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Abstract. In the present paper, we propose a modified inexact Levenberg-Marquardt method (LMM)

and its global version by virtue of Armijo, Wolfe or Goldstein line-search schemes to solve nonlinear

least squares problems (NLSP), especially for the underdetermined case. Under a local error bound

condition, we show that a sequence generated by the modified inexact LMM converges to a solution

superlinearly and even quadratically for some special parameters, which improves the corresponding

results of the classical inexact LMM in [Optim. Methods Softw. 17 (2002): pp. 605-626]. Furthermore,

the quadratical convergence of the global version of the modified inexact LMM is also established.

Finally, preliminary numerical experiments on some medium/large scale underdetermined NLSP show

that our proposed algorithm outperforms the classical inexact LMM.
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1 Introduction

Let f : Rn → Rm be a Fréchet differentiable function with its continuous Fréchet derivative

denoted by f ′. Consider the following nonlinear least squares problem (NLSP)

min
x∈Rn

ϕ(x) :=
1

2
∥f(x)∥2, (1.1)

where ∥ · ∥ denotes the Euclidean norm. Applications for this type of problem can be found

in chemistry, physics, finance, economics and so on; see [7, 11, 31, 44] and references therein.

Newton’s method is one of the most important algorithms for solving NLSP (1.1) (see

[5, 13–15, 53] and references therein), which in generally converges quadratically. However,

it requires the computation of the Hessian matrix of ϕ at each iteration

∇2ϕ(xk) := f ′(xk)
T f ′(xk) +G(xk),

where G(xk) contains the second-order Fréchet derivative of f , which may cost expensive,

especially for large scale problems. In order to make the procedure more efficient, Gauss-

Newton (GN) method (see [24, 35, 39]) was proposed to obtain the search direction dk by

solving the following minimization problem

min
d∈Rn

∥f(xk) + f ′(xk)d∥2,

that is,

dk := −f ′(xk)†f(xk),

where f ′(xk)
† is the Moore-Penrose inverse of f ′(xk). Obviously, dk is also the solution of

the following linear equation (see [7, 23])

f ′(xk)
T f ′(xk)d = −f ′(xk)T f(xk). (1.2)

Note that in the case when f ′(xk)
T f ′(xk) is singular, the cost of the GN method is expensive.

To avoid this disadvantage, the Levenberg-Marquardt method (LMM) (see, e.g., [32, 40, 41])

was introduced, where the direction dk is provided by solving the following symmetric positive

definite linear equation (
f ′(xk)

T f ′(xk) + λkIn
)
d = −f ′(xk)T f(xk), (1.3)

where In is the identity matrix in Rn×n and λk > 0 is a given parameter. Clearly, solving

(1.3) is equivalent to solving the following regularized optimization problem

min
d∈Rn

ψk(d) := ∥f(xk) + f ′(xk)d∥2 + λk∥d∥2. (1.4)

Setting λk := ∥f(xk)∥δ with δ ∈ [1, 2], Fan and Yuan [19] showed that a sequence {xn} gener-

ated by the LMM converges quadratically to a solution under a local error bound condition,
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which is weaker than the condition that f ′(x∗) is nonsingular (noting that these results extend

the corresponding ones in [51], in which only the quadratical convergence of {d(xn, S)} was

established, where S := {x| f(x) = 0}). Other works about different choices of the parameter

λk can be found in [16, 20] and references therein.

Note that, the inexact versions of numerical algorithms are much more attractive in prac-

tical applications because exactly solving the subproblems (1.3) is very expensive, especially

for large scale problems. Hence, Dan et al. [12] introduced an inexact Levenberg-Marquardt

method (LMM) for solving NLSP (1.1), in which subproblem (1.3) is solved approximately

at each iteration. The inexact LMM is formally presented as follows.

Algorithm ILM

Step 0 Choose an initial point x0 ∈ Rn and a parameter δ ∈ (0, 2], and set k := 0.

Step 1 If xk satisfies a stopping criterion, then stop.

Step 2 Set λk := η∥f(xk)∥δ. Take a residual control ϵk > 0 and calculate dk by solving

approximately the subproblem (1.3) such that the residual

rk :=
(
f ′(xk)

T f ′(xk) + λkIn
)
dk + f ′(xk)

T f(xk)

satisfies

∥rk∥ ≤ ϵk. (1.5)

Step 3 Set xk+1 := xk + dk and k := k + 1. Go to Step 1.

The convergence properties of Algorithm ILM, under the local error bound assumption,

were studied in [12, 17, 18], where main interests were focused on stopping criterion (1.5)

for the subproblem in Step 2. In particular, in [12, Theorems 2.1 and 2.2], the convergence

of {xk} and the superlinear (resp. quadratical) convergence of {d(xk, S)} were established

for the residual control ϵk := λko(∥f(xk)∥) (resp. ϵk := λkO(∥f(xk)∥2), which was weaken

to ϵk :=
√
λkO(∥f(xk)∥2) in [17, Theorem 2.2]); while, in [18], the convergence rates were

discussed for the relaxed residual control: ϵk ≤ O(∥f(xk)∥α+ξ), where α ∈ (0, 4), ξ > 0 and,

as a consequence, Algorithm ILM converges quadratically if ξ ≥ 1 and α ∈ [1, 2] (see [18,

Theorem2.3]).

In the present paper, we particularly focus on the NLSP (1.1) in the underdetermined

case (i.e., m ≪ n), which is found to be applicable in various areas; see [3, 12, 23, 39, 46]

and references therein. As the underlying problem size of (1.2) will be large in this case,

solving subproblems (1.3) may be expensive for large scale problems. In order to overcome

this disadvantage, under the full row rank assumption of the Jacobian f ′(xk), Bao et al. [3]

proposed the procedure to obtain dk, in which one approaches sk by solving

f ′(xk)f
′(xk)

T s = −f(xk) (1.6)
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and then determines dk := f ′(xk)
T sk. The numerical experiments in [3] revealed that this

switch scheme is more effective than the one based on (1.2). However, if the Jacobian is not

of full row rank, then the linear system (1.6) is inconsistent and so sk will not be well defined.

To fill this gap, inspired by the idea of LMM, we propose in the present paper a modified

exact LMM by combining the regularization technique and switch scheme (1.6). That is, for

each iteration, given a regularization parameter λk > 0, the search direction dk is calculated

by solving sk via (
f ′(xk)f

′(xk)
T + λkIm

)
s = −f(xk) (1.7)

and setting dk := f ′(xk)
T sk. This modified exact LMM seems new in the literature to the best

of our knowledge. The advantage of the proposed modified LMM over the ones in [12, 17, 18]

is significant in the underdetermined case, in which the underlying problem size of (1.7) is

much less than that of (1.3), and hence solving subproblems (1.7) is less expensive than (1.3).

Inspired by [12], in the present paper, we introduce a modified inexact LMM by approximately

solving problem (1.7), and investigate its convergence analysis, where the residual satisfies

∥rk∥ ≤ θk∥f(xk)∥ν with {θk} being a bounded positive sequence, ν ∈
[
1 + δ

2 , 2
]
and δ ∈ (0, 1].

In particular, the modified inexact LMM converges to a solution of (1.1) superlinearly and

even quadratically for some specific parameters under a local Hölder error bound condition,

which is a more general assumption than the classical error bound condition assumed in

[12, 17, 18]. It is worth mentioning that the Hölder error bound condition has also been

used to explore the convergence rate of the exact LMM (based on the standard subproblem

(1.3)) with the different choices of the LM parameters {λk} in (1.3): λk := η∥f(xk)∥σ with

σ ∈ [1, 2] and σ ∈ (0, 4−
√
2] in [22] and [54], respectively, where η > 0, and an adaptive LM

parameter in [1] (see [1, Algorithm LLM in page 7] for more details).

Note that the modified inexact LMM is guaranteed to converge fast when starting from

an initial point near a solution of NLSP (1.1). However, the selection of a high quality initial

point is a difficult issue, which may hinder the implementation of the modified inexact LMM

(as well as the classical LMM) in practical applications. To avoid this difficulty, we further

propose a globalization strategy for the modified inexact LMM by virtue of the Armijo,

Wolfe or Goldstein line-search schemes, and show that the generated sequence converges to a

solution quadratically under the local Hölder error bound condition. Preliminary numerical

results illustrate that the global version of the modified inexact LMM is more efficient than

the one proposed in [12] for solving some underdetermined NLSP.

The remainder of the paper is organized as follows. In section 2, we present some notions

and preliminary results. We propose a modified inexact LMM and establish its local conver-

gence rates under a local error bound condition of Hölder order in section 3. In section 4, a

globalized version of the modified inexact LMM with Armijo, Wolfe or Goldstein line-search

strategy is presented and its global convergence theorem is provided. Numerical experiments

for the underdetermined NLSP are reported in section 5.
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2 Notations and preliminary results

We consider the n-dimensional Euclidean space Rn with Euclidean norm ∥ · ∥. For x ∈ Rn

and r > 0, we use B(x, r) to denote the closed ball with radius r and center x. For W ⊆ Rn,

we use d(x,W ) and PW (x) to denote the Euclidean distance of x from W and the projection

of x onto W , respectively, that is,

d(x,W ) = inf{∥x− y∥| y ∈W} and PW (x) = {y ∈W | ∥x− y∥ = d(x,W )}.

Let Rm×n be the space of all m× n real matrices and In be the identity matrix in Rn×n.

Let A ∈ Rm×n and use AT to denote the transpose of A. The matrix A† ∈ Rn×m is said to

be the Moore-Penrose inverse of A if it satisfies the following four equalities:

AA†A = A, A†AA† = A†, (AA†)T = AA†, (A†A)T = A†A.

In particular, if rank(A) = l and the singular value decomposition (SVD) of A is

A = UΣV T , (2.1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and

Σ =

(
Σl 0

0 0

)
and Σl = diag{σ1, · · · , σl} with singular values σ1 ≥ · · · ≥ σl > 0. (2.2)

Then one has

A† = V Σ†UT .

The following lemmas describe some useful properties about matrix computation, in which

Lemma 2.1 is taken from [47, Theorem 4.11].

Lemma 2.1. Let A,B ∈ Rm×n be matrices with singular values given by

σ1 ≥ σ2 ≥ · · · ≥ σp and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃p,

respectively. Then

∥diag(σ̃1 − σ1, · · · , σ̃p − σp, 0, · · · , 0)∥ ≤ ∥B −A∥.

Lemma 2.2. Let A ∈ Rm×n be a matrix, and let λ > 0 be a constant. Then(
ATA+ λIn

)−1
AT = AT

(
AAT + λIm

)−1
, (2.3)

∥AT
(
AAT + λIm

)−1 ∥ ≤ 1

2
√
λ
, (2.4)

∥AAT
(
AAT + λIm

)−1 ∥ ≤ 1, (2.5)

and

∥
(
ATA+ λIn

)−1 ∥ ≤ 1

λ
. (2.6)
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Proof. It is obvious that

AT
(
AAT + λIm

)
=
(
ATA+ λIn

)
AT ,

and so (2.3) is seen to hold.

Suppose that rank(A) = l ≤ min{m,n}. Then, by the SVD of A, there exist orthogonal

matrices U ∈ Rm×m and V ∈ Rn×n such that (2.1) and (2.2) are satisfied. Hence, it follows

that

AT
(
AAT + λIm

)−1
= V ΣT

(
ΣΣT + λIm

)−1
UT (2.7)

and (
ATA+ λIn

)−1
= V

(
ΣTΣ+ λIn

)−1
V T . (2.8)

Then, it follows from (2.1), (2.7) and (2.8) that

∥AT
(
AAT + λIm

)−1 ∥ = ∥ΣT
(
ΣΣT + λIm

)−1 ∥ = max
1≤i≤l

{
σi

σ2i + λ

}
≤ 1

2
√
λ
,

∥AAT
(
AAT + λIm

)−1 ∥ = ∥ΣΣT
(
ΣΣT + λIm

)−1 ∥ = max
1≤i≤l

{
σ2i

σ2i + λ

}
≤ 1,

and

∥
(
ATA+ λIn

)−1 ∥ = ∥
(
ΣTΣ+ λIn

)−1 ∥ = max
1≤i≤l

{
1

σ2i + λ

}
≤ 1

λ
.

Therefore, (2.4), (2.5) and (2.6) are seen to hold. The proof is completed.

Let f : Rn → Rm be a Fréchet differentiable function with its continuous Fréchet derivative

denoted by f ′. Recall that f ′ is said to be Lipschitz continuous on D ⊂ Rn with modulus

L > 0 if

∥f ′(y)− f ′(x)∥ ≤ L∥y − x∥, ∀x, y ∈ D; (2.9)

and f ′ is said to be local Lipschitz continuous around x̂ ∈ Rn if there exist L > 0 and r > 0

such that (2.9) holds with B(x̂, r) in place of D.

Remark 2.1. If f ′ is Lipschitz continuous on B(x̂, r) with modulus L, then it is easy to see

that

∥f(y)− f(x)− f ′(x)(y − x)∥ ≤ L

2
∥y − x∥2, ∀x, y ∈ B(x̂, r), (2.10)

and there exists a constant L1 > 0 such that

∥f(y)− f(x)∥ ≤ L1∥y − x∥, ∀x, y ∈ B(x̂, r). (2.11)
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The notion of error bounds, introduced by Hoffman [25] for convex inequality systems,

plays an important role in the treatment of various issues in mathematical programming and

has been extensively studied by many researchers; see [43, 45, 52] and the references therein.

As a natural extension, error bounds of Hölder order have been introduced for polynomial

systems in [37] and widely explored in [33, 34, 38] and references therein. Here we consider

a nonlinear equation

f(x) = 0, (2.12)

and denote the set of its roots by

S := {x| f(x) = 0}.

The notion of the error bound of Hölder order is recalled as follows.

Definition 2.1. Let µ > 0, β > 0, x∗ ∈ S and D ⊆ Rn. Equation (2.12) is said to have

(i) an error bound of order β on D with modulus µ if

µd(x, S) ≤ ∥f(x)∥β, ∀x ∈ D; (2.13)

(ii) a local error bound of order β around x∗ if there exist µ̂ > 0 and r > 0 such that equation

(2.12) has an error bound of order β on B(x∗, r) with modulus µ̂.

In particular, equation (2.12) is said to have an error bound on D with modulus µ if (2.13)

holds for β = 1.

The notions of error bounds have been widely applied in the sensitivity and convergence

analysis of many optimization algorithms. In particular, the error bound or/and local error

bound (with β = 1) is applied in the convergence study of the LMM or inexact LMM; see

[4, 12, 16, 19–21, 51].

Remark 2.2. The notion of weak sharp minima has been extensively studied and widely used

to analyze the convergence properties of many optimization algorithms; see [9, 10, 28, 36, 50]

and references therein. As a natural extension, the notion of weak sharp minima of order β

(β > 1) has been investigated and applied in [8, 27, 29, 45, 48]. It is well-known that equation

(2.12) has an error bound of order β on D if and only if S is the set of weak sharp minima

of order 1
β for optimization problem (1.1) on D with modulus µ

1
β (see, e.g., [28, 48]).

3 A modified inexact LMM and its local convergence analysis

This section aims to propose a modified inexact Levenberg-Marquardt method (LMM) to

solve the NLSP (1.1) and establish its local convergence under the local error bound condition.

The modified inexact LMM is formally stated as follows.

Algorithm 3.1
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Step 0 Choose an initial point x0 ∈ Rn, parameters δ ∈ (0, 1] and ν ∈
[
1 + δ

2 , 2
]
, and a

sequence {θk} ⊆ R+ such that supk∈N θk < 1. Set k := 0.

Step 1 If ∥f(xk)∥ = 0, then stop.

Step 2 Set λk := ∥f(xk)∥δ, and calculate sk by solving approximately the following sub-

problem (
f ′(xk)f

′(xk)
T + λkIm

)
s = −f(xk) (3.1)

such that the residual

rk :=
(
f ′(xk)f

′(xk)
T + λkIm

)
sk + f(xk) (3.2)

satisfies

∥rk∥ ≤ θk∥f(xk)∥ν , (3.3)

and set dk := f ′(xk)
T sk.

Step 3 Set xk+1 := xk + dk and k := k + 1. Go to Step 1.

Note that the main difference between Algorithm 3.1 and Algorithm ILM is that (1.3)

in Algorithm ILM is replaced by (3.1) in Algorithm 3.1. In the underdetermined case, the

underlying problem size of (3.1) is much less than that of (1.3), and so, solving subproblems

(3.1) is less expensive than (1.3) for large scale problems.

Remark 3.1. The sequence generated by Algorithm 3.1 is well defined. Indeed, if xk is not a

solution of the equation f(x) = 0, one sees that λk = ∥f(xk)∥δ is always positive; hence, the

linear system (3.1) is symmetric and positive definite, and it has a unique solution. Thus, the

approximate solution sk satisfying (3.3) always exists, and so dk and xk+1 are well generated.

Remark 3.2. Algorithm 3.1 is well defined and all the main theorems in the present paper

remain true for the more general parameters setting such as δ ∈ (0, 2]. Here, we restrict the

parameters δ ∈ (0, 1] and ν ∈ [1+ δ
2 , 2] for the consideration of computation efficiency. Indeed,

in the case when f(xk) is near 0, if δ becomes smaller, then λk = ∥f(xk)∥δ becomes larger

and so the condition number of the coefficient matrix f ′(xk)f
′(xk)

T + λkIm for solving the

linear equations in (3.1) will be smaller; on the other hand, if ν becomes smaller, then ϵk =

θk∥f(xk)∥ν becomes larger and so less computation is required in (3.3). For this consideration,

small values of parameters δ and ν will be preferred as xk will eventually close to the solution

of (2.12). We remark that Theorem 3.1, as well as the arguments presented for its proof

below, remain true if assumption δ ∈ (0, 2] is in place of δ ∈ (0, 1].

Below, we establish a main theorem about convergence results for a sequence generated by

Algorithm 3.1. Our proof follows a line of analysis similar to that of [17, 18] with modifications

to deal with different subproblem (1.7) and different error estimates under a more general

error bound condition. We begin with several lemmas, which are beneficial to the proof of
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the main theorem. For this purpose, let {xk} be a sequence generated by Algorithm 3.1

(together with the associated sequence {dk}). Set

d∗k := −f ′(xk)T
(
f ′(xk)f

′(xk)
T + λkIm

)−1
f(xk) for each k ≥ 0. (3.4)

Then, by (2.3) (with f ′(xk) in place of A), we have

d∗k = −
(
f ′(xk)

T f ′(xk) + λkIn
)−1

f ′(xk)
T f(xk). (3.5)

By the optimality condition, d∗k is the solution of (1.4). Noting further, by (3.2), we have the

relationship between dk and d∗k as follows:

dk = f ′(xk)
T sk = d∗k + f ′(xk)

T
(
f ′(xk)f

′(xk)
T + λkIm

)−1
rk. (3.6)

This implies that

∥dk∥ ≤ ∥d∗k∥+ ∥f ′(xk)T
(
f ′(xk)f

′(xk)
T + λkIm

)−1 ∥ · ∥rk∥

≤ ∥d∗k∥+
∥rk∥
2
√
λk
, (3.7)

where the second inequality follows from (2.4) with A = f ′(xk). Let ψk : Rn → R be defined

by

ψk(d) := ∥f(xk) + f ′(xk)d∥2 + λk∥d∥2 for each d ∈ Rn.

Lemma 3.1. Let k ∈ N and let d∗k be giving by (3.4). Then, we have

∥f(xk) + f ′(xk)dk∥ ≤ ∥f(xk) + f ′(xk)d
∗
k∥+ ∥rk∥ (3.8)

and

ψk(d
∗
k) ≤ ψk(d) for each d ∈ Rn. (3.9)

Proof. Note that

∥f(xk) + f ′(xk)dk∥
= ∥f(xk) + f ′(xk)d

∗
k + f ′(xk)f

′(xk)
T
(
f ′(xk)f

′(xk)
T + λkIm

)−1
rk∥

≤ ∥f(xk) + f ′(xk)d
∗
k∥+ ∥f ′(xk)f ′(xk)T

(
f ′(xk)f

′(xk)
T + λkIm

)−1 ∥∥rk∥
≤ ∥f(xk) + f ′(xk)d

∗
k∥+ ∥rk∥,

where the last inequality follows from (2.5) with A = f ′(xk). Hence, (3.8) is seen to hold.

Note that d∗k is the solution of (1.4) and so (3.9) follows.

Recall that S and dk are defined by (2.12) and (3.6), respectively, and we write

θ := sup
k∈N

θk < 1. (3.10)

Below, we present some crucial properties related to dk.
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Lemma 3.2. Let 0 < r0 < 1 and x∗ ∈ S. Suppose that

(a) f ′ is Lipschitz continuous on B(x∗, r0) with modulus L > 0;

(b) (2.12) has an error bound of order β on B(x∗, r0) with modulus µ ≥ 0.

Suppose further that 0 < δ ≤ 2β. Then, there exists c > 0 such that, if xk, xk+1 ∈ B(x∗, r02 ),

the following inequalities hold:

∥dk∥ ≤ cd(xk, S), (3.11)

∥f(xk) + f ′(xk)dk∥ ≤ cd(xk, S)
1+ δ

2 (3.12)

and

d(xk+1, S) ≤ cd(xk, S)
β(1+ δ

2
). (3.13)

Proof. (i) Let

c1 :=
1

2

√
L2µ

− δ
β + 4 +

θ

2
L
ν− δ

2
1 , c2 :=

1

2

√
L2 + 4Lδ

1 + θLν
1 , c3 :=

(2c2 + Lc21)
β

µ2β

and

c := max{c1, c2, c3}.

Note by (3.7) that

∥dk∥ ≤ ∥d∗k∥+
∥rk∥
2
√
λk
. (3.14)

Let x̄k ∈ PS(xk). Since x
∗ ∈ S and xk ∈ B(x∗, r02 ), by the definition of x̄k, we have

∥x̄k − xk∥ ≤ ∥xk − x∗∥ ≤ r0
2
< 1 (3.15)

and

∥x̄k − x∗∥ ≤ ∥x̄k − xk∥+ ∥xk − x∗∥ ≤ 2∥xk − x∗∥ ≤ r0,

which implies that x̄k ∈ B(x∗, r0). Then, as λk = ∥f(xk)∥δ and ν ≥ 1 + δ
2 , it follows from

(3.3), (3.10), (2.11) and (3.15) that

∥rk∥
2
√
λk

≤ θ∥f(xk)∥ν

2∥f(xk)∥
δ
2

=
θ

2
∥f(xk)− f(x̄k)∥ν−

δ
2 ≤ θ

2
L
ν− δ

2
1 ∥x̄k − xk∥ =

θ

2
L
ν− δ

2
1 d(xk, S). (3.16)

Below, we estimate the value of ∥d∗k∥. Combining (3.9) with the definition of ψk yields that

∥d∗k∥2 ≤ ψk(d
∗
k)/λk

≤ ψk(x̄k − xk)/λk

= ∥f(xk) + f ′(xk)(x̄k − xk)∥2/λk + ∥x̄k − xk∥2. (3.17)

Note by (2.13), (2.11) and the definition of x̄k that

Lδ
1∥x̄k − xk∥δ ≥ ∥f(xk)− f(x̄k)∥δ = λk = ∥f(xk)∥δ ≥ µ

δ
β ∥x̄k − xk∥

δ
β . (3.18)
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Observe further from (2.10) that

∥f(xk) + f ′(xk)(x̄k − xk)∥ = ∥f(x̄k)− f(xk)− f ′(xk)(x̄k − xk)∥ ≤ L

2
∥x̄k − xk∥2. (3.19)

This, together with (3.18), implies that

∥f(xk)+f ′(xk)(x̄k−xk)∥2/λk ≤ L2

4
µ
− δ

β ∥x̄k−xk∥4−
δ
β ≤ L2

4
µ
− δ

β

(r0
2

)2− δ
β ∥x̄k−xk∥2, (3.20)

where the last inequality holds because of (3.15) and β ≥ δ
2 . Then, as 0 < r0 < 1, it follows

from (3.17) and (3.20) that

∥d∗k∥ ≤
√
L2

4
µ
− δ

β + 1 · ∥x̄k − xk∥ =
1

2

√
L2µ

− δ
β + 4 · d(xk, S),

Combining this with (3.14) and (3.16) gives that

∥dk∥ ≤
(
1

2

√
L2µ

− δ
β + 4 +

θ

2
L
ν− δ

2
1

)
d(xk, S) = c1d(xk, S) ≤ cd(xk, S). (3.21)

Hence, (3.11) is seen to hold.

Below, we show that (3.12) holds. In fact, by (3.8), we have

∥f(xk) + f ′(xk)dk∥ ≤ ∥f(xk) + f ′(xk)d
∗
k∥+ ∥rk∥. (3.22)

By (3.9) and the definition of ψk, we have

∥f(xk) + f ′(xk)d
∗
k∥2 ≤ ψk(d

∗
k)

≤ ψk(x̄k − xk)

= ∥f(xk) + f ′(xk)(x̄k − xk)∥2 + λk∥x̄k − xk∥2. (3.23)

Note by (3.18) and (3.19) that

∥f(xk) + f ′(xk)(x̄k − xk)∥2 + λk∥x̄k − xk∥2 ≤
L2

4
∥x̄k − xk∥4 + Lδ

1∥x̄k − xk∥2+δ

≤ 1

4
(L2 + 4Lδ

1)∥x̄k − xk∥2+δ,

where the last inequality holds by the estimation (3.15). Combining this with (3.23) gives

that

∥f(xk) + f ′(xk)d
∗
k∥ ≤ 1

2

√
L2 + 4Lδ

1 · ∥x̄k − xk∥1+
δ
2 . (3.24)

On the other hand, by (3.10), (3.3), and (2.11), one has

∥rk∥ ≤ θ∥f(xk)∥ν = θ∥f(xk)− f(x̄k)∥ν ≤ θLν
1∥x̄k − xk∥ν .
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This, together with (3.24), (3.22), (3.15) and ν ≥ 1 + δ
2 , gives that

∥f(xk) + f ′(xk)dk∥ ≤
(
1

2

√
L2 + 4Lδ

1 + θLν
1

)
∥x̄k − xk∥1+

δ
2 = c2d(xk, S)

1+ δ
2 . (3.25)

Hence, (3.12) is seen to hold by the definition of c.

Since xk, xk+1 ∈ B(x∗, r02 ), it follows from (2.13) and (2.10) that

d(xk+1, S) ≤
1

µ
∥f(xk + dk)∥β

≤ 1

µ

(
∥f(xk + dk)− f(xk)− f ′(xk)dk∥+ ∥f(xk) + f ′(xk)dk∥

)β
≤ 1

µ

(
L

2
∥dk∥2 + ∥f(xk) + f ′(xk)dk∥

)β

. (3.26)

This, together with (3.21) and (3.25), implies that

d(xk+1, S) ≤
1

µ

(
Lc21
2

d(xk, S)
2 + c2d(xk, S)

1+ δ
2

)β

≤ c3d(xk, S)
β(1+ δ

2
),

where the second inequality follows from the fact that δ ∈ (0, 1] and d(xk, S) ≤ ∥xk − x∗∥ ≤
r0
2 < 1. Hence, (3.13) is seen to hold by the definition of c. The proof is completed.

Lemma 3.3. Let 0 < r0 < 1 and x∗ ∈ S. Suppose that f ′ is Lipschitz continuous on B(x∗, r0)

with modulus L > 0. If {xk} converges to a solution x̄ of (2.12) and x̄ ∈ B(x∗, r02 ), then

there exist a positive constant ω and a positive integer K such that for all k ≥ K,

∥f(xk) + f ′(xk)dk∥ ≤ ω∥xk − x̄∥min{ν,1+δ}. (3.27)

Proof. Suppose that rank(f ′(x̄)) = r and the singular value decomposition (SVD) of f ′(x̄) is

f ′(x̄) = Ū

(
Σ̄1

0

)
V̄ T

where Σ̄1 = diag{σ̄1, · · · , σ̄r} with σ̄1 ≥ · · · ≥ σ̄r > 0, and Ū ∈ Rm×m and V̄ ∈ Rn×n are

orthogonal matrices. Since {xk} converges to x̄, there exists a positive integer K such that

for all k ≥ K,

L∥xk − x̄∥ ≤ min

{
σ̄r
2
,
Lr0
2

}
. (3.28)

Fix k ≥ K. Suppose the SVD of f ′(xk) is as follows:

f ′(xk) = UΣV T = (U1, U2, U3)

 Σ1

Σ2

0

 (V1, V2, V3)
T

= U1Σ1V
T
1 + U2Σ2V

T
2 , (3.29)
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where Σ1 = diag{σ1, · · · , σr}, Σ2 = diag{σr+1, · · · , σr+q} with σ1 ≥ · · · ≥ σr ≥ σr+1 ≥ · · · ≥
σr+q > 0, and U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices. Let x̄k ∈ PS(xk). Then,

we have the following three inequalities (their proofs are similar to that in [19, Lemma 2.3]

and so are omitted here)

∥U1U
T
1 f(xk)∥ ≤ L1∥xk − x̄k∥; (3.30)

∥U2U
T
2 f(xk)∥ ≤ 3L

2
∥xk − x̄∥2; (3.31)

∥U3U
T
3 f(xk)∥ ≤ L

2
∥xk − x̄k∥2. (3.32)

Below, we show that (3.27) holds. In fact, it follows from (3.4) and (3.29) that

f(xk) + f ′(xk)d
∗
k =

(
Im − f ′(xk)f

′(xk)
T
(
f ′(xk)f

′(xk)
T + λkIm

)−1
)
f(xk)

= λk
(
f ′(xk)f

′(xk)
T + λkIm

)−1
f(xk)

= λkU1

(
Σ2
1 + λkIr

)−1
UT
1 f(xk) + λkU2

(
Σ2
2 + λkIq

)−1
UT
2 f(xk) + U3U

T
3 f(xk).

(3.33)

As x̄ ∈ B(x∗, r02 ), it follows from (3.28) that xk ∈ B(x∗, r0). Thus, by Lemma 2.1 and

assumption (a) of Lemma 3.2, we have

∥diag(Σ1 − Σ̄1,Σ2, 0)∥ ≤ ∥f ′(xk)− f ′(x̄)∥ ≤ L∥xk − x̄∥.

The above inequality implies that

∥Σ1 − Σ̄1∥ ≤ L∥xk − x̄∥ and ∥Σ2∥ ≤ L∥xk − x̄∥. (3.34)

Observe further from (3.34) that

∥Σ̄−1
1 ∥ · ∥Σ1 − Σ̄1∥ ≤ L∥xk − x̄∥

σ̄r
≤ 1

2
.

Then, by the perturbation theory, we obtain

∥Σ−1
1 ∥ ≤

1
σ̄r

1− L∥xk−x̄∥
σ̄r

≤ 2

σ̄r
.

It then follows from the above inequality that

∥(Σ2
1 + λkIr)−1∥ ≤ ∥Σ−1

1 ∥2 ≤ 4

σ̄2r
. (3.35)

Note further that

∥(Σ2
2 + λkIq)−1∥ ≤ 1

λk
and Lδ

1∥x̄k − xk∥δ ≥ ∥f(xk)− f(x̄k)∥δ = λk.
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This, together with (3.35), (3.18), (3.30)-(3.32) and (3.33), implies that

∥f(xk) + f ′(xk)d
∗
k∥ ≤ 4λk

σ̄2r
∥U1U

T
1 f(xk)∥+ ∥U2U

T
2 f(xk)∥+ ∥U3U

T
3 f(xk)∥

≤ 4L1+δ
1

σ̄2r
∥xk − x̄k∥1+δ + 2L∥xk − x̄∥2

≤

(
4L1+δ

1

σ̄2r
+ 2L

)
∥xk − x̄∥1+δ, (3.36)

where the last inequality holds because of ∥xk − x̄k∥ ≤ ∥xk − x̄∥ < 1. On the other hand, by

(3.3), (2.11) and (3.10), we have

∥rk∥ ≤ θ∥f(xk)∥ν = θ∥f(xk)− f(x̄k)∥ν ≤ θLν
1∥x̄k − xk∥ν ≤ θLν

1∥x̄− xk∥ν . (3.37)

Hence, it follows from (3.8), (3.36) and (3.37) that

∥f(xk) + f ′(xk)dk∥ ≤ ∥f(xk) + f ′(xk)d
∗
k∥+ ∥rk∥ ≤ ω∥xk − x̄∥min{ν,1+δ},

where ω =
4L1+δ

1
σ̄2
r

+ 2L + θLν
1 , and the last inequality holds because of ∥xk − x̄∥ < 1. The

proof is completed.

Lemma 3.4. Let 0 < r0 < 1 and x∗ ∈ S. Suppose that assumptions (a) and (b) of Lemma

3.2 hold, and β > 2
2+δ . Let {xk} be a sequence generated by Algorithm 3.1. Then, there exist

0 < q < 1 and r̂ > 0 such that, if x0 ∈ B(x∗, r̂), then xk ∈ B(x∗, r02 ) for all k ∈ N, and

d(xk, S) ≤ qkr̂ for all k ∈ N. (3.38)

Proof. Denote

m := β

(
1 +

δ

2

)
.

Note that δ ∈ (0, 1], we have β > δ
2 and m > 1. Let

q :=

(
1

2

)m−1

and r̂ := min

{
r0

2(1 + c
1−q )

,
1

2c
1

m−1

}
, (3.39)

where c is the constant given by Lemma 3.2. Since m− 1 > 0, we have 0 < q < 1. Below, we

show by mathematical induction that xk ∈ B(x∗, r02 ) for all k ∈ N. In fact by (3.11), one has

∥x1 − x∗∥ ≤ ∥x0 − x∗∥+ ∥d0∥ ≤ ∥x0 − x∗∥+ cd(x0, S) ≤ (1 + c)∥x0 − x∗∥ ≤ r0
2
,

which implies that x1 ∈ B(x∗, r02 ). Assume that xi ∈ B(x∗, r02 ) for all i = 1, · · · , k. Then, for
all i = 1, · · · , k, it follows inductively from (3.13) that

d(xi, S) ≤ cd(xi−1, S)
m ≤ · · · ≤ c

mi−1
m−1 d(x0, S)

mi
. (3.40)
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By the definition of r̂ in (3.39) and x0 ∈ B(x∗, r̂) , we have

c
mi−1
m−1 d(x0, S)

mi
=
(
c

1
m−1d(x0, S)

)mi−1
d(x0, S) ≤ 2r̂

(
1

2

)mi

.

Combining this with (3.40) yields that

d(xi, S) ≤ 2r̂

(
1

2

)mi

≤ 2r̂

(
1

2

)1+(m−1)i

= qir̂. (3.41)

This, together with (3.11) and (3.39), yields that

∥xk+1 − x∗∥ ≤ ∥x0 − x∗∥+
k∑

i=0

∥di∥ ≤ r̂ + c
k∑

i=0

d(xi, S) ≤ r̂ + cr̂
k∑

i=0

qi ≤ (1 +
c

1− q
)r̂ ≤ r0

2
,

which implies that xk+1 ∈ B(x∗, r02 ). Consequently, xk ∈ B(x∗, r02 ) for all k ∈ N. Further-

more, (3.38) follows directly from (3.41). Thus, the proof is completed.

Now, we are ready to present the local convergence of Algorithm 3.1 as follows.

Theorem 3.1. Let x∗ ∈ S. Suppose that

(a) f ′ is local Lipschitz continuous around x∗;

(b) equation (2.12) has a local error bound of order β around x∗.

Suppose further that β > 2
2+δ . Then, there exists r̂ > 0 such that, for any x0 ∈ B(x∗, r̂), the

sequence {xk} generated by Algorithm 3.1 with initial point x0 converges to some solution x̄

of (2.12) at order at least κ = βmin{ν, 1 + δ}. That is, there exists C > 0 such that

lim
k→∞

∥xk+1 − x̄∥
∥xk − x̄∥κ

≤ C.

Consequently, if β = 1, δ = 1 and ν = 2, then the convergence rate is at least quadratical.

Proof. By assumptions (a) and (b), there exist L > 0, µ > 0 and 0 < r0 < 1 such that f ′ is

Lipschitz continuous on B(x∗, r0) with modulus L and (2.12) has an error bound of order β

on B(x∗, r0) with modulus µ. Let q, r̂ be given by (3.39). Since x0 ∈ B(x∗, r̂), Lemma 3.4

is applicable to conclude that xk ∈ B(x∗, r02 ) for all k ∈ N, and (3.38) holds. This, together

with (3.11), yields that

∞∑
k=0

∥dk∥ ≤ c

∞∑
k=0

d(xk, S) ≤ cr̂

∞∑
k=0

qk ≤ cr̂

1− q
< +∞. (3.42)

This means that {xk} is a Cauchy sequence. Suppose that {xk} converges to some point x̄.

Observe further from (3.42) that

lim
k→∞

d(xk, S) = 0 (3.43)
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and so x̄ ∈ S because S is closed. Hence, x̄ is a solution of (2.12). Below, we show that there

exists a positive integer N such that for all k ≥ N ,

∥dk+1∥ ≤ 2β(1+
δ
2)c2∥dk∥β(1+

δ
2) (3.44)

and

lim
k→∞

∥
∑∞

i=k+1 di∥
∥dk+1∥

= 1. (3.45)

Granting this, we have

lim
k→∞

∥xk+1 − x̄∥
∥xk − x̄∥β(1+

δ
2)

= lim
k→∞

∥
∑∞

i=k+1 di∥

∥
∑∞

i=k di∥
β(1+ δ

2)
= lim

k→∞

∥dk+1∥
∥dk∥β(1+

δ
2)

≤ 2β(1+
δ
2)c2, (3.46)

which implies that {xk} converges to x̄ at order of m := β
(
1 + δ

2

)
> 1. To proceed, by (3.43),

there exists a positive integer N such that for all k ≥ N ,

cd(xk, S)
m−1 ≤ 1

2
. (3.47)

Fix k ≥ N . Then, it follows from (3.47) and (3.13) that

d(xk+1, S) ≤ cd(xk, S)
m ≤ 1

2
d(xk, S). (3.48)

Observe further that

d(xk, S) ≤ d(xk+1, S) + ∥xk+1 − xk∥ = d(xk+1, S) + ∥dk∥.

Combining this with (3.48) yields

d(xk, S) ≤ 2∥dk∥.

This, together with (3.11) and (3.13), gives

∥dk+1∥ ≤ cd(xk+1, S) ≤ c2d(xk, S)
m ≤ 2mc2∥dk∥m, (3.49)

which means that (3.44) holds and ∥dk+1∥ = O(∥dk∥m). By (3.49) and (3.42), there exists a

positive integer N1 ≥ N , such that for all k > N1,

∥dk+1∥ ≤M∥dk∥1+
2m−2

3 , (3.50)

where M = 2mc2∥dk∥
m−1

3 < 1. Fix k ≥ N1. Then, it follows inductively from (3.50) that for

each i ≥ 2,

∥dk+i∥ ≤M3
(1+2m−2

3 )
i−1

−1

2m−2 ∥dk+1∥(1+
2m−2

3 )
i−1

.
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This, together with (3.42), implies that

lim
k→∞

∞∑
i=2

∥dk+i∥
∥dk+1∥

≤ lim
k→∞

∞∑
i=2

(M
3

2m−2 ∥dk+1∥)(1+
2m−2

3 )
i−1−1 = 0. (3.51)

Observe further that

1−
∑∞

i=k+2 ∥di∥
∥dk+1∥

≤
∥
∑∞

i=k+1 di∥
∥dk+1∥

≤ 1 +

∑∞
i=k+2 ∥di∥
∥dk+1∥

. (3.52)

Hence, (3.45) follows directly from (3.51) and (3.52).

Below, we shall prove the convergence order. To show this, by Lemma 3.2, we have that

(3.27) holds for sufficiently large k. Combining this with (3.11), (3.26) and the fact that

∥xk − x̄∥ < 1 yields that

∥dk+1∥ ≤ cd(xk+1, S) ≤
c

µ

(
L

2
∥dk∥2 + ∥f(xk) + f ′(xk)dk∥

)β

≤
c
(
2ω + Lc2

)β
µ2β

∥xk−x̄∥βmin{ν,1+δ}

(3.53)

holds for sufficiently large k. Since the sequence {xk} converges to x̄ superlinearly by (3.46),

we have by [49, Theorem 1.5.2 ] that

lim
k→∞

∥dk+1∥
∥xk+1 − x̄∥

= 1.

This, together with (3.53), gives that

lim
k→∞

∥xk+1 − x̄∥
∥xk − x̄∥κ

= lim
k→∞

∥dk+1∥
∥xk − x̄∥κ

≤
c
(
2ω + Lc2

)β
µ2β

= C,

which implies that {xk} converges to x̄ at order of κ = βmin{ν, 1 + δ}. This completes the

proof.

4 A global version of the modified inexact LMM and its global

convergence analysis

This section is devoted to presenting a globalization strategy for the modified inexact LMM

with line-search scheme and establishing its global convergence. Firstly, we present three

types of the typical line-search rules for selecting the sequence of step sizes {αk} for Algorithm

4.1, which have been widely used in the literature; see, e.g., [2, 30, 44].

Definition 4.1. Let ξ ∈ (0, 1), σ1 ∈ (0, 12) and let σ2 ∈ (σ1, 1). Given k ≥ 0, xk and dk, a

stepsize αk ∈ (0,+∞) is said to satisfy
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(a) the Armijo rule if

ϕ(xk + αkdk) ≤ ϕ(xk) + σ1αk∇ϕ(xk)Tdk (4.1)

and

αk := max{ξi : i ∈ N, ϕ(xk + ξidk) ≤ ϕ(xk) + σ1ξ
i∇ϕ(xk)Tdk}. (4.2)

(b) the Goldstein rule if (4.1) holds and

ϕ(xk) + (1− σ1)αk∇ϕ(xk)Tdk ≤ ϕ(xk + αkdk).

(c) the Wolfe rule if (4.1) holds and

∇ϕ(xk + αkdk)
Tdk ≥ σ2∇ϕ(xk)Tdk. (4.3)

The modified inexact LMM with line-search scheme is formulated as follows.

Algorithm 4.1

Step 0 Choose a starting point x0 ∈ Rn, parameters δ ∈ (0, 1], γ, ξ ∈ (0, 1), σ1 ∈ (0, 12),

σ2 ∈ (σ1, 1), ρ ∈ (0,+∞) and ν ∈
[
1 + δ

2 , 2
]
, and a sequence {θk} ⊆ R+ such that

θ = supk∈N θk < 1. Set k := 0.

Step 1 Generate dk by Steps 1 and 2 in Algorithm 3.1.

Step 2 If dk satisfies

∥f(xk + dk)∥ ≤ γ∥f(xk)∥, (4.4)

then set xk+1 := xk + dk, and go to step 4. Otherwise, go to step 3.

Step 3 If dk satisfies

∇ϕ(xk)Tdk ≤ −ρ∥∇ϕ(xk)∥2, (4.5)

set dk := dk; otherwise set dk := −∇ϕ(xk). Select the step size αk ∈ (0,+∞) satisfying

the Armijo rule, or the Goldstein rule, or the Wolfe rule. Set xk+1 := xk + αkdk.

Step 4 Set k := k + 1. Go to Step 1.

Remark 4.1. It follows from Steps 2 and 3 that the sequence {∥f(xk)∥} is monotonically

decreasing and bounded from below, and thus convergent.

Remark 4.2. The condition (4.5) in Step 3 of Algorithm 4.1 is different from

∇ϕ(xk)Tdk ≤ −ρ∥dk∥p with some p > 0,

which was used in [12]. With the aid of the residual control ∥r̃k∥ ≤ η∥∇ϕ(xk)∥ in [12], the

authors proved that there exist γ1, γ2 ∈ (0,+∞) such that

γ1∥∇ϕ(xki)∥ ≤ ∥dki∥ ≤ γ2∥∇ϕ(xki)∥ (4.6)

on any convergent subsequence {xki}. On the contrary, (4.6) does not hold in general in this

paper due to our residual control. This is the reason why we choose (4.5).
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Now, we are ready to establish the global convergence result of Algorithm 4.1. Recall

that f is Fréchet differentiable and its Fréchet derivative is continuous.

Proposition 4.1. Let {xk} be a sequence generated by Algorithm 4.1. Suppose that {xk} has

an accumulation point x∗. Then, x∗ is a stationary point of ϕ.

Proof. As x∗ is an accumulation point of {xk}, there exists a subsequence {xki} such that

limi→∞ xki = x∗. Let

K1 = {i| ∥f(xki + dki)∥ ≤ γ∥f(xki)∥}.

We divide the proof into two cases.

Case 1. K1 is infinite. Then, there exists a subsequence of {xki}, denoted by itself, such

that

∥f(xki + dki)∥ ≤ γ∥f(xki)∥ for all i ∈ N.

This, together with Remark 4.1, implies that for each ki ≥ 0, there is a positive integer ji
such that

∥f(xki)∥ ≤ γji∥f(x0)∥ and lim
i→∞

ji = +∞.

Hence, limi→∞ ∥f(xki)∥ = 0. Since f is continuous, we have f(x∗) = 0. Thus, x∗ is a

stationary point of ϕ.

Case 2. K1 is finite. We assume without loss of generality that

∥f(xki + dki)∥ > γ∥f(xki)∥ for all i ∈ N.

In view of Algorithm 4.1, the line-search step is executed for each ki. Hence, we can apply

[6, Propositions 1.2.1 and 1.2.2] to conclude that x∗ is a stationary point of ϕ.

Corollary 4.1. Let {xk} be a sequence generated by Algorithm 4.1. Suppose that the level

set L := {x ∈ Rn|ϕ(x) ≤ ϕ(x0)} is bounded. Then, {xk} has an accumulation point which is

a stationary point of ϕ.

Proof. It follows from Remark 4.1 that the sequence {xk} ⊆ L. Since the level set L is

bounded (due to assumption), we get that the sequence {xk} has an accumulation point.

Thus, it follows from Proposition 4.1 that the accumulation point is a stationary point of

ϕ.

Theorem 4.1. Let {xk} be a sequence generated by Algorithm 4.1. Suppose that β >
√

2
2+δ

and {xk} has an accumulation point x∗ such that

(a) f(x∗) = 0 and f ′ is local Lipschitz continuous around x∗;

(b) equation (2.12) has a local error bound of order β around x∗.

Then, {xk} converges to x∗ at order at least κ = βmin{ν, 1+δ}. Consequently, if β = 1, δ = 1

and ν = 2, then the convergence rate is at least quadratical.
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Proof. Let {xki} be a subsequence of {xk} such that limi→∞ xki = x∗. Since f is continuous,

we obtain that limi→∞ f(xki) = 0. Hence, there exists a positive integer N such that

∥xki − x∗∥ ≤ r̂ and ∥f(xki)∥ ≤

(
γµβ(1+δ/2)

L1c

) 1
β2(1+δ/2)−1

∀i ≥ N, (4.7)

where r̂, L1 are given by Lemma 3.4 and (2.11), respectively, while c is given by Lemma 3.2.

Set k = kN . By (2.11) and (3.13), we have

∥f(xk + dk)∥ ≤ L1d(xk + dk, S) ≤ L1cd(xk, S)
β(1+ δ

2
).

This, together with (2.13), gives that

∥f(xk + dk)∥ ≤ L1cµ
−β(1+ δ

2
)∥f(xk)∥β

2(1+ δ
2
)−1∥f(xk)∥ ≤ γ∥f(xk)∥ (4.8)

(by (4.7)); hence (4.4) holds for k = kN . Furthermore, since γ ∈ (0, 1), it follows from (4.8)

and (4.7) that

∥f(xk+1)∥ ≤ ∥f(xk)∥ ≤

(
γµβ(1+δ/2)

L1c

) 1
β2(1+δ/2)−1

.

Thus, inductively, with the same arguments as we did for (4.8), we can obtain that (4.4) holds

for k = kN+1. Consequently, by mathematical induction, we conclude that (4.4) holds for all

k ≥ kN . Therefore, Algorithm 4.1 is reduced to Algorithm 3.1 for all k ≥ kN . Thus, Theorem

3.1 is applicable to concluding that the sequence {xk} converges to x∗ superlinearly when

δ ∈ (0, 1) and quadratically when δ = 1, β = 1 and ν = 2. This completes the proof.

Let β = 1. Then Corollary 4.2 follows directly from Theorem 4.1, which extends the

corresponding results in [12, Theorem 3.1] and [19, Theorem 3.1].

Corollary 4.2. Let {xk} be a sequence generated by Algorithm 4.1. Suppose that {xk} has

an accumulation point x∗ such that

(a) f(x∗) = 0 and f ′ is local Lipschitz continuous around x∗;

(b) equation (2.12) has a local error bound around x∗.

Then, {xk} converges to x∗ at order at least κ = min{ν, 1 + δ}. Consequently, if δ = 1 and

ν = 2, then the convergence rate is at least quadratical.

5 Numerical examples

In this section, we conduct some numerical experiments to show the efficiency of the globalized

version of the modified inexact LMM, compared with the globalized version of classical inexact

LMM proposed in [12]. In both algorithms, the linear equations are solved by the conjugate
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gradient (CG) method (see [44]) or Cholesky factorization, and the Armijo, Wolfe or Goldstein

line-search schemes are adopted. All the tests were implemented in MATLAB R2016a on a

Lenovo PC with Intel(R) Core(TM) i5-3210 CPU @ 2.5 GHz.

In the numerical experiments, we consider some medium/large dimension test problems

with f := (f1, f2, . . . , fm)T defined as follows, which are taken from [12, 42] (with some

modifications). For x ∈ Rn, we use x(i) to denote the i-th component of x. As pointed out

in [12], we can check that the solution set of each of these problems is not locally unique but

(2.12) has a local error bound in a neighborhood of each solution. Note that problem (P4) is

underdetermined and also row rank deficient.

(P1) f : R2m → Rm where

fi(x) := x(i)x(m+i) −
√
i, i = 1, · · · ,m.

(P2) f : R2m → Rm where

fi(x) :=
(
3− 2x(2i−1)

)
x(2i−1) − x(2i−2) − 2x(2i) + 1, i = 1, · · · ,m.

(P3) f : R3m → Rm where

fi(x) := x(i)x(m+i)x(2m+i) − 3
√
i, i = 1, · · · ,m.

(P4) f : R2m → Rm where

fi(x) :=


√
iexp

((∑2i+2
j=2i−1 x

(j)
)
/m
)
−

√
i, mod(i, 2) = 1;

√
i
(∑2i

j=2i−3 x
(j)
)(∑2i

j=2i−3 x
(j) − 1

)
, mod(i, 2) = 0.

i = 1, · · · ,m.

For each problem mentioned above, we consider m = 1000, 2500, and 4000, and choose

the following initial points:

(I1) x01 =
(
10−5,−m/2, · · · , 10−5,−m/2

)T
in problem (P1);

(I2) x02 = (m/100, · · · , m/100)T in problem (P2);

(I3) x03 = (−m/2, · · · , −m/2)T in problem (P3);

(I4) x04 = (−m/2, · · · , −m/2)T in problem (P4).

In the numerical experiments, we mainly compare the proposed Algorithm 4.1 with the

classical inexact LMM proposed in [12], which is stated as follows.

Algorithm 5.1

Step 0 Same as Step 0 in Algorithm 4.1.
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Step 1 Generate dk by Steps 1 and 2 in Algorithm ILM.

Step 2 Same as Step 2 in Algorithm 4.1

Step 3 If

∇ϕ(xk)Tdk ≤ −ρ∥dk∥p,

is not satisfied, set dk := −∇ϕ(xk). Select the step size αk ∈ (0,+∞) satisfying the

Armijo rule, or the Goldstein rule, or the Wolfe rule. Set xk+1 := xk + αkdk.

Step 4 Same as Step 4 in Algorithm 4.1.

In the implementation of Algorithms 4.1 and 5.1, we set the parameters as follows: σ1 =

0.6 (in the Armijo and Wolfe schemes) or 0.2 (in the Goldstein scheme), σ2 = 0.9, ξ = 0.7,

γ = 0.8, δ = 1.0, η = 0.8, ρ = 2.0, τ = 2.0, p = 2.0, θ = 0.8, ζ = 0.001, and regularization

parameters λk = min
{
∥f(xk)∥δ, ζ

}
. In the Wolfe and Goldstein line-search schemes, we

interpolate by using bisection to find a trial step length αk in an interval. To compare with

the two inexact LMMs, we take the same stopping criterion for both (3.3) in Algorithm 4.1

and (1.5) in Algorithm 5.1 as

∥rk∥ ≤ ϵk = min
{
θ∥f(xk)∥, θ∥f(xk)∥2, 0.001

√
n
}
. (5.1)

Finally, the stopping criterion of the outer loops in both Algorithms 4.1 and 5.1 is set as

∥f(xk)∥ ≤ 10−8√n.

We first report in Tables 1-5 the experimental results when adopting the CG method

to solve the linear equations, where i.p. denotes the initial point, No, Ni and Nl denote

the numbers of outer iterations, inner iterations (of the CG method) and the line-search

iterations, respectively. The CPU time in seconds is denoted by t and ∥f(xk)∥ lists its values

at the last three iterations of each algorithm.

As mentioned above, we use the CG method to solve the revolved linear equations (1.7)

and (1.3) in Algorithms 4.1 and 5.1, respectively. To reduce the computational costs, the

calculation of f ′(xk)f
′(xk)

Tu in (1.7) is implemented by the successive matrix-vector multi-

plication w = f ′(xk)
Tu and f ′(xk)w, that is, the matrix Mk = f ′(xk)f

′(xk)
T is not explicitly

calculated throughout the numerical experiments, for problems (P1)-(P3). The similar com-

putation strategy is applied in the CG method for solving (1.3) in Algorithm 5.1. From

Tables 1-3, we observe that Algorithm 4.1 requires less CPU time and less inner iteration

numbers to approach the solution than Algorithm 5.1 does for problems (P1)-(P3).

In general, as illustrated in Algorithms 4.1 and 5.1 for problems (P1)-(P3), when con-

ducting the CG iterations, the successive matrix-vector multiplication requires less CPU time

than explicitly forming the coefficient matrix (though we do not list the corresponding results

for problems (P1)-(P3) with explicitly forming the matrix). However, in the case when the
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inner iterations is much more than the outer iterations (as in Algorithms 4.1 and 5.1 for

problem (P4)), Algorithm 4.1 with explicitly forming matrix strategy may be more efficient

than Algorithm 4.1 with successive matrix-vector multiplication or Algorithm 5.1 with either

of these two strategies (see Tables 4 and 5). This is because, at the step for solving the

subproblem, the additional cost caused by explicitly forming the coefficient matrix in Algo-

rithm 4.1 with explicitly forming matrix strategy is less than the extra one due to the larger

subproblems in Algorithm 4.1 with successive matrix-vector multiplications or in Algorithm

5.1 (compared with the explicitly forming matrix strategy in Algorithm 4.1).

In conclusion, from the preliminary numerical results, we can see that Algorithm 4.1 (as

well as Algorithm 5.1) converges quadratically to a solution of NLSP, and that Algorithm

4.1 outperforms Algorithm 5.1 as in costing less CPU time to approach the solution for the

underdetermined case.

Table 1: Results for problem (P1) by applying CG method.

m× n i.p. alg./linesearch No Ni Nl t ||f(xk)||
4.1/no 13 316 0 0.9 3.2e-03, 8.2e-06, 4.4e-11

1000× 2000 x01 5.1/Armijo 81 4874 69 13.3 3.4e-02, 3.2e-04, 7.0e-08
5.1/Wolfe 15 401 3 1.6 1.5e-02, 4.5e-05, 6.4e-10
5.1/Goldstein 126 5368 115 16.1 2.6e-02, 1.9e-04, 2.5e-08
4.1/no 14 406 0 7.0 2.6e-02, 4.2e-04, 1.4e-07

2500× 5000 x01 5.1/Armijo 17 796 2 14.8 1.4e-02, 3.0e-05, 2.6e-10
5.1/Wolfe 17 796 2 13.9 1.8e-02, 5.7e-05, 1.0e-09
5.1/Goldstein 17 783 2 13.6 4.3e-02, 5.1e-04, 1.5e-07
4.1/no 15 495 0 21.0 3.8e-03, 9.8e-06, 7.7e-11

4000× 8000 x01 5.1/Armijo 17 906 2 38.3 2.2e-02, 7.7e-05, 1.9e-09
5.1/Wolfe 18 1197 2 49.4 1.0e-02, 3.3e-05, 7.1e-10
5.1/Goldstein 18 1200 2 47.7 1.5e-02, 5.8e-05, 1.9e-09
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Table 2: Results for problem (P2) by applying CG method.

m× n i.p. alg./linesearch No Ni Nl t ||f(xk)||
4.1/Armijo 10 56 2 0.9 2.2e-03, 3.6e-06, 7.5e-12
4.1/Wolfe 10 45 1 1.0 5.1e-03, 5.3e-06, 9.7e-12
4.1/Goldstein 10 59 1 0.9 2.0e-02, 1.9e-04, 2.4e-08

1000× 2000 x02 5.1/Armijo 11 83 2 1.2 1.7e-03, 1.3e-06, 1.4e-12
5.1/Wolfe 10 54 2 1.2 3.0e-02, 1.0e-04, 3.6e-09
5.1/Goldstein 11 73 1 1.2 4.4e-02, 6.0e-04, 2.4e-07
4.1/Armijo 18 88 6 9.9 3.1e-02, 7.1e-04, 2.6e-07
4.1/Wolfe 11 43 2 6.9 3.0e-02, 2.6e-04, 2.6e-08
4.1/Goldstein 20 97 5 10.9 1.9e-03, 9.5e-07, 4.3e-13

2500× 5000 x02 5.1/Armijo 18 110 6 12.0 8.1e-02, 7.1e-04, 8.9e-08
5.1/Wolfe 21 139 9 18.1 4.5e-03, 5.6e-06, 9.3e-12
5.1/Goldstein 15 76 2 9.8 4.3e-03 1.4e-06 3.8e-13
4.1/Armijo 16 74 4 22.6 5.6e-03, 1.7e-05, 1.9e-10
4.1/Wolfe 17 89 5 29.7 1.2e-03, 1.2e-06, 3.6e-13
4.1/Goldstein 21 108 10 29.0 4.2e-02, 1.2e-03, 7.2e-07

4000× 8000 x02 5.1/Armijo 25 237 11 43.9 3.0e-02, 3.2e-04, 4.4e-08
5.1/Wolfe 35 345 22 86.8 2.0e-02 5.6e-05 1.0e-09
5.1/Goldstein 29 265 17 51.5 3.3e-02, 2.5e-04, 1.5e-08

Table 3: Results for problem (P3) by applying CG method.

m× n i.p. alg./linesearch No Ni Nl t ||f(xk)||
4.1/Armijo 22 144 2 1.9 7.1e-03, 3.8e-05, 8.8e-10
4.1/Wolfe 22 147 2 2.1 1.1e-03, 9.1e-07, 4.6e-13
4.1/Goldstein 63 2196 44 14.9 2.2e-03, 3.2e-06, 6.8e-12

1000× 3000 x03 5.1/Armijo 82 10864 64 49.5 2.2e-02, 2.8e-05, 3.4e-10
5.1/Wolfe 44 4345 25 20.2 5.2e-03, 8.4e-06, 3.6e-11
5.1/Goldstein > 600
4.1/Armijo 24 139 2 9.8 2.6e-02, 5.3e-04, 1.5e-07
4.1/Wolfe > 600
4.1/Goldstein 24 147 2 8.9 2.1e-02, 3.7e-04, 8.8e-08

2500× 7500 x03 5.1/Armijo 48 9075 27 189.3 3.3e-02, 2.9e-04, 3.5e-08
5.1/Wolfe 50 9792 29 207.2 7.0e-03, 1.3e-05, 5.8e-11
5.1/Goldstein > 600
4.1/Armijo 25 178 2 25.6 1.0e-02, 8.2e-05, 5.0e-09
4.1/Wolfe 25 158 2 26.1 7.6e-03, 4.3e-05, 1.2e-09
4.1/Goldstein 26 231 2 28.7 9.0e-03, 5.0e-05, 1.5e-09

4000× 12000 x03 5.1/Armijo 31 1064 9 85.5 2.6e-02, 1.3e-04, 9.6e-09
5.1/Wolfe 27 524 5 57.6 1.0e-01, 2.1e-03, 1.0e-06
5.1/Goldstein > 600
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Table 4: Results for problem (P4) by explicitly forming the matrix.

m× n i.p. alg./linesearch No Ni Nl t ||f(xk)||
4.1/no 17 2469 0 2.9 1.5e-02, 1.5e-04, 1.6e-08

1000× 2000 x04 5.1/no 17 2072 0 7.9 1.3e-03, 1.0e-06, 8.9e-13
4.1/no 19 4601 0 38.7 3.4e-03, 9.4e-06, 6.7e-11

2500× 5000 x04 5.1/no 18 4085 0 97.2 4.7e-03, 4.9e-06, 1.9e-11
4.1/no 20 6039 0 146.4 5.5e-03, 2.1e-05, 3.4e-10

4000× 8000 x04 5.1/no 19 6017 0 390.3 4.5e-03, 8.2e-06, 9.0e-11

Table 5: Results for problem (P4) by successive matrix-vector multiplications.

m× n i.p. alg./linesearch No Ni Nl t ||f(xk)||
4.1/no 17 2470 0 5.3 1.5e-02, 1.5e-04, 1.6e-08

1000× 2000 x04 5.1/no 17 1998 0 4.8 1.3e-03, 1.0e-06, 8.8e-13
4.1/no 19 4613 0 56.5 3.4e-03, 9.4e-06, 6.7e-11

2500× 5000 x04 5.1/no 18 3512 0 46.2 4.7e-03, 4.9e-06, 1.8e-11
4.1/no 20 6039 0 189.7 5.5e-03, 2.1e-05, 3.4e-10

4000× 8000 x04 5.1/no 19 4685 0 152.6 4.5e-03, 8.2e-06, 5.5e-11

To conclude this section, we illustrate the experimental results of Algorithms 4.1 and

5.1 when adopting the Cholesky factorization to solve the linear equations (1.7) and (1.3),

respectively. In fact, because of the special structure of the symmetric matrices involved in

(1.7), it is not required to compute directly the matrix-matrix multiplication f ′(xk)f
′(xk)

T

and the Cholesky factorization of Ak = f ′(xk)f
′(xk)

T + λkIm. Alternatively, we do the

following QR factorization: (
f ′(xk)

T

√
λkIm

)
= Qk

(
Rk

0

)
,

where Qk is orthogonal and Rk is upper triangular. Clearly, RT
kRk = f ′(xk)f

′(xk)
T + λkIm,

which is Cholesky factorization of Ak. Hence, we solve linear equations (1.7) by solving

RT
k y = −f(xk) and Rks = y sequentially. Similarly for Algorithm 5.1, the QR factorization

for the symmetric matrices involved in (1.3) is(
f ′(xk)√
λkIn

)
= Q̄k

(
R̄k

0

)
,

and one obtains its Cholesky factorization as R̄T
k R̄k = f ′(xk)

T f ′(xk) + λkIn. The numerical

results of Algorithms 4.1 and 5.1 when adopting the Cholesky factorization for problems (P1)-

(P4) are listed in Tables 6-9, which demonstrates that, in general, Algorithm 4.1 outperforms
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Algorithm 5.1 as in costing less CPU time for the underdetermined case. Furthermore, we

observe from the numerical results that the CG method is generally more efficient than the

Cholesky factorization technique in solving the linear equations.

Table 6: Results for problem (P1) by applying Cholesky factorization.

m× n i.p. alg./linesearch No Ni Nl t ||f(xk)||
4.1/no 16 0 0 9.7 1.3e-01, 3.8e-05, 3.9e-12

1000× 2000 x01 5.1/no 12 0 0 21.3 5.6e-02, 3.6e-04, 6.6e-08
4.1/no 17 0 0 118.8 1.7e+00, 2.5e-03, 5.7e-09

2500× 5000 x01 5.1/no 14 0 0 314.3 2.5e-03, 1.8e-06, 1.8e-12
4.1/no 18 0 0 497.7 5.5e-01, 1.5e-04, 1.5e-11

4000× 8000 x01 5.1/no 14 0 0 1349.5 5.6e-02, 3.5e-04, 6.6e-08

Table 7: Results for problem (P2) by applying Cholesky factorization.

m× n i.p. alg./linesearch No Ni Nl t ||f(xk)||
4.1/Armijo 9 0 2 7.3 7.3e-02, 4.4e-04, 5.1e-08
4.1/Wolfe 9 0 1 7.7 8.0e-02, 4.5e-04, 4.8e-08
4.1/Goldstein 10 0 1 7.7 1.6e-03, 4.5e-07, 6.5e-14

1000× 2000 x02 5.1/Armijo 10 0 2 18.1 7.0e-02, 3.9e-04, 3.1e-08
5.1/Wolfe 10 0 2 19.2 2.8e-02, 5.5e-05, 7.7e-10
5.1/Goldstein 11 0 1 20.1 4.2e-02, 1.9e-05, 7.7e-11
4.1/Armijo 18 0 6 171.7 2.9e-02, 3.5e-05, 8.2e-11
4.1/Wolfe 11 0 2 102.7 2.7e-02, 7.9e-05, 1.2e-09
4.1/Goldstein 18 0 5 170.4 1.3e-01, 9.2e-04, 1.9e-07

2500× 5000 x02 5.1/Armijo 18 0 6 411.2 7.9e-02, 3.9e-04, 1.5e-08
5.1/Wolfe 20 0 9 451.5 1.1e-01, 9.4e-04, 2.0e-07
5.1/Goldstein 15 0 2 338.7 3.1e-03, 1.3e-06, 4.3e-13
4.1/Armijo 15 0 4 502.4 8.7e-02, 8.0e-04, 1.8e-07
4.1/Wolfe 16 0 5 538.7 3.1e-03, 8.9e-07, 1.1e-13
4.1/Goldstein 21 0 10 710.0 4.6e-03, 3.2e-06, 2.8e-12

4000× 8000 x02 5.1/Armijo 25 0 11 2271.4 2.5e-02, 6.3e-05, 8.8e-10
5.1/Wolfe 26 0 14 2373.0 1.9e-01, 1.0e-03, 2.7e-07
5.1/Goldstein 23 0 11 2046.7 2.8e-02, 7.1e-05, 1.9e-09
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Table 8: Results for problem (P3) by applying the Cholesky factorization.

m× n i.p. alg./linesearch No Ni Nl t ||f(xk)||
4.1/Armijo 21 0 2 18.9 8.7e-02, 3.4e-05, 3.3e-10
4.1/Wolfe 20 0 2 19.3 9.8e-01, 2.9e-03, 1.0e-07
4.1/Goldstein 61 0 42 58.8 1.5e-03, 1.2e-06, 1.0e-12

1000× 3000 x03 5.1/Armijo 20 0 2 106.0 7.6e-02, 1.6e-04, 7.4e-10
5.1/Wolfe 19 0 2 101.2 8.9e-02, 1.6e-04, 7.1e-10
5.1/Goldstein 21 0 1 112.0 6.8e-03, 1.3e-06, 5.2e-14
4.1/Armijo 23 0 2 237.5 7.9e-01, 1.0e-03, 1.3e-08
4.1/Wolfe > 1000
4.1/Goldstein 23 0 2 233.4 6.3e-01, 1.0e-03, 1.3e-08

2500× 7500 x03 5.1/no 7 0 0 513.6 3.6e+05, 4.0e-01, 3.9e-14
4.1/Armijo 24 0 2 899.7 7.2e-02, 4.1e-04, 1.1e-07
4.1/Wolfe 23 0 2 891.4 1.7e+00, 3.7e-03, 1.2e-07
4.1/Goldstein 25 0 2 961.8 9.7e-02, 4.7e-04, 6.0e-08

4000× 12000 x03 5.1/no 2 0 0 597.5 5.0e+11, 2.7e-05, 5.5e-14

Table 9: Results for problem (P4) by applying Cholesky factorization.

m× n i.p. alg./linesearch No Ni Nl t ||f(xk)||
4.1/no 16 0 0 9.7 1.3e-01, 3.8e-05, 3.9e-12

1000× 2000 x04 5.1/no 16 0 0 27.4 1.3e-01, 3.8e-05, 3.9e-12
4.1/no 17 0 0 118.8 1.7e+00, 2.5e-03, 5.7e-09

2500× 5000 x04 5.1/no 17 0 0 392.8 1.7e+00, 2.5e-03, 5.7e-09
4.1/no 18 0 0 497.7 5.5e-01, 1.5e-04, 1.5e-11

4000× 8000 x04 5.1/no 18 0 0 1651.2 5.5e-01, 1.5e-04, 6.0e-11

Remark 5.1. We only reported the numerical results for the proposed method without the

line-search scheme in Tables 1, 4-6, 9 because for these problems, Step 2 of Algorithms 4.1

and/or 5.1 is satisfied for each k, and thus the line-search in Step 3 is skipped automatically.

Actually, it depends on the specific problem structure and the certain algorithm.
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