convex set.

The sum rules for subdifferentials and ε-subdifferentials are given in the following lemma,

which are known in [39, Corollary 2.6.7 and Theorem 2.8.7] and will be used in section 4.

Lemma 2.6. Let f1, f2 : X → R be two proper lsc and convex functions. Let z ∈ domf1 ∩
domf2 and ε ≥ 0. Then the following equalities are true:

(i) ∂ε(f1 + f2)(z) = ∩η>0cl
∗(∪εi≥0,ε+η=ε1+ε2(∂ε1f1(z) + ∂ε2f2(z))).

(ii) ∂(f1 + f2)(z) = ∩η>0cl
∗(∂ηf1(z) + ∂ηf2(z)).

Further, suppose that f1 is continuous at some point x̄ ∈ domf2. Then the following equalities

are true:

(iii) ∂ε(f1 + f2)(z) = ∪εi≥0,ε=ε1+ε2(∂ε1f1(z) + ∂ε2f2(z)).

(iv) ∂(f1 + f2)(z) = ∂f1(z) + ∂f2(z).
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3. Weak sharp minima for convex optimization problems. Let X be a normed

space and f : X → R be a proper lsc and convex function. In this section, we consider the

following convex optimization problem

(3.1)
min f(x)

s.t. x ∈ X,

denoting its solution set by S̄, i.e., S̄ = argminx∈Xf(x). Throughout the section, we define the

set-valued mapping Lf : R → 2X by

Lf (λ) := {x ∈ X|f(x) = λ} for each λ ∈ R,

and make the following assumption:

• λ ∈ R and S0 ⊆ Lf (λ) is a nonempty closed and convex set.

The notions of weak sharp minima in the following definition are the extensions of the

corresponding ones in [5] for the special case when S0 = S̄.

Definition 3.1. Let α > 0 and x0 ∈ S0.

(a) x0 is called a local weak sharp minimum over S0 for f with modulus α if there exists

r > 0 such that

(3.2) αdS0(x) ≤ f(x)− f(x0) for each x ∈ B(x0, r).

(b) S0 is called a set of boundedly weak sharp minima for f if, for each r > 0, there exists

α(:= αr) > 0 such that (3.2) holds with 0 in place of x0.

(c) S0 is called a set of (global) weak sharp minima for f with modulus α if (3.2) holds for

r = +∞.

Let 0 < r ≤ +∞. Then the following implications are clear by definition:

(3.3) (3.2) ⇒ [Lf (λ) ∩ B(x0, r) = S0 ∩ B(x0, r) = S̄ ∩ B(x0, r)];

consequently

(3.4) [(c) in Definition 3.1] ⇒ [(b) in Definition 3.1] ⇒ [S0 = Lf (λ) = S̄].

Remark 3.2. Let S ⊆ X be a nonempty closed and convex set. Associated to the following

constrained optimization problem

(3.5)
min f(x)

s.t. x ∈ S,

we define

fS(x) := (f + δS)(x) =

{
f(x), x ∈ S,

+∞, otherwise.

Then the constrained optimization problem (3.5) is equivalent to problem (3.1) with fS in place

of f , and LfS (λ) = S ∩ Lf (λ) for each λ ∈ R. Moreover, letting S0 ⊆ LfS (λ), one has that S0
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is a set of global (or boundedly) weak sharp minima for f over the set S (see [5] for the special

case when S0 = argminx∈Sf) if and only if S0 is a set of global (or boundedly) weak sharp

minima for fS. Similar result holds for the local weak sharp minima.

In the special case when S0 = S̄, the assertions in the following proposition on the charac-

terizations for the weak sharp minima are known in [5, Theorems 2.3, 5.2 and 6.3], which will

also be used for our study in sequel.

Proposition 3.3. Let α > 0 and x0 ∈ S̄. Then we have the following assertions:

(i) If x0 is a local weak sharp minimum for f (over S̄) with modulus α, then there exists

r > 0 such that

(3.6) αB ∩NS̄(z) ⊆ ∂f(z) for each z ∈ S̄ ∩ B(x0, r).

(ii) If S̄ is a set of boundedly weak sharp minima for f , then, for each r > 0, there exists

α(:= αr) > 0 such that (3.6) holds (with 0 in place of x0).

(iii) S̄ is a set of weak sharp minima for f with modulus α if and only if (3.6) holds for

r = +∞.

The following two propositions are the key tools for our study in this section.

Proposition 3.4. Let S0 ⊆ domf be nonempty closed and convex, and let α > 0 and

z ∈ S0. Consider the following statements:

(3.7) f ′(z; ν) ≥ αdTS0
(z)(ν) for each ν ∈ X.

(3.8) αB ∩NS0(z) ⊆ ∂f(z).

(3.9) αB ∩NS0(z) ⊆ ∂f(z) + [J∗NS0(z)]
◦.

(3.10) f ′(z; ν) ≥ α∥ν∥ for each ν ∈ J∗NS0(z).

(3.11) αB ⊆ cl∗(∂f(z) + [J∗NS0(z)]
◦).

Then one has that

(3.12) (3.7) ⇔ (3.8) ⇒ (3.9) ⇒ (3.10),

and, if X is a Hilbert space,

(3.13) (3.9) ⇒ (3.11) ⇒ (3.10).
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Proof. We first note by (2.1) in Lemma 2.2 (applied to TS0(z) in place of C) that

αdTS0 (z)
(ν) = αδ∗B∩[TS0

(z)]◦(ν) = δ∗αB∩NS0
(z)(ν) for each ν ∈ X.

It follows from (2.4) and (2.2) (applied to αB ∩NS0(z), ∂f(z), X in place of E, F, C) that

(3.7) ⇔ clf ′(z; ν) ≥ αdTS0
(z)(ν) for each ν ∈ X

⇔ δ∗∂f(z)(ν) ≥ δ∗αB∩NS0
(z)(ν) for each ν ∈ X

⇔ (3.8),

where the first equivalence holds because the function dTS0 (z)
(·) is continuous, and (3.7) ⇔ (3.8)

is shown. Hence, to complete the proof of (3.12), it suffices to verify the implication (3.9) ⇒
(3.10) because the implication (3.8) ⇒ (3.9) is trivial. Consider the following statement:

(3.14) clf ′(z; ·)(ν) ≥ α∥ν∥ for each ν ∈ J∗NS0
(z).

Clearly, to show the implication (3.9) ⇒ (3.10), we only need to check the following implication:

(3.15) (3.9) ⇒ (3.14).

To do this, we note that

(3.16) δ∗αB∗(ν) = δ∗αB∗∩NS0
(z)(ν) = α∥ν∥ for each ν ∈ J∗NS0(z)

because, for each ν ∈ J∗NS0(z), one has that

∥ν∥ = δ∗B∗(ν) ≥ δ∗B∗∩NS0
(z)(ν) ≥ ⟨ u∗

∥u∗∥
, ν⟩ = ∥ν∥,

where u∗ ∈ NS0
(z) is such that ν ∈ J∗(u∗). To proceed, suppose that (3.9) holds. Then one

has by definition that

δ∗αB∗∩NS0
(z)(ν) ≤ δ∗∂f(z)+[J∗NS0

(z)]◦(ν) for each ν ∈ X,

and, in particular,

(3.17) δ∗αB∗∩NS0
(z)(ν) ≤ δ∗∂f(z)(ν) for each ν ∈ J∗NS0(z).

Thus, combining (3.16) and (3.17), we apply (2.4) to conclude that

clf ′(z; ·)(ν) = δ∗∂f(z)(ν) ≥ α∥ν∥ for each ν ∈ J∗NS0(z).

Hence, the implication (3.15) is checked, and the proof for (3.12) is complete.

Finally, assume that X is a Hilbert space. Then J∗ = I and so J∗NS0(z) = NS0(z) is a

convex cone. Thus, one applies (2.2) ( to αB, ∂f(z), NS0(z) in place of E, F, C) again to get

that

(3.11) ⇔ [δ∗αB(ν) ≤ δ∗∂f(z)(ν), ∀ν ∈ NS0(z)].

This, together with (3.16) and (2.4), implies that (3.11) ⇔ (3.14). Noting clearly that (3.14) ⇒
(3.10), we see that (3.13) holds by (3.15). The proof is complete.
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Proposition 3.5. Let α > 0, 0 < r ≤ +∞ and x0 ∈ S0. Then we have the following

assertion:

(i) If (3.10) holds for each z ∈ S0 ∩ B(x0, 2r), then, for each x ∈ B(x0, r), one has

(3.18) f ′(z;x− z) ≥ αdS0(x) for each z ∈ P(x|S0).

(ii) If (3.10) holds for each z ∈ S0 ∩ B(x0, 2r) and S0 is proximal, then (3.2) holds.

(iii) If (3.8) holds for each z ∈ S0 ∩ B(x0, 2r), then (3.2) holds but with α
2 in place of α in

the case when r < +∞.

Proof. (i) Let x ∈ B(x0, r) and z ∈ P(x|S0). Then one has by Lemma 2.3 that z ∈ B(x0, 2r),

and so z ∈ S0 ∩ B(x0, 2r). Furthermore, by Lemma 2.1(i), one sees that J(x− z) ∩NS0(z) ̸= ∅,
and can take z∗ ∈ J(x−z)∩NS0(z). Thus x−z ∈ J∗(z∗) by definition and so x−z ∈ J∗NS0(z).

Consequently, (3.10) is applicable and then

f ′(z;x− z) ≥ α∥x− z∥ = αdS0
(x)

(noting z ∈ P(x|S0)). Hence (3.18) is proved.

(ii) Assume that (3.10) holds for each z ∈ S0 ∩ B(x0, 2r) and S0 is proximal. Then, for

each x ∈ B(x0, r), one can chose z ∈ P(x|S0) and so (3.18) holds by the established assertion

(i). Furthermore, we note by the convexity of f that

(3.19) f(x)− f(x0) = f(x)− f(z) ≥ f ′(z;x− z) for each x ∈ X.

This, together with (3.18), implies that (3.2) holds, and the proof for (ii) is complete.

(iii) Assume that (3.8) holds for each z ∈ S0 ∩ B(x0, 2r) and let x ∈ B(x0, r). Then, by

Proposition 3.4, (3.7) holds for each z ∈ S0 ∩ B(x0, 2r). This, together with (3.19), entails that

(3.20) f(x)− f(x0) ≥ αdTS0
(z)(x− z) for each z ∈ S0 ∩ B(x0, 2r).

Thus, if r = +∞, then (3.2) follows from Lemma 2.1(iii) (applied to S0 in place of A). It

remains to consider the case when r < +∞. By (3.20), it suffices to prove that

dS0(x) ≤ 2 sup
z∈S0∩B(x0,2r)

dTS0
(z)(x− z).

For this purpose, we below verify that

(3.21) B∗ ∩NS0∩B(x0,2r)(z) ⊆ 2B∗ ∩NS0(z) +NB(x0,2r)(z) for each z ∈ S0 ∩ B(x0, 2r).

Granting this, one has by (3.8) that, for each z ∈ S̃0,

α

2
B∗ ∩NS0∩B(x0,2r)(z) ⊆ ∂f(z) +NB(x0,2r)(z) = ∂f̃(z),

where f̃ : X → R is the function defined by f̃ := f + δB(x0,2r) and S̃0 := S0∩B(x0, 2r) ⊆ Lf̃ (λ);

hence (3.8) holds for each z ∈ S̃0 with α
2 , f̃ , S̃0 in place of α, f, S0. Thus, applying the

conclusion (to f̃ , S̃0 in place of f, S0) just established for the case when r = +∞, we have that

f(x)− f(x0) = f̃(x)− f̃(x0) ≥
α

2
dS̃0

(x) =
α

2
dS0(x),
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where the last equality is because of (2.3), and so (3.2) holds with α
2 in place of α.

To proceed, we note by the equivalence in Proposition 3.3(iii) (applied to S̃0, 2dS0(·) +
δB(x0,2r)(·) in place of S0, f(·)) that, thanks to (2.5), (3.21) is equivalent to

(3.22) dS̃0
(x) ≤ 2dS0(x) for each x ∈ B(x0, 2r).

Therefore, to complete the proof, we have to show (3.22). To do this, let x ∈ B(x0, 2r). Without

loss of generality, we assume that x0 = 0. Set z := 2rP(x|S0)
dS0

(x)+2r . Then

∥z∥ =
2r∥P(x|S0)− x∥+ 2r∥x∥

dS0(x) + 2r
≤ 2rdS0(x) + 4r2

dS0(x) + 2r
= 2r,

and so z ∈ S0 ∩ 2rB = S̃0 (as z ∈ S0 is clear). Thus,

dS̃0
(x) ≤ ∥x− z∥ =

∥dS0(x)x+ 2r(x− P(x|S0)∥
dS0(x) + 2r

≤ 4rdS0(x)

dS0(x) + 2r
≤ 2dS0(x),

as desired to show, and the proof is complete.

Our first theorem in this section, which extends/improves the corresponding ones in [5, 39]

for the special case when S0 = S̄ (noting the equivalence between the constrained optimization

problem (3.5) and the unconstrained optimization problem (3.1) explained in Remark 3.2), is

as follows. In particular, in the special case when S0 = S̄, the equivalence between statements

(i)-(iii) were established in [5, Theorem 2.3]; the implications (i) ⇒ (vi) ⇒ (v) were provided in

[39, Theorem 3.10.1], where the equivalence between statements (i)-(vi) was also established for

the case when X is reflexive; while the equivalence between statements (i)-(iii) and statements

(v)-(vii) were proved in [5, Theorem 2.3] for the case when X is a Hilbert space.

Theorem 3.6. Let α > 0. Then we have the following assertions.

(I) The following statements are equivalent:

(i) S0 is a set of (global) weak sharp minima for f with modulus α.

(ii) For each z ∈ S0, (3.7) holds:

f ′(z; ν) ≥ αdTS0 (z)
(ν) for each ν ∈ X.

(iii) For each z ∈ S0, (3.8) holds:

αB ∩NS0(z) ⊆ ∂f(z).

(II) If S0 is proximal (e.g., X is reflexive), then each of (i)-(iii) is equivalent to each of the

following statements:

(iv) For each z ∈ S0, (3.9) holds:

αB ∩NS0(z) ⊆ ∂f(z) + [J∗NS0(z)]
◦.

(v) For each z ∈ S0, (3.10) holds:

f ′(z; ν) ≥ α∥ν∥ for each ν ∈ J∗NS0
(z).
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(vi) For any x ∈ X and z ∈ P(x|S0),

(3.23) f ′(z;x− z) ≥ αdS0(x).

(III) If X is a Hilbert space, then each of (i)-(vi) is equivalent to each of the following statements:

(vii) For each z ∈ S0, (3.11) holds:

(3.24) αB ⊆ cl(∂f(z) + [NS0(z)]
◦).

(viii) For each z ∈ S0,

(3.25) α̂B ⊆ ∂f(z) + [NS0(z)]
◦ for each α̂ ∈ (0, α).

Proof. We first prove that

(3.26) (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇒ (v) ⇔ (vi).

Granting this, one completes the proof for assertion (I).

To verify (3.26), we note that the implications (ii) ⇔ (iii) ⇒ (iv) ⇒ (v) follow from

Proposition 3.4 and (v) ⇒ (vi) from Proposition 3.5(i) (by taking r = +∞). Thus it suffices

to testify (i) ⇔ (iii) and (vi) ⇒ (v). To do this, we note by Proposition 3.5(iii) (by taking

r = +∞) that (iii)⇒(i). Hence by (3.4) if either (i) or (iii) holds then S0 = Lf (λ) = S̄. Thus

the equivalence (i) ⇔ (iii) follows immediately from Proposition 3.3(iii).

To show (vi) ⇒ (v), suppose that (vi) holds, and let z ∈ S0. Fix ν ∈ J∗NS0(z) and write

x := z + ν. Then, by Lemma 2.1(ii), one has that z ∈ P(x|S0), and so dS0(x) = ∥x− z∥ = ∥v∥.
Thus, from (vi), it follows that

f ′(z; v) = f ′(z;x− z) ≥ αdS0(x) = α∥ν∥.

This shows (3.10) as ν ∈ J∗NS0(z) is arbitrary, and so (v) is seen to hold. Therefore, the proof

for (3.26) is complete.

To verify assertion (II), assume that S0 is proximal. By (3.26), we only need to show the

implication (v) ⇒ (i). To do this, assume (v), that is (3.10) holds for each z ∈ S0. Thus

Proposition 3.5(ii) is applicable to conclude that (3.2) holds for r = +∞, that is, (i) holds, and

assertion (II) is proved.

Finally, we show assertion (III). For this purpose, suppose that X is a Hilbert space. We

only need to verify that (iv)⇒(vii)⇔(viii)⇒(v). We will complete the proof by showing that

(3.9) ⇒ (3.24) ⇔ (3.25) ⇒ (3.10) holds for each z ∈ S0. To do this, let z ∈ S0. Note that

(3.24) coincides with (3.11), and so (3.9) ⇒ (3.24) ⇒ (3.10) by (3.13) in Proposition 3.4. To

show (3.24)⇔(3.25), one notes that

int(cl(∂f(z) + [NS0(z)]
◦)) = int(∂f(z) + [NS0(z)]

◦).

It follows that

(3.24) ⇔ [int(αB) ⊆ int(∂f(z) + [NS0(z)]
◦)] ⇔ (3.25).

The proof is complete.
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Remark 3.7. As argued in the proof, the following equivalences/implications for statements

(i)-(vi) given in Theorem 3.6 hold in general normed linear spaces (see (3.26)):

(i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇒ (v) ⇔ (vi).

Theorems 3.8 and 3.9 below provide the analogues of Theorem 3.6 for the local weak

sharp minima over S0 and the boundedly weak sharp minima, respectively. As described in

Proposition 3.3, for the special case when S0 = S̄, the implication (i)⇒(ii) (for statements (i)

and (ii) given in Theorem 3.8 or Theorem 3.9) was showed in [5, Theorems 5.2 and 6.3], where

the converse implication was proved only for the case when X is a Hilbert space or a finite-

dimensional space. Moreover, in the case when S0 is complete, the implication (ii)⇒(i) was

also known as a direct consequence of [43, Propositon 4.2]. However, the implication (ii)⇒(i)

for general linear normed spaces and other equivalent characterizations for the local weak sharp

minima or the boundedly weak sharp minima seem new, even for the case when S0 = S̄ or/and

when X is a reflexive space or a Hilbert space.

Theorem 3.8. Let x0 ∈ S0 and α > 0. Then we have the following assertions.

(I) The following statements are equivalent but (iii) ⇒ (i) for possible different values of α > 0:

(i) x0 is a local weak sharp minima over S0 for f with modulus α.

(ii) There exists r > 0 such that (3.7) holds for each z ∈ S0 ∩ B(x0, r).

(iii) There exists r > 0 such that (3.8) holds for each z ∈ S0 ∩ B(x0, r).

(II) If S0 is proximal, then each of (i)-(iii) is equivalent to each of the following statements:

(iv) There exists r > 0 such that (3.9) holds for each z ∈ S0 ∩ B(x0, r).

(v) There exists r > 0 such that (3.10) holds for each z ∈ S0 ∩ B(x0, r).

(vi) There exists r > 0 such that (3.23) holds for each x ∈ B(x0, r) and each z ∈ P(x|S0).

(III) If X is a Hilbert space, then each of (i)-(vi) is equivalent to each of the following statements:

(vii) There exists r > 0 such that (3.24) holds for each z ∈ S0 ∩ B(x0, r).

(viii) There exists r > 0 such that (3.25) holds for each z ∈ S0 ∩ B(x0, r).

Proof. The proofs for (ii) ⇔ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi), and for assertions (II) and (III) are

similar to these for the corresponding ones in Theorem 3.6 (by choosing an appropriate r), and

so we omit them here.

To complete the proof, we only need to verify (vi) ⇒ (v) and (i) ⇔ (iii). We first show

the implication (vi) ⇒ (v). To do this, assume that (vi) holds and let r > 0 be such that

(3.23) holds for any x ∈ B(x0, r) and z ∈ P(x|S0). It suffices to prove that (3.10) holds for each

z ∈ S0 ∩ B(x0,
r
2 ). To do this, let z ∈ S0 ∩ B(x0,

r
2 ) and fix ν ∈ J∗NS0(z). Write x := z + rν

2∥ν∥ .

Then, by Lemma 2.1(ii), one has that z ∈ P(x|S0), and so dS0(x) = ∥x − z∥ = r
2 . Since

∥x− x0∥ ≤ ∥z − x0∥+ r
2 < r, (3.23) is applicable, and so

f ′(z;
rν

2∥ν∥
) = f ′(z;x− z) ≥ αdS0(x) =

αr

2
.

Hence, f ′(z; ν) ≥ α∥ν∥ because f ′(z; ·) is positively homogeneous. Thus, (3.10) is checked as

ν ∈ J∗NS0(z) is arbitrary, and (v) is obtained as desired to show.

Below, we verify the equivalence (i) ⇔ (iii). To this end, assume first that (i) holds. Then

there exists r′ > 0 such that (3.2) holds with r′ in place of r. This, together with (3.3), implies

that

(3.27) S0 ∩ B(x0, r
′) = S̄ ∩ B(x0, r

′).
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Furthermore, since S0 ⊆ S̄, it follows from (3.2) (applied to r′ in place of r) that

αdS̄(x) ≤ f(x)− f(x0) for each x ∈ B(x0, r
′).

This means that x0 is a local weak sharp minima (over S̄) for f with modulus α. Thus, one

applies Proposition 3.3(i) to conclude that there exists r > 0 such that (3.6) holds. Without

loss of generality, assume that r < r′. Then, by (3.27),

NS̄(z) = NS̄∩B(x0,r′)(z) = NS0∩B(x0,r′)(z) = NS0(z)

holds for each z ∈ S0 ∩ B(x0, r), and so it follows from (3.6) that

αB ∩NS0(z) ⊆ ∂f(z) for each z ∈ S0 ∩ B(x0, r).

Thus (iii) is checked.

Conversely, assume that (iii) holds, that is there exists r > 0 such that (3.8) holds for each

z ∈ S0 ∩ B(x0, 2r). Then, (3.2) holds by Proposition 3.5(iii) with α
2 in place of α. This means

that (i) holds with α
2 in place of α, and the proof is complete.

Theorem 3.9. The following assertions are true.

(I) The following statements are equivalent:

(i) S0 is a set of boundedly weak sharp minima for f .

(ii) For each r > 0, there exists α > 0 such that (3.7) holds for each z ∈ S0 ∩ rB.
(iii) For each r > 0, there exists α > 0 such that (3.8) holds for each z ∈ S0 ∩ rB.

(II) If S0 is proximal, then each of (i)-(iii) is equivalent to each of the following statements:

(iv) For each r > 0, there exists α > 0 such that (3.9) holds for each z ∈ S0 ∩ rB.
(v) For each r > 0, there exists α > 0 such that (3.10) holds for each z ∈ S0 ∩ rB.
(vi) For each r > 0, there exists α > 0 such that (3.23) holds for each x ∈ rB and each

z ∈ P(x|S0).

(III) If X is a Hilbert space, then each of (i)-(vi) is equivalent to the following statement:

(vii) For each r > 0, there exists α > 0 such that

αB ⊆ ∂f(z) + [NS0(z)]
◦ for each z ∈ S0 ∩ rB.

Proof. It is similar to that for Theorem 3.8.

Remark 3.10. As remarked for Theorem 3.6, for statements (i)-(vi) given in Theorem 3.8

or Theorem 3.9, implications/equivalences (3.26) hold in general normed linear spaces.

4. Weak sharp minima for convex infinite optimization problems. As in the pre-

ceding sections, we assume that X is a normed space, and f : X → R is a proper lsc and convex

function. This section is devoted to investigating the characterization problem of weak sharp

minima for the following convex infinite optimization problem:

(4.1)

min f(x)

s.t. x ∈ Ω,

ϕy(x) ≤ 0, ∀y ∈ Y,
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where Y is an index set, Ω ⊆ X is a nonempty closed and convex set, and ϕ(·)(·) : X × Y → R
is such that, for each y ∈ Y , ϕy(·) is lsc and convex on X. Let Z denote the set of all feasible

points for optimization problem (4.1), that is,

Z := {x ∈ Ω|ϕy(x) ≤ 0, ∀y ∈ Y }.

For avoiding the triviality, we assume, throughout this section, that

Z ∩ domf ̸= ∅.

As in [42], we write

λ := inf
x∈Z

f(x) and S := {x ∈ Z|f(x) = λ} = Z ∩ Lf (λ).

Then S is closed and convex. For a function ϕ : X → R, its positive part is defined by

ϕ+(x) := max{ϕ(x), 0} for each x ∈ X.

We recall in the following definition the notions of weak sharp minima property for problem

(4.1). In particular, items (a) and (c) are taken from [42].

Definition 4.1. Let α > 0 and x0 ∈ S. Problem (4.1) is said to have

(a) a local weak sharp minimum property at x0 in S (with modulus α) if there exists r > 0

such that

(4.2) αdS(x) ≤ f(x)− f(x0) + sup
y∈Y

[ϕy]+(x) + dΩ(x) for each x ∈ B(x0, r);

(b) a boundedly weak sharp minima property in S if for each r > 0, there exists α(:= αr) > 0

such that (4.2) holds with 0 in place of x0;

(c) a global weak sharp minima property in S (with modulus α) if (4.2) holds for r = +∞.

Associated to problem (4.1), we define f̂ : X → R by

(4.3) f̂(x) := f(x) + sup
y∈Y

[ϕy]+(x) + dΩ(x) for each x ∈ X.

Then, f̂ is lsc and convex, and f̂ = f on S because supy∈Y [ϕy]+(x) = 0 and dΩ(x) = 0 hold for

each x ∈ S. Hence, the relationship between problem (4.1) has a global (resp. local, boundedly)

weak sharp minima property in S and S is a set of global (resp. local, boundedly) weak sharp

minima for f̂ is stated as follows.

Proposition 4.2. Problem (4.1) has a global (resp. local, boundedly) weak sharp minima

property in S if and only if S is a set of global (resp. local, boundedly) weak sharp minima for

f̂ .

To applying characterization theorems established in above section, we need to calculate

the subdifferential of f̂ , which will be done in the following subsection.
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4.1. Subdifferential of the associated function. For the remainder, we use Φ to denote

the sup-function of the family of proper lsc and convex functions {ϕy|y ∈ Y }, defined by

(4.4) Φ(x) := sup
y∈Y

ϕy(x) for each x ∈ X.

Let ε ≥ 0 and x ∈ X. We use Y ε(x) to denote the ε-active set at x for the family {ϕy|y ∈ Y },
defined by

Y ε(x) := {y ∈ Y |ϕy(x) ≥ Φ(x)− ε}.

The active set at x is denoted by Y (x), that is,

Y (x) := Y 0(x) = {y ∈ Y |ϕy(x) = Φ(x)}.

We first recall in the following proposition some subdifferential formulas for the sup-function

Φ, known in [18, Corollary 8] and [39, Theorem 2.4.18].

Proposition 4.3. Let z ∈ domΦ. Then the following assertions hold.

(i) We have that

∂Φ(z) ⊇ cl∗co(∪y∈Y (z)∂ϕy(z))

(ii) If ri (domΦ) ̸= ∅, then

(4.5) ∂Φ(z) = ∩ε>0cl
∗(co(∪y∈Y ε(z)∂τεϕy(z)) + NdomΦ(z)) for each τ > 0.

(iii) If assumption (B1) holds, and each function ϕy(·) is continuous at z, then

(4.6) ∂Φ(z) = cl∗co(∪y∈Y (z)∂ϕy(z)).

Proposition 4.4. Suppose that ri (domf ∩ domΦ) ̸= ∅ and let z ∈ domf ∩ S. Then

(4.7) ∂(f +Φ)(z) = ∩ε>0cl
∗[co(∪y∈Y ε(z)(∂εf(z) + ∂εϕy(z))) + Ndom(f+Φ)(z)].

Proof. Consider the family of proper and convex functions {f +ϕy|y ∈ Y } on X. Then one

sees that

(4.8) f +Φ = sup
y∈Y

(f + ϕy),

and, for each ε ≥ 0, the ε-active set at z for the family {f + ϕy|y ∈ Y } is equal to the one for

the family {ϕy|y ∈ Y }, that is,

(4.9) {y ∈ Y |(f + ϕy)(z) ≥ (f +Φ)(z)− ε} = Y ε(z).

To apply Proposition 4.3(ii), we use Lemma 2.6(i) to estimate the ε-subdifferential of (f+ϕy)(z)

for each y ∈ Y and have that

∂ε(f + ϕy)(z) = ∩η>0cl
∗(∪εi≥0,ε+η=ε1+ε2(∂ε1f(z) + ∂ε2ϕy(z)))

⊆ ∩η>0cl
∗(∂ε+ηf(z) + ∂ε+ηϕy(z)).
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Thus, by Proposition 4.3(ii), one has that

(4.10)

∂(f +Φ)(z)

= ∩ε>0cl
∗[co(∪y∈Y ε(z)∂ε(f + ϕy)(z)) + Ndom(f+Φ)(z)]

⊆ ∩ε>0cl
∗[co(∪y∈Y ε(z) ∩η>0 cl

∗(∂ε+ηf(z) + ∂ε+ηϕy(z))) + Ndom(f+Φ)(z)].

To proceed, we note the following clear inclusions

(4.11) ∪y∈T cl
∗A(y) ⊆ cl∗co(∪y∈TA(y))

for a family of sets {A(y)|y ∈ T} in X∗ and

(4.12) cl∗A+B ⊆ cl∗(A+B)

for two sets A and B inX∗. Thus, one concludes by (4.11) (applied to {∂ε+ηf(z)+∂ε+ηϕy(z)|y ∈
Y ε(z)} in place of {A(y)|y ∈ T}) that the following inclusion holds for each η > 0 and ε > 0

co(∪y∈Y ε(z) ∩η>0 cl
∗(∂ε+ηf(z) + ∂ε+ηϕy(z))) ⊆ cl∗[co(∪y∈Y ε(z)(∂ε+ηf(z) + ∂ε+ηϕy(z)))].

Combining this and (4.10), and thanks to (4.12) (applied to co(∪y∈Y ε(z)(∂ε+ηf(z)+∂ε+ηϕy(z))),

Ndom(f+Φ)(z) in place of A, B), we obtain that

∂(f +Φ)(z) ⊆ ∩ε>0 ∩η>0 cl
∗[co(∪y∈Y ε(z)(∂ε+ηf(z) + ∂ε+ηϕy(z))) + Ndom(f+Φ)(z)].

Since Y ε(z) ⊆ Y ε+η(z) and ∂εf(z) + ∂εϕy(z) ⊆ ∂2ε(f + ϕy)(z), it follows that

∂(f +Φ)(z) ⊆ ∩ε>0cl
∗[co(∪y∈Y ε(z)(∂ε(f(z) + ∂εϕy(z))) + Ndom(f+Φ)(z)]

⊆ ∩ε>0cl
∗[co(∪y∈Y ε(z)∂2ε(f + ϕy)(z)) + Ndom(f+Φ)(z)]

= ∂(f +Φ)(z),

where the equality is because of (4.5) (applied to 2, {f + ϕy|y ∈ Y } in place of τ , {ϕy|y ∈ Y },
and thanks to (4.8) and (4.9)). Therefore, (4.7) is proved and the proof is complete.

For the sake of simplicity, we introduce the notation E(ε, z) for any z ∈ X and ε > 0

defined by

(4.13) E(ε, z) := cl∗
(
co[∪y∈Y ε

+(z)(∂εf(z) + ∂εϕy(z)) ∪ ∂εf(z)] + Ndomf∩domΦ(z)
)
,

where,

Y ε
+(z) := {y ∈ Y |ϕy(z) ≥ −ε} for any z ∈ X and ε ≥ 0.

In particular, we write Y+(z) for Y
0
+(z), that is,

Y+(z) := Y 0
+(z) = {y ∈ Y |ϕy(z) = 0}.

The following theorem plays a crucial role in characterizing the weak sharp minima property

for convex infinite optimization problem (4.1) in the next subsection. Recall that f̂ is defined

by (4.3).
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Theorem 4.5. Let z ∈ domf ∩ Z. Then we have the following assertions.

(i) The following inclusion holds:

(4.14) ∂f̂(z) ⊇ ∂f(z) + [0, 1]cl∗co(∪y∈Y+(z)∂ϕy(z)) + NΩ(z) ∩ B.

(ii) Assume that ri (domf ∩ domΦ) ̸= ∅. Then

(4.15) ∂f̂(z) = ∩ε>0E(ε, z) + NΩ(z) ∩ B.

(iii) Assume that either f or Φ is continuous at some point x0 ∈ domf ∩ domΦ. Then

(4.16) ∂f̂(z) = ∂f(z) + [0, 1] ∩ε>0 cl
∗
(
co(∪y∈Y ε

+(z)∂εϕy(z)) + NdomΦ(z)
)
+NΩ(z) ∩ B

if ri (domΦ) ̸= ∅, and

(4.17) ∂f̂(z) = ∂f(z) + [0, 1]cl∗co(∪y∈Y+(z)∂ϕy(z)) + NΩ(z) ∩ B

if assumption (B1) holds and each function ϕy(·) is continuous at z.

Proof. (i) Let Φ+ denote the sup-function of the family {[ϕy]+|y ∈ Y }, that is,

Φ+(x) := sup
y∈Y

[ϕy]+(x) for each x ∈ X.

Then Φ+(z) = 0 (as z ∈ Z), and

{y ∈ Y : ϕy(z) = Φ+(z)} = Y+(z).

Note that

∂[ϕy]+(z) =

{
[0, 1]∂ϕy(z), if y ∈ Y+(z),

{0}, otherwise,

(see [39, Corollary 2.8.11 and Example 2.8.1]). Hence, applying Proposition 4.3(i) (to the family

{[ϕy]+|y ∈ Y } in place of {ϕy|y ∈ Y }), we have that

(4.18) [0, 1]cl∗co(∪y∈Y+(z)∂ϕy(z)) = cl∗co(∪y∈Y+(z)∂[ϕy]+(z)) ⊆ ∂Φ+(z).

Note further by (2.5) that

(4.19) ∂dΩ(z) = NΩ(z) ∩ B.

Since ∂f̂(z) ⊇ ∂f(z) + ∂Φ+(z) + ∂dΩ(z), inclusion (4.14) follows from (4.18) and (4.19), and

thus assertion (i) is proved.

(ii) By Lemma 2.6(iv), one has that

∂f̂(z) = ∂(f +Φ+)(z) + ∂dΩ(z).

Therefore, to show (4.15), it suffices to verify that

(4.20) ∂(f +Φ+)(z) = ∩ε>0E(ε, z).
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To do this, consider the family {ϕy|y ∈ Ỹ }, where Ỹ := Y ∪ {y∞} with ϕy∞ := 0. Then, one

checks that

(4.21) Φ+(·) = sup
y∈Ỹ

ϕy(·), domΦ+ = domΦ,

and

(4.22) Ỹ ε(z) = {y ∈ Ỹ |ϕy(z) ≥ Φ+(z)− ε} = Y ε
+(z) ∪ {y∞} for each ε > 0.

By assumption, Proposition 4.4 can be applied (to the family {ϕy|y ∈ Ỹ } in place of {ϕy|y ∈
Y }), and so we have from (4.21) and (4.22) that

∂(f +Φ+)(z) = ∩ε>0cl
∗[co(∪y∈Ỹ ε(z)(∂εf(z) + ∂εϕy(z))) + Ndom(f+Φ+)(z)].

In terms of (4.13), this shows (4.20) as ∂εϕy∞(z) = 0, and the proof of assertion (ii) is complete.

(iii) By assumption, it follows from Lemma 2.6(iv) that

(4.23) ∂f̂(z) = ∂f(z) + ∂Φ+(z) + ∂dΩ(z).

Clearly, Φ+(·) = max{Φ(·), 0} and Φ+(z) = 0. Hence, we have that

(4.24) ∂Φ+(z) = [0, 1]∂Φ(z) and Y ε(z) = Y ε
+(z) for each ε ≥ 0.

Thus, thanks to (4.23), (4.24) and (4.19), (4.16) and (4.17) follow immediately from (4.5) and

(4.6), respectively. The proof is complete.

Remark 4.6. Let Φ be sup-function of the family {ϕy|y ∈ Y } defined by (4.4). Then

some subdifferential rules for the function f + Φ were established in [10]. Noting that f and

ϕy involved here are lsc for each y ∈ Y , the assumption in [10, Theorem 4] is satisfied. Thus

the corresponding results there regarding the subdifferentials are applicable to establishing the

counterparts of Theorem 4.5. To this purpose, let z ∈ domf ∩Z and let F(z) denote the family

of finite-dimensional subspaces containing z. Then, using the similar arguments we did for

proving (ii) in Theorem 4.5, one can apply [10, Theorem 4] and [10, Corollary 8], together with

Lemma 2.6(iv), to obtain the following subdifferential formulas for f̂ at z:

(i) The following equality holds:

(4.25) ∂f̂(z) = ∩ε>0,L∈F(z)cl
∗co

{
∪y∈Y ε

+(z)(∂εϕy(z) ∪ {0}) + ∂(f + δL∩domΦ)(z)
}
+NΩ(z)∩B.

(ii) Assume that ri (domf ∩ domΦ) ̸= ∅ and f |aff (domf∩domΦ) is continuous on ri (domf ∩
domΦ). Then

∂f̂(z) = ∩ε>0cl
∗co

{
∪y∈Y ε

+(z)(∂εϕy(z) ∪ {0}) + ∂(f + δdomΦ)(z)
}
+NΩ(z) ∩ B,

and

∂f̂(z) = ∩ε>0cl
∗co

{
∪y∈Y ε

+(z)(∂εϕy(z) ∪ {0}) + ∂f(z) + NdomΦ(z)
}
+NΩ(z) ∩ B

if f is continuous at some point of domΦ.
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4.2. Characterizations for the weak sharp minima. By virtue of Proposition 4.2 and

Theorems 4.5(i), the following corollary is a direct consequence of Theorems 3.6, 3.8 and 3.9,

in which (i) and (ii) were proved in [42, Theorems 3.2 and 3.1] for the case when X is a Banach

space, respectively.

Corollary 4.7. Let α > 0 and x0 ∈ S. Consider the following inclusion:

(4.26) αB ∩NS(z) ⊆ ∂f(z) + [0, 1]cl∗co(∪y∈Y+(z)∂ϕy(z)) + NΩ(z) ∩ B.

Then we have that

(i) if (4.26) holds for each z ∈ S, then problem (4.1) has a global weak sharp minima

property in S with modulus α;

(ii) if there exists r > 0 such that (4.26) holds for each z ∈ S ∩B(x0, r), then problem (4.1)

has a local weak sharp minimum property at x0 in S with modulus α;

(iii) if for each r > 0 there exists α(:= αr) > 0 such that (4.26) holds for each z ∈ S ∩ rB,
then problem (4.1) has a boundedly weak sharp minima property in S.

Similarly, based on Theorem 4.5 and Proposition 4.2, and noting the following equality

cl∗(A+B) = cl∗A+B

whenever A ⊆ X∗ is an arbitrary set and B ⊆ X∗ is a weak∗-compact set, one can apply

Theorem 3.6 to conclude directly in the following theorem the equivalent characterizations

for the global weak sharp minima property of the convex infinite optimization problem (4.1).

Theorem 4.8 not only extends [42, Theorem 3.4] under the weaker assumptions, in which only

the equivalence between (i) and (4.35) was shown under the assumptions (A1) and (A2) in

Banach spaces (noting in section 1 that (B1) and (B2) are strictly weaker than (A1) and (A2)),

but also presents more complete characterizations of the global weak sharp minima property in

normed spaces, e.g., (ii)-(v) and (4.36)-(4.38) seem new to the best of our knowledge.

Theorem 4.8. Let α > 0. Suppose that ri(domf ∩domΦ) ̸= ∅. Then we have the following

assertions.

(I) The following statements are equivalent:

(i) Problem (4.1) has a global weak sharp minima property in S with modulus α.

(ii) For each z ∈ S,

(4.27) αB ∩NS(z) ⊆ ∩ε>0E(ε, z) + NΩ(z) ∩ B.

(II) If S is proximal, then (i) and (ii) are equivalent to the following statement:

(iii) For each z ∈ S,

(4.28) αB ∩NS(z) ⊆ ∩ε>0E(ε, z) + [J∗NS(z)]
◦ +NΩ(z) ∩ B.

(III) If X is a Hilbert space, then (i)-(iii) are equivalent to the following statements:

(iv) For each z ∈ S,

(4.29) αB ⊆ cl{∩ε>0E(ε, z) + [NS(z)]
◦}+NΩ(z) ∩ B.



CHONG LI, LI MENG, LIHUI PENG, YAOHUA HU AND JEN-CHIH YAO 21

(v) For any z ∈ S and α̂ ∈ (0, α),

(4.30) α̂B ⊆ ∩ε>0E(ε, z) + [NS(z)]
◦ +NΩ(z) ∩ B.

Furthermore, assume that either f or Φ is continuous at some point x0 ∈ domf ∩ domΦ.

Then (4.27)-(4.30) above can be replaced by

(4.31) αB ∩NS(z) ⊆ ∂f(z) + [0, 1] ∩ε>0 cl
∗
(
co(∪y∈Y ε

+(z)∂εϕy(z) + NdomΦ(z)) + NΩ(z) ∩ B
)
,

(4.32)

αB∩NS(z) ⊆ ∂f(z)+[0, 1]∩ε>0cl
∗
(
co(∪y∈Y ε

+(z)∂εϕy(z) + NdomΦ(z)) + NΩ(z) ∩ B+ [J∗NS(z)]
◦
)
,

(4.33) αB ⊆ cl[∂f(z)+ [0, 1]∩ε>0 cl(co(∪y∈Y ε
+(z)∂εϕy(z))+NdomΦ(z))+ [NS(z)]

◦]+NΩ(z)∩B,

(4.34)

α̂B ∩NS(z) ⊆ ∂f(z) + [0, 1] ∩ε>0 cl(co(∪y∈Y ε
+(z)∂εϕy(z)) + NdomΦ(z)) + [NS(z)]

◦ +NΩ(z) ∩ B,

respectively, if ri (domΦ) ̸= ∅, and by

(4.35) αB ∩NS(z) ⊆ ∂f(z) + [0, 1]cl∗co(∪y∈Y+(z)∂ϕy(z)) + NΩ(z) ∩ B,

(4.36) αB ∩NS(z) ⊆ ∂f(z) + [0, 1]cl∗co(∪y∈Y+(z)∂ϕy(z)) + NΩ(z) ∩ B+ [J∗NS(z)]
◦,

(4.37) αB ⊆ cl[∂f(z) + [0, 1]clco(∪y∈Y+(z)∂ϕy(z)) + [NS(z)]
◦ +NΩ(z) ∩ B,

(4.38) α̂B ∩NS(z) ⊆ ∂f(z) + [0, 1]clco(∪y∈Y+(z)∂ϕy(z)) + [NS(z)]
◦ +NΩ(z) ∩ B,

respectively, if assumptions (B1) and (B2) hold.

Analogue to Theorem 4.8, we can further apply Theorems 3.8 and 3.9 to obtain in the fol-

lowing theorems the equivalent characterizations for the local or boundedly weak sharp minima

property of the convex infinite optimization problem (4.1), respectively. Most of characteriza-

tions provided in Theorems 4.9 and 4.10 seem new in the literature, even in the case when the

assumptions (A1) and (A2) hold.

Theorem 4.9. Let α > 0 and x0 ∈ S. Suppose that ri(domf ∩ domΦ) ̸= ∅. Then we have

the following assertions.

(I) The following statements are equivalent but (ii) ⇒ (i) for possible different values of α > 0:

(i) Problem (4.1) has a local weak sharp minimum property at x0 in S with modulus α.
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(ii) There exists r > 0 such that (4.27) holds for each z ∈ S ∩ B(x0, r).

(II) If S is proximal, then (i) and (ii) are equivalent to the following statements:

(iii) There exists r > 0 such that (4.28) holds for each z ∈ S ∩ B(x0, r).

(III) If X is a Hilbert space, (i)-(iii) are equivalent to the following statement:

(iv) There exists r > 0 such that (4.29) holds for each z ∈ S ∩ B(x0, r).

(v) There exists r > 0 such that (4.30) holds for any z ∈ S ∩ B(x0, r) and α̂ ∈ (0, α).

Furthermore, assume that either f or Φ is continuous at some point x0 ∈ domf ∩ domΦ.

Then (4.27)-(4.30) can be replaced by (4.31)-(4.34), respectively, if ri (domΦ) ̸= ∅, and by

(4.35)-(4.38), respectively, if assumptions (B1) and (B2) hold.

Theorem 4.10. Suppose that ri(domf∩domΦ) ̸= ∅. Then we have the following assertions.

(I) The following statements are equivalent:

(i) Problem (4.1) has a boundedly weak sharp minima property in S.

(ii) For each r > 0, there exists α > 0 such that (4.27) holds for each z ∈ S ∩ rB.
(II) If S is proximal, then (i) and (ii) are equivalent to the following statement:

(iii)For each r > 0, there exists α > 0 such that (4.28) holds for each z ∈ S ∩ rB.
(III) If X is a Hilbert space, then (i)-(iii) are equivalent to the following statement:

(iv) For each r > 0, there exists α > 0 such that

(4.39) αB ⊆ ∩ε>0E(ε, z) + [NS(z)]
◦ +NΩ(z) ∩ B.

holds for each z ∈ S ∩ rB.
Furthermore, assume that either f or Φ is continuous at some point x0 ∈ domf ∩ domΦ.

Then (4.27), (4.28) and (4.39) can be replaced by (4.31), (4.32) and

αB ⊆ ∂f(z) + [0, 1] ∩ε>0 cl(co(∪y∈Y ε
+(z)∂εϕy(z)) + NdomΦ(z)) + [NS(z)]

◦ +NΩ(z) ∩ B,

respectively, if ri (domΦ) ̸= ∅, and by (4.35), (4.36) and

αB ⊆ ∂f(z) + [0, 1]clco(∪y∈Y+(z)∂ϕy(z)) + [NS(z)]
◦ +NΩ(z) ∩ B,

respectively, if assumptions (B1) and (B2) hold.

Remark 4.11. Involving the subdifferential formulas for f̂ presented in Remark 4.6 into

the considerations of characterizing the global/local/boundedly weak sharp minima property of

the convex infinite optimization problem (4.1), one can establish similarly the counterparts

of Theorems 4.8-4.10, which provide some other characterizations for the corresponding weak

sharp minima properties. In particular, the characterization results based on the subdifferential

formula (4.25) do not require the blanket assumption ri (domf ∩ domΦ) ̸= ∅ made in Theorems

4.8-4.10.
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