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Abstract The sum of ratios problem has a variety of important applications in economics

and management science, but it is difficult to globally solve this problem. In this paper, we

consider the minimization problem of the sum of a number of nondifferentiable quasi-convex

component functions over a closed and convex set. The sum of quasi-convex component

functions is not necessarily to be quasi-convex, and so, this study goes beyond quasi-convex

optimization. Exploiting the structure of the sum-minimization problem, we propose a new

incremental quasi-subgradient method for this problem and investigate its convergence prop-

erties to a global optimal value/solution when using the constant, diminishing or dynamic

stepsize rules and under a homogeneous assumption and the Hölder condition. To economize

on the computation cost of subgradients of a large number of component functions, we further

propose a randomized incremental quasi-subgradient method, in which only one component

function is randomly selected to construct the subgradient direction at each iteration. The

convergence properties are obtained in terms of function values and iterates with probability

1. The proposed incremental quasi-subgradient methods are applied to solve the quasi-convex

feasibility problem and the sum of ratios problem, as well as the multiple Cobb-Douglas pro-

ductions efficiency problem, and the numerical results show that the proposed methods are

efficient for solving the large-scale sum of ratios problem.
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1 Introduction

In recent years, a great amount of attention has been attracted to the research of minimizing

the sum of a number of nondifferentiable component functions:

min f(x) :=
∑m

i=1 fi(x)

s.t. x ∈ X,
(1.1)

where fi : Rn → R, i = 1, . . . ,m, are real-valued functions, and X ⊆ Rn is a closed set.

The type of convex sum-minimization problems, i.e., problem (1.1) with each fi being

convex and X being convex, has been widely studied in various applications, such as the

Lagrangian dual of the coupling constraints of large-scale separable optimization problem

[8, 33], the distributed optimization problem in large-scale sensor networks [9, 39] and the

empirical risk minimization problem in online machine learning [14, 32]. Motivated by vast

applications of problem (1.1), the development of optimization algorithms has become an

important issue of the sum-minimization problem, and many practical numerical algorithms

have been proposed to solve problem (1.1); see [7, 8, 20, 32, 46] and references therein. In

particular, the class of subgradient methods are popular and effective iterative algorithms for

solving the large-scale convex sum-minimization problem (1.1), due to the simple formulation

and low storage requirement. The subgradient method was originally introduced to solve a

nondifferentiable convex optimization problem by Polyak [38] and Ermoliev [15], and until

now, various variants of subgradient methods have been studied to solve structured optimiza-

tion problems; see [2, 7, 27, 31, 33, 35, 43] and references therein. To meet the structure of

the sum-minimization problem (1.1), the idea of incremental approach has been proposed to

perform the subgradient process incrementally, by sequentially taking steps along the subgra-

dients of component functions, with intermediate adjustment of the variables after processing

each component function. That is, an iteration of the incremental subgradient method can

be viewed as a cycle of m subiterations, starting from zk,0 := xk, through m steps

zk,i := PX

(
zk,i−1 − vkgk,i

)
, gi,k ∈ ∂fi(zk,i−1), i = 1, . . . ,m, (1.2)

and finally arriving at xk+1 := zk,m. The incremental subgradient method has gained success-

ful applications in large-scale sensor networks and online machine learning; see, e.g., [14, 39].

So far, many articles have been devoted to the convergence study and applications of differ-

ent types of incremental subgradient methods; see [7, 25, 27, 33, 36, 40, 42] and references

therein. In particular, Nedić and Bertsekas [33] investigated the convergence properties of

the incremental subgradient methods, including the deterministic and stochastic ones, for the

constant/diminishing/dynamic stepsize rules; later the authors extended these convergence

results to the inexact incremental subgradient method with the deterministic noise in [34].

Shi et al. [42] proposed a normalized incremental subgradient method, analyzed its conver-

gence theory and demonstrated its application in wireless sensor networks. Neto and Pierro

[36] explored the incremental subgradient method in a generic framework consisting of an op-

timality step and a feasibility step, where both approximate subgradients and approximate

projections are allowed, and illustrated its application in tomographic imaging.
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Recently, much attention has been received beyond convex optimization. Quasi-convex

optimization problems can be found in many important applications in various areas, such as

economics, engineering, management science and various applied sciences; see [4, 13, 19] and

references therein. The subgradient methods have been well extended to solve quasi-convex

optimization problems, such as the standard subgradient method [26], inexact subgradient

method [21], the conditional subgradient method [23] and stochastic subgradient method

[22]. More recently, a unified framework of convergence analysis of subgradient methods for

quasi-convex optimization problems was provided in [47], in which the convergence theorem

was established for a certain class of sequences satisfying a general basic inequality. The

convergence results of subgradient methods, in terms of objective values and iterates, for

solving quasi-convex optimization problems have been well established under the Hölder

condition and using the constant/diminishing/dynamic stepsize rules. However, to the best

of our knowledge, there is still no study devoted to investigating subgradient methods for

solving the sum-minimization problem (1.1) for the case when each fi is quasi-convex.

The sum of ratios problem (in short, SOR) [41] has a variety of important applications in

economics and management science, such as multi-stage stochastic shipping [1], government

contracting [12] and bond portfolio optimization [28]. Although some numerical methods,

such as the branch and bound scheme [6] and the interior point method [16], have been studied

to solve the SOR, most of them are computationally expensive to implement for large-scale

problems or incapable to globally solve the SOR. The absence of effective numerical algorithms

for large-scale problems hinders the research and applications of the SOR. Exploiting its

structure, the SOR can be formulated as a sum-maximization problem of a number of quasi-

concave component functions (see section 4 for the explanation), and so it is an important

application of problem (1.1). However, there is still no effective numerical algorithms for the

large-scale sum-minimization problem (1.1) of quasi-convex functions, as well as the SOR.

To fill this gap, the aim of this paper is to develop the incremental subgradient methods

for minimizing the sum of a number of quasi-convex component functions over a constraint

set. In the remainder of this paper, we consider the sum-minimization problem (1.1) under

the following hypothesis:

• fi : Rn → R is quasi-convex and continuous for each i = 1, . . . ,m, and X ⊆ Rn is

nonempty, closed and convex.

Note that the objective function f defined in (1.1), the sum of quasi-convex component

functions, is not necessarily to be quasi-convex. The study of this paper is indeed beyond

quasi-convex optimization, and so, the direct application of the standard subgradient method

[26] to solve problem (1.1) is not necessarily convergent, and the convergence results of the

literature [21, 22, 47] cannot be directly applied to this paper.

Inspired by the idea of incremental approach, we propose a new incremental quasi-

subgradient method to solve the sum-minimization problem (1.1), which is different from

the classical incremental subgradient method (1.2) in that the Greenberg-Pierskalla quasi-

subgradient is employed (in place of the convex subgradient) at each subiteration and the
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subgradient subiterations are only updated on the component functions whose minimal val-

ues are not achieved yet. Under a homogeneous assumption and the Hölder condition for

the component functions, we provide a proper basic inequality and establish the convergence

properties of the proposed incremental quasi-subgradient method when using the constan-

t/diminishing/dynamic stepsize rules. The convergence properties are characterized in terms

of function values and distances of iterates from the optimal solution set, and the finite

convergence behavior to the optimality is further investigated when the solution set has a

nonempty interior.

In the incremental subgradient method, the calculations of subgradients of all component

functions at each iteration may be very expensive, especially when the number of component

functions is large and no simple formulae for computing the subgradients exist. Note that the

stochastic gradient descent algorithm is increasingly popular in large-scale machine learning

problems; see [7, 14, 45, 46] and references therein. Employing the idea of the stochastic

gradient descent algorithm, we propose a randomized incremental quasi-subgradient method

to save the computational cost of the incremental quasi-subgradient iteration, in which only

one component function is randomly selected to construct the subgradient direction at each

iteration. The convergence results show that the randomized incremental quasi-subgradient

method enjoys the convergence properties with probability 1 and achieves a much less tol-

erance than that of the deterministic incremental quasi-subgradient method. To the best of

our knowledge, this paper seems the first study of stochastic incremental subgradient method

for the sum-minimization problem of quasi-convex functions.

Furthermore, we introduce two important classes of applications of sum-minimization

problem (1.1) of a number of quasi-convex component functions: the quasi-convex feasibility

problem (in short, QCFP) and the SOR. We cast the QCFP into a sum-minimization prob-

lem (1.1), and then extend the (deterministic or randomized) incremental quasi-subgradient

methods to solve the QCFP, as well as the convergence theorems. For the SOR, we formulate

it as a sum-minimization problem (1.1), consider the multiple Cobb-Douglas productions effi-

ciency problem (in short, MCDPE) [10] as an application of the SOR, and conduct numerical

experiments on this problem via applying the proposed incremental quasi-subgradient meth-

ods. The numerical results show that the incremental quasi-subgradient methods are efficient

for the MCDPE, especially for large-scale problems. This study may deliver a new approach

for finding the global optimal solution of the large-scale SOR.

The paper is organized as follows. In section 2, we present the notations and prelimi-

nary results used in this paper. In section 3, we propose the deterministic and randomized

incremental quasi-subgradient methods to solve the sum-minimization problem (1.1) and in-

vestigate their convergence properties when using the typical stepsize rules. The application

to the QCFP and the SOR and the numerical study for the MCDPE is presented in section

4.
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2 Notations and preliminary results

The notations used in this paper are standard; see, e.g., [7]. We consider the n-dimensional

Euclidean space Rn with inner product ⟨·, ·⟩ and norm ∥ · ∥. For x ∈ Rn and δ ∈ R+, we

use B(x, δ) and S(x, δ) to denote the closed ball and the sphere of radius δ centered at x,

respectively. For x ∈ Rn and Z ⊆ Rn, we write dist(x,Z) and PZ(x) to denote the Euclidean

distance of x from Z and the Euclidean projection of x onto Z, respectively, that is,

dist(x,Z) := inf
z∈Z

∥x− z∥ and PZ(x) := argmin
z∈Z

∥x− z∥.

A function h : Rn → R is said to be quasi-convex if

h((1− α)x+ αy) ≤ max{h(x), h(y)} for any x, y ∈ Rn and any α ∈ [0, 1].

For any α ∈ R, the level sets of h are denoted by

lev<αh := {x ∈ Rn : h(x) < α} and lev≤αh := {x ∈ Rn : h(x) ≤ α}.

It is well-known that h is quasi-convex if and only if lev<αh (and/or lev≤αh) is convex for

any α ∈ R. A function h : Rn → R is said to be coercive if lim∥x∥→∞ h(x) = ∞, and so

lev≤αh is bounded for any α ∈ R.
The subdifferential of a quasi-convex function plays an important role in quasi-convex

optimization. Several different types of subdifferentials of quasi-convex function have been

introduced; see [3, 17, 21, 26] and references therein. The earliest one is the Greenberg-

Pierskalla quasi-subdifferential proposed in [17], and recently, Kiwiel [26] and Hu et al. [21]

introduced a quasi-subdifferential defined as a normal cone to its level set. In the following

definition, we recall the notions of subdifferentials for quasi-convex function taken from [17,

21].

Definition 2.1. Let h : Rn → R be a quasi-convex function and x ∈ Rn.

(i) The Greenberg-Pierskalla quasi-subdifferential of h at x is defined by

∂GPh(x) =
{
g : ⟨g, y − x⟩ < 0 for any y ∈ lev<h(x)h

}
. (2.1)

(ii) The quasi-subdifferential of h at x is defined by

∂Qh(x) =
{
g : ⟨g, y − x⟩ ≤ 0 for any y ∈ lev<h(x)h

}
. (2.2)

It is clear from definition that ∂GPh(x) ⊆ ∂Qh(x) for any x ∈ Rn. More specifically, the

existence and relationship between the Greenberg-Pierskalla quasi-subdifferential and the

quasi-subdifferential are recalled as follows.

Lemma 2.1 ([21, Lemma 2.1]). Let h : Rn → R be quasi-convex on Rn and x ∈ Rn. Then

the following statements are true.
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(i) ∂Qh(x) \ {0} ̸= ∅.

(ii) If h is upper semicontinuous on Rn, then ∂GPh(x) ̸= ∅ and ∂Qh(x) = ∂GPh(x) ∪ {0}.

The following lemma will be useful in the application of the quasi-convex feasibility prob-

lem, which shows that the positive part operator (partially) preserves the quasi-convexity

and the quasi-subdifferentials.

Lemma 2.2. Let h : Rn → R be a quasi-convex function and z /∈ lev≤0h, and let f : Rn → R
be defined by

f(x) := max{h(x), 0} for any x ∈ Rn. (2.3)

Then f is quasi-convex and ∂GP f(z) = ∂GPh(z), ∂Qf(z) = ∂Qh(z).

Proof. It is clear by (2.3) that

lev<αf =

{
lev<αh, α > 0,

∅, otherwise.

Note by the quasi-convexity of h that lev<αh is convex, as is lev<αf , for any α ∈ R. Hence f

is also quasi-convex. By the assumption that h(z) > 0, one has by (2.3) that f(z) = h(z) and

lev<f(z)f = lev<h(z)h, and thus, by (2.1) and (2.2) that ∂GP f(z) = ∂GPh(z) and ∂Qf(z) =

∂Qh(z), respectively. The proof is complete.

The Hölder condition was used in [29] to describe some properties of quasi-subgradients,

and it plays an important role in the convergence study of subgradient-type methods for

quasi-convex optimization problems [21, 22, 23].

Definition 2.2. Let p ∈ (0, 1], L > 0 and x ∈ Rn. h : Rn → R is said to satisfy the Hölder

condition of order p with modulus L at x if

|h(y)− h(x)| ≤ L∥y − x∥p for any y ∈ Rn. (2.4)

h is said to satisfy the Hölder condition of order p with modulus L on X if (2.4) holds for

any x ∈ X.

The Hölder condition of order 1 can be guaranteed by the (global) Lipschitz continuity,

and this property holds for very broad classes of functions with various values of p ∈ (0, 1].

The following lemma recalls an important property (in convergence analysis) of a quasi-convex

function that satisfies the Hölder condition (as ∂GPh ⊆ ∂Qh).

Lemma 2.3 ([30, Proposition 2.1]). Let h : Rn → R be a quasi-convex and continuous

function, X be a closed and convex set, and let X∗ be the set of minima of h over X. Let

p ∈ (0, 1] and L > 0, and suppose that h satisfies the Hölder condition of order p with modulus

L at some x∗ ∈ X∗. Then, for any x ∈ X \X∗, it holds that

h(x)− h(x∗) ≤ L ⟨g, x− x∗⟩p for any g ∈ ∂GPh(x) ∩ S(0, 1).
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We end this section by recalling the following two lemmas, which will be useful in the

convergence analysis of incremental subgradient methods.

Lemma 2.4 ([24, Lemma 4.1]). Let γ ≥ 1 and ai ≥ 0 for i = 1, . . . , n. Then it holds that

1

nγ−1

( n∑
i=1

ai

)γ
≤

n∑
i=1

aγi ≤
( n∑

i=1

ai

)γ
.

Lemma 2.5 ([27, Lemma 2.1]). Let {ak} be a sequence of scalars, and let {vk} be a sequence

of nonnegative scalars. Suppose that limk→∞
∑k

i=1 vi = ∞. Then it holds that

lim inf
k→∞

ak ≤ lim inf
k→∞

∑k
i=1 viai∑k
i=1 vi

≤ lim sup
k→∞

∑k
i=1 viai∑k
i=1 vi

≤ lim sup
k→∞

ak.

In particular, if limk→∞ ak = a, then limk→∞

∑k
i=1 viai∑k
i=1 vi

= a.

3 Incremental quasi-subgradient methods and convergence anal-

ysis

In this section, we propose the incremental quasi-subgradient methods, including the de-

terministic and stochastic styles, to solve problem (1.1) and investigate their convergence

properties when using typical stepsize rules. We write f∗ and X∗ to denote the optimal value

and the (global) optimal solution set of problem (1.1) respectively, that is,

f∗ := min
x∈X

m∑
i=1

fi(x) and X∗ := argmin
x∈X

m∑
i=1

fi(x),

and define

f∗
i := min

x∈X
fi(x) and X∗

i := argmin
x∈X

fi(x) for i = 1, . . . ,m.

To accomplish the convergence analysis, the following two assumptions are made throughout

this paper. The applications satisfying these assumptions will be presented in section 4.

Assumption 1. The component functions of problem (1.1) have a common optimal solution.

Assumption 2. Let p ∈ (0, 1] and Li > 0 for i = 1, . . . ,m. For each i = 1, . . . ,m, fi satisfies

the Hölder condition of order p with modulus Li on X.

Remark 3.1. (i) It is easy to see that Assumption 1 is equivalent to X∗ = ∩m
i=1X

∗
i ̸= ∅.

Assumption 1 is a homogeneous assumption for the component functions of problem (1.1),

and it also says that f∗ =
∑m

i=1 f
∗
i . Shi et al. [42] used Assumption 1 to explore the

convergence properties of a normalized incremental subgradient method for minimizing the

sum of convex component functions. Although, under Assumption 1, we can approach the

optimal value of problem (1.1) via minimizing component functions fi over X separately,
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it is still difficult to find a common optimal solution, i.e., an optimal solution of problem

(1.1), which is an essential issue of decision-making problems. In this paper, we propose the

incremental quasi-subgradient methods to resolve this issue.

(ii) The Hölder condition was assumed in [21, 22, 23] to develop the convergence theory

of several subgradient-type methods for quasi-convex optimization. Assumption 2 consists of

the Hölder condition of order p for all component functions of problem (1.1). Furthermore,

we write

Lmax := max
i=1,...,m

Li. (3.1)

The stepsize rule has a critical effect on the convergence behavior and computational

capacity of subgradient methods. In this paper, we investigate convergence properties of

incremental quasi-subgradient methods by using the following typical stepsize rules.

(S1) Constant stepsize rule:

vk ≡ v (> 0) for any k ∈ N.

(S2) Diminishing stepsize rule:

vk > 0, lim
k→∞

vk = 0,
∞∑
k=0

vk = ∞. (3.2)

(S3) Dynamic stepsize rule I :

vk :=
2

m
γkCp,m (f(xk)− f∗)

1
p for any k ∈ N, (3.3)

where 0 < γ ≤ γk ≤ γ < 2 and

Cp,m := (2mLmax)
− 1

p . (3.4)

(S4) Dynamic stepsize rule II :

vk := γkRp,m (f(xk)− f∗)
1
p for any k ∈ N, (3.5)

where 0 < γ ≤ γk ≤ γ < 2 and

Rp,m := (mLmax)
− 1

p . (3.6)

Type (S3) is for the deterministic incremental quasi-subgradient method, while type (S4) is

for the randomized incremental quasi-subgradient method. Note that both types of dynamic

stepsize rules are slightly difference from that of the classical incremental subgradient method

for convex sum-minimization problems (see [33]).
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3.1 Incremental quasi-subgradient method

The aim of this subsection is to propose an incremental quasi-subgradient method to solve

problem (1.1) and to study its convergence properties when using several different stepsize

rules. The incremental quasi-subgradient method is formally described as follows.

Algorithm 1: Incremental quasi-subgradient method.

1 Initialize an initial point x0 ∈ Rn, a stepsize sequence {vk}, and let k := 0;

2 while f(xk) > f∗ do

3 Let zk,0 := xk;

4 for i = 1, . . . ,m do

5 if fi(zk,i−1) = f∗
i then

6 Let zk,i := zk,i−1;

7 else

8 Calculate gk,i ∈ ∂GP fi(zk,i−1) ∩ S(0, 1), and let

zk,i := PX (zk,i−1 − vkgk,i);

9 end

10 end

11 Let xk+1 := zk,m and k := k + 1.

12 end

Remark 3.2. Note that Algorithm 1 is different from the classical incremental subgradi-

ent method for convex optimization [33] and the incremental gradient method for smooth

optimization [7]. In particular, the classical incremental gradient/subgradient method (1.2)

updates subgradient subiterations in a cyclic sequence on {1, . . . ,m}; while Algorithm 1 only

updates subgradient subiterations in a cyclic sequence on the index set {i : fi(zk,i−1) > f∗
i },

where the minimal value of fi is not achieved yet.

The following example illustrates that Algorithm 1 may not converge to the optimal value

of problem (1.1) if the updated sequence on {i : fi(zk,i−1) > f∗
i } in Algorithm 1 is replaced by

a cyclic sequence on {1, . . . ,m} as in the classical incremental gradient/subgradient method

(1.2), even though Assumptions 1 and 2 are satisfied. This is the reason why we change the

updating control in the proposed incremental quasi-subgradient methods.

Example 3.1. Consider problem (1.1), where X = R, m = 2, and two component functions

are

f1(x) := max{x, 0} and f2(x) := max{−x, 0}.

Obviously, f∗
1 = f∗

2 = 0, X∗
1 = R− and X∗

2 = R+; f(x) := f1(x) + f2(x) = |x|, f∗ = 0

and X∗ = {0}. It is easy to see that X∗ = X∗
1 ∩ X∗

2 , and that f1 and f2 are quasi-convex

and satisfy the Hölder condition of order 1 (i.e., Lipschitz continuous) on R with Lmax = 1.

Hence Assumptions 1 and 2 are satisfied.
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In this setting, for any x0 > 0, one has that ∂GP f1(x0) = R+, g1,1 = 1 and z1,1 = x0 − v.

Note that

∂GP f2(x) :=

{
R, x ≥ 0,

R−, x < 0.

Hence we can choose g1,2 = −1, and then z1,2 = z1,1 + v = x0. That is, a fixed sequence is

generated, and so xk ≡ x0 and limk→∞ f(xk) = x0. Therefore, the generated sequence does

not converge to the optimal value/solution of problem (1.1).

We now start the convergence analysis by providing a basic inequality of Algorithm 1,

which shows a significant property of an incremental quasi-subgradient iteration. Recall that

Cp,m is defined in (3.4).

Lemma 3.1. Suppose Assumptions 1 and 2 are satisfied. Let {xk} be a sequence generated

by Algorithm 1. Then, for any x∗ ∈ X∗ and k ∈ N, it holds that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 4mvkCp,m(f(xk)− f∗)
1
p +m2v2k. (3.7)

Proof. We first show that the following inequality holds for any x∗ ∈ X∗, k ∈ N and i =

1, . . . ,m:

∥zk,i − x∗∥2 ≤ ∥zk,i−1 − x∗∥2 − 2vkL
− 1

p
max (fi(zk,i−1)− f∗

i )
1
p + v2k. (3.8)

In view of Algorithm 1, if fi(zk,i−1) = f∗
i , then it is updated that zk,i = zk,i−1, and so (3.8)

holds automatically; otherwise, zk,i−1 /∈ X∗
i , and then one sees from Algorithm 1 that

zk,i = PX (zk,i−1 − vkgk,i) . (3.9)

Note by Assumption 1 that x∗ ∈ X∗ = ∩m
i=1X

∗
i , and so x∗ ∈ X∗

i for i = 1, . . . ,m. By the

assumption that zk,i−1 /∈ X∗
i , one has that f(zk,i−1) > f∗

i . Then Lemma 2.3 is applicable

(with fi, zk,i−1, X
∗
i in place of h, x, X∗) to concluding that

fi(zk,i−1)− f∗
i = fi(zk,i−1)− fi(x

∗) ≤ Li⟨gk,i, zk,i−1 − x∗⟩p ≤ Lmax⟨gk,i, zk,i−1 − x∗⟩p (3.10)

(due to (3.1)). By the nonexpansive property of the projection operator, it follows from (3.9)

that
∥zk,i − x∗∥2 ≤ ∥zk,i−1 − vkgk,i − x∗∥2

= ∥zk,i−1 − x∗∥2 − 2vk ⟨gk,i, zk,i−1 − x∗⟩+ v2k

≤ ∥zk,i−1 − x∗∥2 − 2vkL
− 1

p
max (fi(zk,i−1)− f∗

i )
1
p + v2k,

where the last inequality follows from (3.10). Hence (3.8) is proved.

Next, we estimate the second term in the right hand side of (3.8) in terms of fi(xk)− f∗
i .

Since p ∈ (0, 1], by Lemma 2.4 (with fi(zk,i−1)− f∗
i , |fi(zk,i−1)− fi(xk)|, 1

p in place of a1, a2,

γ), one has that

(fi(xk)− f∗
i )

1
p ≤ ((fi(zk,i−1)− f∗

i ) + |fi(zk,i−1)− fi(xk)|)
1
p

≤ 2
1
p
−1
(
(fi(zk,i−1)− f∗

i )
1
p + |fi(zk,i−1)− fi(xk)|

1
p

)
.

(3.11)
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By Assumption 2 (cf. (2.4)) and in view of Algorithm 1, it follows that

|fi(zk,i−1)− fi(xk)| ≤ Li∥zk,i−1 − xk∥p ≤ Lmax

 i−1∑
j=1

∥zk,j − zk,j−1∥

p

≤ Lmax (vk(i− 1))p .

Hence (3.11) is reduced to

(fi(zk,i−1)− f∗
i )

1
p ≥ 2

1− 1
p (fi(xk)− f∗

i )
1
p − L

1
p
maxvk(i− 1),

and so (3.8) yields that

∥zk,i − x∗∥2 ≤ ∥zk,i−1 − x∗∥2 − 4vk(2Lmax)
− 1

p (fi(xk)− f∗
i )

1
p + (2i− 1)v2k. (3.12)

Finally, summing (3.12) over i = 1, . . . ,m, we obtain that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 4vk(2Lmax)
− 1

p

m∑
i=1

(fi(xk)− f∗
i )

1
p +m2v2k. (3.13)

Note by Lemma 2.4 (with fi(xk)− f∗
i and 1

p in place of ai and γ) that

m∑
i=1

(fi(xk)− f∗
i )

1
p ≥ m

1− 1
p

(
m∑
i=1

(fi(xk)− f∗
i )

) 1
p

= m
1− 1

p (f(xk)− f∗)
1
p

(thanks to Assumption 1), and thus, (3.7) is seen to hold by (3.4) and (3.13). The proof is

complete.

Remark 3.3. In Algorithm 1, the subgradient subiteration is processed in an ordered cyclic

sequence on the index set {i : fi(zk,i−1) > f∗
i }. It is worthy mentioning that the proof of

Lemma 3.1, as well as the convergence analysis of Algorithm 1, still work if any order of

component functions is assumed, as long as each component on {i : fi(zk,i−1) > f∗
i } is

taken into account exactly once within a cycle. Hence, in applications, we could reorder the

components fi by either shifting or reshuffling at the beginning of each cycle, and then proceed

with the calculations until the end of this cycle.

By virtue of Lemma 3.1, we establish the convergence results of the incremental quasi-

subgradient method when using different stepsize rules in Theorems 3.1-3.3, respectively.

Theorem 3.1. Suppose that Assumptions 1 and 2 are satisfied. Let {xk} be a sequence

generated by Algorithm 1 with the constant stepsize rule (S1). Then we have

lim inf
k→∞

f(xk) ≤ f∗ +

(
mv

4Cp,m

)p

. (3.14)

11



Proof. We prove by contradiction, assuming that

lim inf
k→∞

f(xk) > f∗ +

(
mv

4Cp,m

)p

.

Consequently, there exist δ > 0 and N ∈ N such that

f(xk) > f∗ +

(
mv

4Cp,m
+ δ

)p

for any k ≥ N.

Therefore, it follows from Lemma 3.1 that for any k ≥ N

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 4mvCp,m(f(xk)− f∗)
1
p +m2v2 < ∥xk − x∗∥2 − 4mvδCp,m.

Summing the above inequality over k = N, . . . , t− 1, we have

∥xt − x∗∥2 < ∥xN − x∗∥2 − 4m(t−N)vδCp,m,

which yields a contradiction for a sufficiently large t. The proof is complete.

Remark 3.4. Theorem 3.1 shows the convergence of Algorithm 1 to the optimal value of

problem (1.1) within a tolerance when the constant stepsize rule is adopted. The tolerance

in (3.14) is given in terms of the stepsize and circumstances of problem (1.1), including the

number of component functions and parameters of Hölder conditions. In particular, when

m = 1, problem (1.1) is reduced to a constrained quasi-convex optimization problem, and

then the convergence result described in Theorem 3.1 is reduced to [21, Theorem 3.1] (when

noise and error are vanished); when each component function in problem (1.1) is convex, the

Hölder condition (p = 1) is equivalent to the bounded subgradient assumption, and then the

convergence result described in Theorem 3.1 is reduced to [33, Proposition 2.1].

Theorem 3.2. Suppose that Assumptions 1 and 2 are satisfied. Let {xk} be a sequence gen-

erated by Algorithm 1 with the diminishing stepsize rule (S2). Then the following statements

hold.

(i) lim infk→∞ f(xk) = f∗.

(ii) If f is coercive, then limk→∞ f(xk) = f∗ and limk→∞ dist(xk, X
∗) = 0.

(iii) If
∑∞

k=0 v
2
k < ∞, then {xk} converges to an optimal solution of problem (1.1).

Proof. (i) Fix x∗ ∈ X∗. Summing (3.7) over k = 0, 1, . . . , n− 1, we have

∥xn − x∗∥2 ≤ ∥x0 − x∗∥2 − 4mCp,m

n−1∑
k=0

vk(f(xk)− f∗)
1
p +m2

n−1∑
k=0

v2k, (3.15)

and thus, ∑n−1
k=0 vk(f(xk)− f∗)

1
p∑n−1

k=0 vk
≤ ∥x0 − x∗∥2

4mCp,m
∑n−1

k=0 vk
+

m
∑n−1

k=0 v
2
k

4Cp,m
∑n−1

k=0 vk
. (3.16)

12



Note by (3.2) that

lim
n→∞

∥x0 − x∗∥2∑n−1
k=0 vk

= 0, (3.17)

and by Lemma 2.5 (with vk in place of ak) that

lim
n→∞

∑n−1
k=0 v

2
k∑n−1

k=0 vk
= lim

n→∞
vn = 0. (3.18)

Consequently, by Lemma 2.5 (with (f(xk)− f∗)
1
p in place of ak), (3.16) implies that

lim inf
n→∞

(f(xk)− f∗)
1
p ≤ lim inf

n→∞

∑n−1
k=0 vk(f(xk)− f∗)

1
p∑n−1

k=0 vk
≤ 0.

This shows the desired assertion.

(ii) Fix σ > 0. Since {vk} is diminishing, there exists N ∈ N such that

vk ≤ 2

m
Cp,mσ

1
p for any k ≥ N. (3.19)

Define

Xσ := X ∩ lev≤f∗+σf and ρ(σ) := max
x∈Xσ

dist(x,X∗). (3.20)

By the assumption that f is coercive, it follows that its level set lev≤f∗+σf is bounded, and

so is Xσ. Thus, by (3.20), one has ρ(σ) < ∞. Fix k ≥ N . We show

dist(xk+1, X
∗) ≤ max{dist(xk, X∗), ρ(σ) + 2Cp,mσ

1
p } (3.21)

by claiming the following two implications:

[f(xk) > f∗ + σ] ⇒ [dist(xk+1, X
∗) ≤ dist(xk, X

∗)]; (3.22)

[f(xk) ≤ f∗ + σ] ⇒ [dist(xk+1, X
∗) ≤ ρ(σ) + 2Cp,mσ

1
p ]. (3.23)

To prove (3.22), we suppose that f(xk) > f∗+σ. Then Lemma 3.1 is applicable to concluding

that, for any x∗ ∈ X∗,

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 4mCp,mvkσ
1
p +m2v2k ≤ ∥xk − x∗∥2 −m2v2k

(due to (3.19)). Consequently, one can prove (3.22) by selecting x∗ := PX∗(xk). To show

(3.23), we suppose that f(xk) ≤ f∗ + σ. Then we conclude that xk ∈ Xσ, and so, (3.20) says

that dist(xk, X
∗) ≤ ρ(σ). In view of Algorithm 1, for any x∗ ∈ X∗, we obtain

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥+
m∑
i=1

∥zk,i − zk,i−1∥ ≤ ∥xk − x∗∥+ vkm,

and thus,

dist(xk+1, X
∗) ≤ dist(xk, X

∗) + vkm ≤ ρ(σ) + vkm.
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This, together with (3.19), shows (3.23). Therefore, (3.21) is proved as desired.

By assertion (i), we can assume, without loss of generality, that f(xN ) ≤ f∗+σ (otherwise,

we can choose a larger N); consequently, one has by (3.23) that dist(xN+1, X
∗) ≤ ρ(σ) +

2Cp,mσ
1
p . Then, we inductively obtain by (3.21) that

dist(xk, X
∗) ≤ ρ(σ) + 2Cp,mσ

1
p for any k > N. (3.24)

Since f is continuous and coercive, its level sets are compact, and so, it is trivial to see

that limσ→0 ρ(σ) = 0. Hence we obtain by (3.24) that limk→∞ dist(xk, X
∗) = 0, and thus

limk→∞ f(xk) = f∗ (by the continuity of f).

(iii) By the assumption that
∑∞

k=0 v
2
k < ∞, one sees from (3.15) that {∥xk − x∗∥} is

bounded, and so is {xk}. Since further it was proved in assertion (i) of this theorem that

lim infk→∞ f(xk) = f∗, {xk} has at least a cluster point falling in X∗, assumed as x̄ ∈ X∗.

Noting that limn→∞
∑∞

k=n v
2
k = 0, we obtain by (3.7) (with x̄ in place of x∗) that {∥xk− x̄∥2}

is a Cauchy sequence, and thus, it converges to 0. Hence, {xk} converges to x̄ (∈ X∗). The

proof is complete.

It was reported in [21, Examples 3.1 and 3.3] that the Hölder condition (i.e., Assumption

2) is essential for the convergence behavior of subgradient-type methods for quasi-convex

optimization. The following example illustrates that Assumption 1 is also essential for the

validity of the established convergence theorems.

Example 3.2. Consider problem (1.1), where X = R, m = 2, and the two component

functions are

f1(x) := max{x+ 2, 0} and f2(x) := max{−2x+ 2, 0}.

Obviously, f∗
1 = f∗

2 = 0, X∗
1 = (−∞,−2] and X∗

2 = [1,+∞); f∗ = 3 and X∗ = {1}. Clearly,

one sees that X∗ ̸= X∗
1 ∩X∗

2 , and so Assumption 1 is not satisfied. It is easy to verify that

f1 and f2 are quasi-convex and satisfy the Hölder condition of order 1 on R with Lmax = 2,

and so Assumption 2 is satisfied.

Starting from x0 = 0, we apply Algorithm 1 to solve problem (1.1). We claim that the

generated sequence may not converge to the optimal value/solution of problem (1.1) for any

stepsize. Indeed, in this setting, one has that ∂GP f1(0) = R+, g1,1 = 1 and z1,1 = −v < 0, and

then ∂GP f2(zk,1) = R−, g1,2 = −1 and z1,2 = z1,1 + v = 0. Consequently, a fixed sequence is

generated, and so xk ≡ 0 and limk→∞ f(xk) = 4. Hence, Theorem 3.1 fails whenever v < 1
4 ,

and Theorem 3.2 fails for any diminishing stepsize.

When the prior information on f∗ is available, a dynamic stepsize rule is usually considered

to achieve an optimal convergence property in the literature of subgradient methods; see,

e.g., [7, 11, 22, 33, 34]. Below, we show the convergence of the incremental quasi-subgradient

method to an optimal solution of problem (1.1) when the dynamic stepsize rule (S3) is

adopted.
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Theorem 3.3. Suppose that Assumptions 1 and 2 are satisfied. Let {xk} be a sequence

generated by Algorithm 1 with the dynamic stepsize rule (S3). Then {xk} converges to an

optimal solution of problem (1.1).

Proof. By Lemma 3.1 and (3.3), we obtain that, for any x∗ ∈ X∗ and k ∈ N,

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 4γk(2− γk)C
2
p,m(f(xk)− f∗)

2
p

≤ ∥xk − x∗∥2 − 4γ(2− γ)C2
p,m(f(xk)− f∗)

2
p .

This shows that the sequence {∥xk − x∗∥} is decreasing, and hence, {xk} is bounded. It also

follows from the above inequality that

∞∑
k=1

(f(xk)− f∗)
2
p ≤ 1

4γ(2− γ)C2
p,m

∥x0 − x∗∥2,

which is finite. Consequently, noting that f(xk)−f∗ ≥ 0 for any k ∈ N, one has limk→∞ f(xk) =

f∗. Hence, any cluster point of {xk} is an optimal solution of problem (1.1), denoted by

x̄ ∈ X∗. Since further {∥xk − x∗∥} is decreasing, it converges to ∥x̄ − x∗∥ for any x∗ ∈ X∗.

Hence, {xk} converges to an optimal solution of problem (1.1). The proof is complete.

At the end of this subsection, we present a finite convergence property of the incremental

quasi-subgradient method to the solution set X∗ of problem (1.1) under the assumption that

X∗ has a nonempty interior.

Theorem 3.4. Suppose that Assumptions 1 and 2 are satisfied, and let {xk} be a sequence

generated by Algorithm 1. Suppose x∗ ∈ X∗ and σ > 0 are such that B(x∗, σ) ⊆ X∗. Then

xk ∈ X∗ for some k ∈ N, provided that one of the following conditions hold:

(i) vk = v ∈ (0, 2σm ) for any k ∈ N, or

(ii) {vk} satisfies the diminishing stepsize rule (S2).

Proof. To proceed, we define a new process {x̂k} via the classical incremental subgradient

method starting with x̂0 := x0. That is, for each iteration, we start with ẑk,0 := x̂k, through

i = 1, . . . ,m,

ẑk,i := PX

(
ẑk,i−1−vkĝk,i

)
, where ĝk,i ∈

{
∂GP fi(ẑk,i−1) ∩ S(0, 1), if fi(ẑk,i−1) > f∗

i ,

{0}, otherwise,
(3.25)

and finally arrive at x̂k+1 := ẑk,m. Comparing with Algorithm 1, we observe that the process

{x̂k} is identical to {xk}.
We prove by contradiction, assuming that f(x̂k) > f∗ for any k ∈ N. Fixing k ∈ N, we

define

Ik := {i ∈ {1, . . . ,m} : fi(ẑk,i−1) > f∗
i }. (3.26)
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Clearly, Ik ̸= ∅; otherwise, f(x̂k) = f∗ and a contradiction is achieved. Fix i ∈ Ik. By the

assumption that B(x∗, σ) ⊆ X∗ and ∥ĝk,i∥ = 1, one has that x∗ + σĝk,i ∈ X∗, and hence

fi(x
∗ + σĝk,i) = f∗

i < fi(ẑk,i−1) (cf. (3.26)). Then it follows from (2.1) that ⟨ĝk,i, x∗ + σĝk,i −
ẑk,i−1⟩ < 0. Consequently,

⟨ĝk,i, ẑk,i−1 − x∗⟩ > σ when i ∈ Ik, and ⟨ĝk,i, ẑk,i−1 − x∗⟩ = 0 otherwise

(by (3.25), ĝk,i = 0 when i /∈ Ik). Therefore, we obtain that

m∑
i=1

⟨ĝk,i, ẑk,i−1 − x∗⟩ > |Ik|σ ≥ σ for any k ∈ N, (3.27)

where |Ik| ≥ 1 since Ik ̸= ∅.
On the other hand, by (3.25), it follows that

∥ẑk,i − x∗∥2 ≤ ∥ẑk,i−1 − vkĝk,i − x∗∥2

≤ ∥ẑk,i−1 − x∗∥2 − 2vk ⟨ĝk,i, ẑk,i−1 − x∗⟩+ v2k.

Summing the above inequality over i = 1, . . . ,m, one has

vk

m∑
i=1

⟨ĝk,i, ẑk,i−1 − x∗⟩ ≤ ∥x̂k − x∗∥2 − ∥x̂k+1 − x∗∥2

2
+

mv2k
2

;

consequently, ∑n−1
k=0 (vk

∑m
i=1⟨ĝk,i, ẑk,i−1 − x∗⟩)∑n−1

k=0 vk
≤ ∥x0 − x∗∥2

2
∑n−1

k=0 vk
+

m
∑n−1

k=0 v
2
k

2
∑n−1

k=0 vk
. (3.28)

We now claim, under the assumption of (i) or (ii), that

lim inf
n→∞

m∑
i=1

⟨ĝn,i, ẑn,i−1 − x∗⟩ < σ. (3.29)

(i) When a constant stepsize v ∈ (0, 2σm ) is used, (3.28) is reduced to∑n−1
k=0

∑m
i=1⟨ĝk,i, ẑk,i−1 − x∗⟩

n
≤ ∥x0 − x∗∥2

2nv
+

mv

2
,

and thus, by Lemma 2.5, we obtain that

lim inf
n→∞

m∑
i=1

⟨ĝn,i, ẑn,i−1 − x∗⟩ ≤ lim inf
n→∞

∑n−1
k=0

∑m
i=1⟨ĝk,i, ẑk,i−1 − x∗⟩

n
≤ mv

2
< σ.

(ii) When a diminishing stepsize is used, by (3.17) and (3.18), it also follows from Lemma

2.5 and (3.28) that

lim inf
n→∞

m∑
i=1

⟨ĝn,i, ẑn,i−1 − x∗⟩ ≤ lim inf
n→∞

∑n−1
k=0 (vk

∑m
i=1⟨ĝk,i, ẑk,i−1 − x∗⟩)∑n−1

k=0 vk
≤ 0 < σ.

Hence, we proved (3.29) under the assumption of (i) or (ii), which arrives at a contradiction

with (3.27). The proof is complete.
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3.2 Randomized incremental quasi-subgradient method

It could be very computationally expensive to calculate the subgradients of all component

functions at each iteration of the incremental quasi-subgradient method, especially when the

number of component functions is large and the calculation of subgradients is not simple. To

economize on the computational cost of each iteration, we propose a randomized incremental

quasi-subgradient method, in which only one component function fωi is randomly selected to

construct the subgradient direction at each iteration, rather than to take each fi into account

exactly once within an ordered cycle.

This subsection aims to explore the convergence properties of the randomized incremental

quasi-subgradient method for solving problem (1.1) when using typical stepsize rules. The

randomized incremental quasi-subgradient method is formally presented as follows.

Algorithm 2: Randomized incremental quasi-subgradient method.

1 Initialize an initial point x0 ∈ Rn, a stepsize sequence {vk}, and let k := 0;

2 while f(xk) > f∗ do

3 Let Ik := {i ∈ {1, . . . ,m} : fi(xk) > f∗
i } ;

4 Pick up equiprobably a random variable ωk from the set Ik, calculate

gk,ωk
∈ ∂GP fωk

(xk) ∩ S(0, 1), and let xk+1 := PX (xk − vkgk,ωk
);

5 Let k := k + 1.

6 end

We recall the supermartingale convergence theorem, which is useful in the convergence

analysis of the randomized incremental quasi-subgradient method.

Theorem 3.5 ([9, p. 148]). Let {Yk}, {Zk} and {Wk} be three sequences of random variables,

and let {Fk} be a sequence of sets of random variables such that Fk ⊆ Fk+1 for any k ∈ N.
Suppose for any k ∈ N that

(a) Yk, Zk and Wk are functions of nonnegative random variables in Fk;

(b) E {Yk+1 | Fk} ≤ Yk − Zk +Wk;

(c)
∑∞

k=0Wk < ∞.

Then
∑∞

k=0 Zk < ∞ and {Yk} converges to a nonnegative random variable with probability 1.

To begin the convergence analysis of Algorithm 2, we provide below a basic inequality of

a randomized incremental quasi-subgradient iteration in terms of expectation. Recall that

Rp,m is defined in (3.6).

Lemma 3.2. Suppose that Assumptions 1 and 2 are satisfied. Let {xk} be a sequence gen-

erated by Algorithm 2, and let Fk := {x0, x1, . . . , xk} for any k ∈ N. Then it holds, for any

x∗ ∈ X∗ and k ∈ N, that

E
{
∥xk+1 − x∗∥2 | Fk

}
≤ ∥xk − x∗∥2 − 2vkRp,m(f(xk)− f∗)

1
p + v2k. (3.30)

17



Proof. Fix x∗ ∈ X∗ and k ∈ N. In view of Algorithm 2 and by the nonexpansive property of

projection operator, we have

∥xk+1 − x∗∥2 ≤ ∥xk − vkgk,ωk
− x∗∥2 = ∥xk − x∗∥2 − 2vk ⟨gk,ωk

, xk − x∗⟩+ v2k. (3.31)

Note by Assumption 1 that x∗ ∈ X∗ = ∩m
i=1X

∗
i , and so x∗ ∈ X∗

ωk
. By Algorithm 2, one sees

that ωk ∈ Ik and thus fωk
(xk) > f∗

ωk
. Then, Lemma 2.3 is applicable (with fωk

, xk, X
∗
ωk

in

place of h, x, X∗) to concluding that

⟨gk,ωk
, xk − x∗⟩ ≥

(
fωk

(xk)− fωk
(x∗)

Lωk

) 1
p

≥ L
− 1

p
max

(
fωk

(xk)− f∗
ωk

) 1
p .

Then (3.31) is reduced to

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2vkL
− 1

p
max

(
fωk

(xk)− f∗
ωk

) 1
p + v2k.

Taking the conditional expectation with respect to Fk, it follows that

E
{
∥xk+1 − x∗∥2 | Fk

}
≤ ∥xk − x∗∥2 − 2vkL

− 1
p

maxE
{(

fωk
(xk)− f∗

ωk

) 1
p | Fk

}
+ v2k. (3.32)

Below, we provide an estimation of the term E
{(

fωk
(xk)− f∗

ωk

) 1
p | Fk

}
. Noting in Al-

gorithm 2 that ωk is uniformly distributed on Ik, we have P (ωk = i) = 1
|Ik| for each i ∈ Ik,

and then conclude by the elementary of probability theory that

E
{(

fωk
(xk)− f∗

ωk

) 1
p | Fk

}
= 1

|Ik|
∑

i∈Ik (fi(xk)− f∗
i )

1
p

≥ m
− 1

p

(∑
i∈Ik(fi(xk)− f∗

i )
) 1

p
,

(3.33)

where the inequality follows from Lemma 2.4 (with fi(xk)−f∗
i and 1

p in place of ai and γ) and

|Ik| ≤ m. By the definition of Ik (see Algorithm 2), it follows that fi(xk) = f∗
i for each i /∈ Ik,

and so, by Assumption 1, one has
∑

i∈Ik(fi(xk)− f∗
i ) =

∑m
i=1(fi(xk)− fi(x

∗)) = f(xk)− f∗.

Therefore, (3.33) reduces to

E
{(

fωk
(xk)− f∗

ωk

) 1
p | Fk

}
≥ m

− 1
p (f(xk)− f∗)

1
p ,

which, together with (3.32) and (3.6), yields (3.30). The proof is complete.

By virtue of Lemma 3.2, we explore the convergence properties (with probability 1) of

the randomized incremental quasi-subgradient method when using different stepsize rules in

Theorems 3.6-3.8, respectively.

Theorem 3.6. Suppose that Assumptions 1 and 2 are satisfied. Let {xk} be a sequence

generated by Algorithm 2 with the constant stepsize rule (S1). Then it holds, with probability

1, that

lim inf
k→∞

f(xk) ≤ f∗ +

(
v

2Rp,m

)p

. (3.34)
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Proof. Fix δ > 0, and define a set Xδ ⊆ Rn by

Xδ := X ∩ lev
<f∗+

(
v

2Rp,m
+δ

)pf.

Let yδ ∈ X be such that f(yδ) = f∗ + δp (this yδ is well-defined by the continuity of f).

Hence yδ ∈ Xδ by construction. We define a new process {x̂k} by letting x̂0 := x0 and

x̂k+1 :=

{
PX (x̂k − vkĝk,ω̂k

) , if x̂k /∈ Xδ,

yδ, otherwise,

where ĝk,ω̂k
∈ ∂GP fω̂k

(x̂k) ∩ S(0, 1). Clearly, the process {x̂k} is identical to {xk}, except
that x̂k enters Xδ and then the process terminates with x̂k = yδ ∈ Xδ.

Assume that x̂k /∈ Xδ for any k ∈ N, and let F̂k := {x̂0, x̂1, . . . , x̂k} for any k ∈ N. It

says that f(x̂k) ≥ f∗ +
(

v
2Rp,m

+ δ
)p

and follows from Lemma 3.2 that the following relation

holds for any x∗ ∈ X∗ and k ∈ N:

E
{
∥x̂k+1 − x∗∥2 | F̂k

}
≤ ∥x̂k − x∗∥2 − 2vδRp,m.

Then, by Theorem 3.5, we obtain that
∑∞

k=0 2vδRp,m < ∞ with probability 1, which is

impossible. Hence, x̂k ∈ Xδ must occur for infinitely many times; consequently, in the

original process, it holds with probability 1 that

lim inf
k→∞

f(xk) ≤ f∗ +

(
v

2Rp,m
+ δ

)p

.

Since δ > 0 is arbitrary, (3.34) is obtained by letting δ tend to 0, and the proof is complete.

Remark 3.5. Theorem 3.6 depicts the convergence of Algorithm 2 to the optimal value of

problem (1.1) within a tolerance, expressed in terms of the stepsize, the number of component

functions and parameters of Hölder conditions, when the constant stepsize rule is adopted. It

is observed by (3.14) and (3.34) that the randomized incremental quasi-subgradient method

(Algorithm 2) admits a much less tolerance than that of the incremental quasi-subgradient

method (Algorithm 1) when adopting the same stepsize. Indeed, by (3.4) and (3.6),(
v

2Rp,m

)p(
mv

4Cp,m

)p =
2p−1

mp
≪ 1.

The proof of the following theorem uses the property of the diminishing stepsize rule (cf.

(3.2)) and a line of analysis similar to that of Theorem 3.6. Hence we omit the details.

Theorem 3.7. Suppose that Assumptions 1 and 2 are satisfied. Let {xk} be a sequence

generated by Algorithm 2 with the diminishing stepsize rule (S2). Then lim infk→∞ f(xk) = f∗

with probability 1.
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Theorem 3.8. Suppose that Assumptions 1 and 2 are satisfied. Let {xk} be a sequence

generated by Algorithm 2 with the dynamic stepsize rule (S4). Then {xk} converges to an

optimal solution of problem (1.1) with probability 1.

Proof. By Lemma 3.2 and (3.5), it follows that, for any x∗ ∈ X∗ and any k ∈ N,

E
{
∥xk+1 − x∗∥2 | Fk

}
≤ ∥xk − x∗∥2 − γk(2− γk)R

2
p,m(f(xk)− f∗)

2
p

≤ ∥xk − x∗∥2 − γ(2− γ)R2
p,m(f(xk)− f∗)

2
p .

Then it follows from Theorem 3.5 that {∥xk−x∗∥} is convergent and
∑∞

k=1(f(xk)−f∗)
2
p < ∞

with probability 1; consequently, limk→∞ f(xk) = f∗ with probability 1.

Let (Ω,F , P ) be the probability space. Let Z be a countable and dense subset of X∗, and

let

Θ(z) := {ω : {∥xk(ω)− z∥} is convergent} for any z ∈ Z,

and Θ :=
∩

z∈Z Θ(z). Recall that {∥xk − x∗∥} is convergent with probability 1, that is

P (Θ(x∗)) = 1, for any x∗ ∈ X∗. Then it follows that P (Θ(z)c) = 0 for any z ∈ Z ⊆ X∗. By

the elements of probability theory, one checks that

P (Θ) = 1− P (Θc) = 1− P

(∪
z∈Z

Θ(z)c

)
≥ 1−

∑
z∈Z

P (Θ(z)c) = 1. (3.35)

For any ω ∈ Θ and any z ∈ Z, it says that {∥xk(ω) − z∥} is convergent; hence {xk(ω)} is

bounded and must have a cluster point. Define x̄ : Ω → Rn such that

x̄(ω) is a cluster point of {xk(ω)} for any ω ∈ Θ.

Note again that limk→∞ f(xk) = f∗ with probability 1. Without loss of generality, we can

assume that limk→∞ f (xk(ω)) = f∗ for any ω ∈ Θ. Then it follows from the continuity of f

that

x̄(ω) ∈ X∗ for any ω ∈ Θ. (3.36)

Fix ϵ > 0 and ω ∈ Θ. Since x̄(ω) ∈ X∗ and Z ⊆ X∗ is dense, there exists z(ω) ∈ Z such that

∥x̄(ω)− z(ω)∥ ≤ ϵ

3
. (3.37)

Let {xki(ω)} be a subsequence of {xk(ω)} such that limi→∞ xki(ω) = x̄(ω). Hence we obtain

by (3.37) that limi→∞ ∥xki(ω)− z(ω)∥ ≤ ϵ
3 . By the definition of Θ, one has that {∥xk(ω)−

z(ω)∥} is convergent, and so limk→∞ ∥xk(ω)− z(ω)∥ ≤ ϵ
3 . Then there exists N ∈ N such that

∥xk(ω)− z(ω)∥ ≤ 2ϵ
3 for any k ≥ N . This, together with (3.37), yields

∥xk(ω)− x̄(ω)∥ ≤ ∥xk(ω)− z(ω)∥+ ∥x̄(ω)− z(ω)∥ ≤ ϵ for any k ≥ N.

This shows that {xk(ω)} converges to x̄(ω) for any ω ∈ Θ. This, together with (3.36), says

that

Θ ⊆ {ω ∈ Ω : {xk(ω)} converges to x̄(ω)} ∩ {ω ∈ Ω : x̄(ω) ∈ X∗} .
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Noting by (3.35) that P (Θ) = 1, we conclude

P ({ω ∈ Ω : {xk(ω)} converges to x̄(ω), x̄(ω) ∈ X∗}) ≥ P (Θ) = 1.

The proof is complete.

4 Applications

This section aims to present two important classes of applications of the sum-minimization

problem (1.1) of a number of quasi-convex component functions: the quasi-convex feasibility

problem and the sum of ratios problem.

4.1 Quasi-convex feasibility problem

The feasibility problem is at the core of the modeling of many problems in various areas

of mathematics and physical sciences; see [5, 20] and references therein. In particular, the

quasi-convex feasibility problem (QCFP) is an important class of feasibility problems (see

[11, 18, 37]), which is to find a solution of the following system of inequalities:

x ∈ X, and hi(x) ≤ 0 for each i = 1, . . . ,m, (4.1)

where hi : Rn → R is quasi-convex and continuous for each i = 1, . . . ,m, and X is nonempty,

closed and convex. It is always assumed that the solution set of problem (4.1) is nonempty,

that is,

S := {x ∈ X : hi(x) ≤ 0 for each i = 1, . . . ,m} ̸= ∅.

The feasibility problem (4.1) can be cast into the framework of the sum-minimization

problem (1.1) as the following model:

min
x∈X

f(x) :=
m∑
i=1

fi(x), where fi := max{hi, 0}. (4.2)

For each i = 1, . . . ,m, we obtain by Lemma 2.2 that fi is quasi-convex and ∂GP fi(x) =

∂GPhi(x) if hi is quasi-convex and x /∈ lev≤0hi. It is also clear that S is the optimal solution

set of problem (4.2) if S ̸= ∅. As a direct application of Algorithm 1 to problem (4.2), the

incremental quasi-subgradient method for QCFP (4.1) is presented as follows.
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Algorithm 3: Incremental quasi-subgradient method - QCFP.

1 Initialize an initial point x0 ∈ Rn, a stepsize sequence {vk}, and let k := 0;

2 while maxi=1,...,m hi(xk) > 0 do

3 Let zk,0 := xk;

4 for i = 1, . . . ,m do

5 if hi(zk,i−1) ≤ 0 then

6 Let zk,i := zk,i−1;

7 else

8 Calculate gk,i ∈ ∂GPhi(zk,i−1) ∩ S(0, 1) and zk,i := PX (zk,i−1 − vkgk,i);

9 end

10 end

11 Let xk+1 := zk,m and k := k + 1.

12 end

It is easy to see that Assumption 1 is satisfied for problem (4.2) if S ̸= ∅; Assumption 2 is

satisfied for problem (4.2) if each function hi in (4.1) satisfies the Hölder condition of order

p. Then, as direction applications of Theorems 3.1-3.3, the convergence results of Algorithm

3 when using different stepsize rules are obtained in the following theorem. Recall that Cp,m

and Rp,m are defined by (3.4) and (3.6), respectively.

Theorem 4.1. Suppose that S ̸= ∅ and that hi satisfies the Hölder condition of order p with

modulus Li on X for each i = 1, . . . ,m. Let {xk} be a sequence generated by Algorithm 3.

Then the following assertions are true.

(i) If the constant stepsize rule (S1) is selected, then lim infk→∞ max
i=1,...,m

hi(xk) ≤
(

mv
4Cp,m

)p
.

(ii) If the diminishing stepsize rule (S2) is selected, then

(ii-a) lim infk→∞ max
i=1,...,m

hi(xk) = 0;

(ii-b) If each hi is coercive, then limk→∞maxi=1,...,m hi(xk) = 0 and limk→∞ dist(xk, S) =

0;

(ii-c) If
∑∞

k=0 v
2
k < ∞, then {xk} converges to a solution in S.

(iii) If the dynamic stepsize rule (S3) (with 0 in place of f∗) is selected, then {xk} converges

to a solution in S.

As a direct application of Algorithm 2 to problem (4.2), the randomized incremental quasi-

subgradient method for QCFP (4.1) is presented as follows. Then, as direct applications of

Theorems 3.6-3.8, the convergence results of Algorithm 4 when using different stepsize rules

are obtained in the following theorem.
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Algorithm 4: Randomized incremental quasi-subgradient method - QCFP.

1 Initialize an initial point x0 ∈ Rn, a stepsize sequence {vk}, and let k := 0;

2 while maxi=1,...,m hi(xk) > 0 do

3 Let Ik := {i ∈ {1, . . . ,m} : hi(xk) > 0} ;
4 Pick up equiprobably a random variable ωk from the set Ik, calculate

gk,ωk
∈ ∂GPhωk

(xk) ∩ S(0, 1), and let xk+1 := PX (xk − vkgk,ωk
);

5 Let k := k + 1.

6 end

Theorem 4.2. Suppose that S ̸= ∅ and that hi satisfies the Hölder condition of order p with

modulus Li on X for each i = 1, . . . ,m. Let {xk} be a sequence generated by Algorithm 4.

Then the following assertions are true.

(i) If the constant stepsize rule (S1) is selected, then lim infk→∞ max
i=1,...,m

hi(xk) ≤
(

v
2Rp,m

)p
with probability 1.

(ii) If the diminishing stepsize rule (S2) is selected, then lim infk→∞ max
i=1,...,m

hi(xk) = 0 with

probability 1.

(iii) If the dynamic stepsize rule (S4) (with 0 in place of f∗) is selected, then {xk} converges

to a solution in S with probability 1.

4.2 Sum of ratios problem

Typically, fractional programming, optimizing a certain indicator (e.g. efficiency) charac-

terized by a ratio of technical terms, is widely applied in various areas; see [4, 13, 44] and

references therein. In particular, the sum of ratios problem (SOR) [41] is a typical fraction-

al programming and has a variety of important applications in economics and management

science, which is formulated as

max
∑m

i=1Ri(x) :=
pi(x)
ci(x)

s.t. x ∈ X,
(4.3)

where pi : Rn → R is nonnegative and concave, ci : Rn → R is positive and convex for each

i = 1, . . . ,m. It is difficult to globally solve the SOR (4.3), especially for large-scale problems.

Exploiting the additivity structure of problem (4.3), we propose a new approach to find

a global optimal solution of the SOR by virtue of sum-minimization formula. Indeed, by [44,

Theorems 2.3.3 and 2.5.1], we have that the ratio Ri is quasi-concave for each i = 1, . . . ,m,

and so problem (4.3) is a sum-maximization problem of a number of quasi-concave functions.

This shows that the SOR falls in the framework (1.1).

Moreover, let ri denote the maximal ratio of Ri over X, and define hi(·) := ri − Ri(·).
The SOR (4.3) can also be approached by solving the resulting QCFP (4.1). In [11], Censor
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and Segal proposed a subgradient projection method to solve the QCFP (4.1) by using the

most violated control. In the numerical study, we apply the incremental quasi-subgradient

methods and the subgradient projection method to solve the SOR (4.3) and its reformulated

QCFP (4.1), respectively, and the abbreviations of these methods are listed in Table 1.

Table 1: List of the algorithms compared in the numerical study.
Abbreviations Algorithms

SGPM SubGradient Projection Method in [11], which is to solve (4.1).

IncQSGM Incremental Quasi-SubGradient Method (Algorithm 1) for solving (4.3).

RandQSGM Randomized incremental Quasi-SubGradient Method (Algorithm 2) for solving (4.3).

In the numerical study, we consider the multiple Cobb-Douglas production efficiency

problem (in short, MCDPE) [10], which is an application of the SOR. Formally, consider a

set of m productions with s projects and n factors. Let x := (xj)
⊤ ∈ Rn denote the amounts

of n factors. The profit function of production i can be expressed as the Cobb-Douglas

production function

pi(x) := ai,0

n∏
j=1

x
ai,j
j ,

where ai,j ≥ 0 for j = 0, . . . , n and
∑n

j=1 ai,j = 1. The cost function of production i is

formulated as a linear function

ci(x) :=

n∑
j=1

ci,jxj + ci,0,

where ci,j ≥ 0 for j = 0, . . . , n. Due to the daily profit or operating cost constraints, the

amounts of investment for factors should fall in the constraint set

X := {x ∈ Rn
+ :

n∑
j=1

btjxj ≥ pt, t = 1, . . . , s}.

Then the MCDPE is modeled as the SOR (4.3). In the numerical experiments, the parameters

of MCDPE are randomly chosen from different intervals:

ai,0 ∈ [0, 10], ai,j , btj , ci,0, ci,j ∈ [0, 1], and pt ∈ [0, n/2].

The diminishing stepsize rule is chosen as vk = v/(1+0.1k), where v is always chosen in [2, 5],

while the constant stepsize is selected in [1, 2]. All numerical experiments are implemented

in MATLAB R2014a and executed on a personal laptop (Intel Core i5, 3.20 GHz, 8.00 GB

of RAM).

We first compare the performances (in terms of the obtained objective value and the CPU

time) of the SGPM, IncQSGM and RandQSGM for different dimensions. The computation

results are displayed in Table 2. In this table, the columns of Projects, Factors and Pro-

ductions represent the numbers of projects (s), factors (n) and productions (m) of MCDPE,
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and the columns of fopt and CPUtime denote the obtained optimal value and the CPU time

(seconds) cost to reach fopt by each algorithm, respectively. It is observed from Table 2 that

the IncQSGM and RandQSGM outperform the SGPM in the sense that they achieve a larger

production efficiency in a shorter time than the SGPM for different dimensional MCDPEs.

Table 2: Computation results for maximizing MCDPE.
Circumstance of problem SGPM IncQSGM RandQSGM

Projects Factors Productions fopt CPUtime fopt CPUtime fopt CPUtime

50 50 10 23.31 0.51 23.46 0.17 23.48 0.18

50 50 100 210.22 3.38 211.86 2.41 211.84 1.74

100 100 10 11.73 0.41 11.77 0.26 11.81 0.23

100 100 100 104.20 2.62 106.52 1.40 106.49 1.03

500 500 10 2.21 1.45 2.31 0.54 2.34 0.38

500 500 100 21.01 9.61 21.25 5.93 21.24 4.28

1000 1000 10 1.15 3.23 1.19 1.69 1.21 1.47

1000 1000 100 10.56 19.64 10.62 12.48 10.60 10.41

The second experiment is to compare the convergence behavior of the SGPM, IncQSGM

and RandQSGM by using the constant and diminishing stepsize rules, where the problem

size is fixed to be (m,n, s) = (10, 100, 100). We summary the averaged performance of the

compared algorithms in 500 random trials. Figure 1 plots the mean of the estimated Cobb-

Douglas production efficiencies along the number of the iterations in these 500 trials, from

which we observe that the IncQSGM converges faster (in terms of the number of iterations)

to an (approximate) optimal value that the RandQSGM and the SGPM. Furthermore, Figure

1(a) illustrates that the RandQSGM obtains a better estimation than the IncQSGM when

the constant stepsize rule is adopted, which is consistent with Remark 3.5. Figure 1(b)

demonstrates that both IncQSGM and RandQSGM converge to an optimal value when the

diminishing stepsize rule is employed, which is consistent with Theorems 3.2 and 3.7. It is

also shown that both IncQSGM and RandQSGM approach a better solution that the SGPM.

Figure 2 plots the error bars of the CPU times in 500 trials when varying the number of

component functions from 10 to 200. It is revealed that the RandQSGM is faster (in terms of

CPU time) than the IncQSGM, which is faster than the SGPM. This indicates the potential

applicability of the RandQSGM to the large-scale SOR. Figure 3 plots the obtained maximal

production efficiencies in each of these 500 trials. It is observed that the IncQSGM and

RandQSGM outperform the SGPM consistently.

Finally, we conduct 500 simulations to show the stability of RandQSGM, which start

from the same initial point, adopt the same stepsizes (constant: vk ≡ 1.5 or diminishing:

vk = 3/(1 + 0.1k)) and solve a same MCDPE, but follow different stochastic processes.

Figure 4 plots the error bars of the estimated Cobb-Douglas production efficiencies in these

500 simulations. It is shown that the RandQSGM is highly stable and converges to an optimal

value with probability 1.
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Figure 1: The (averaged) convergence behavior of SGPM, IncQSGM and RandQSGM in 500

random MCDPEs.
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Figure 2: Variation of CPU time when varying the number of component functions.
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