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Abstract In the present paper, we explore a family of projection gradient

methods for solving the multiple-sets split feasibility problem, which include

the cyclic/simultaneous iteration methods introduced in J. Optim. Theory

Appl. 166, 844-860 (2015) as special cases. For the general case, where the

involved sets are given by level sets of convex functions, the calculation of

the projection onto the level sets is complicated in general, and thus the

resulting projection gradient method cannot be implemented easily. To avoid
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this difficulty, we introduce a family of relaxed projection gradient methods, in

which the projections onto the approximated halfspaces are adopted in place

of the ones onto the level sets. They cover the relaxed cyclic/simultaneous

iteration methods introduced in J. Optim. Theory Appl. 166, 844-860 (2015)

as special cases. Global weak convergence theorems are established for these

methods. In particular, as direct applications of the established theorems,

our results fill some gaps and deal with the imperfections appeared in J.

Optim. Theory Appl. 166, 844-860 (2015), and hence, improve and extend

the corresponding results therein.

Keywords Multiple-sets split feasibility problem · Projection gradient

methods · Global weak convergence

Mathematics Subject Classification (2000) 90C25 · 90C30 · 47J25

1 Introduction

The split feasibility problem (SFP) is to find a point such that itself and

its image under a linear transformation fall within two closed convex sets

in the space and the image space, respectively. The SFP was introduced by

Censor and Elfving in [1] to resolve the phase retrieval problem, and provided

a unified framework for vast application problems in various areas such as

signal processing and image reconstruction [2,3], intensity modulated radiation

therapy [4] and systems biology [5, 6]. Various numerical algorithms have

been developed to solve the SFP; see [2, 5, 7–9] and references therein. One

of the most popular and practical algorithms is the CQ algorithm, which was

proposed by Byrne [2,7]. One can further refer to [10,11] and references therein

for the study of nonconvex feasibility problems.

The multiple-sets split feasibility problem (MSSFP) is a generalization of

the SFP with the involved sets being the intersection of a series of closed

convex sets. The MSSFP was introduced by Censor et al. [12] to resolve the

intensity modulated radiation therapy treatment planning [4]. Many numerical
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algorithms have been developed to solve the MSSFP; see [12–17] and references

therein. More precisely, Censor et al. in [12] proposed a projection gradient

method, where the step-size depends on the Lipschitz constant of the gradient

operator. To avoid the inconvenience of calculating the Lipschitz constant,

Zhao and Yang in [15] (also see [14]) introduced a self-adaptive projection

method by adopting the Armijo-like search rule; Zhao and Yang in [16]

further suggested a new self-adaptive method with an implementable dynamic

step-size rule. Moreover, considering the MSSFP in Hilbert spaces, Xu in [13]

proposed a fixed-point method with the step-size relying on the Lipschitz

constant of the gradient operator. Adopting the self-adaptive step-size rule,

Wen et al. in [17] introduced the cyclic/simultaneous iteration methods for

the MSSFP, and proposed the relaxed cyclic/simultaneous iteration methods

for the general MSSFP where the involved sets are given by the level sets

of a series of convex functions. Global weak convergence results of these

theorems were established therein. However, there are some gaps in the proofs

of [17, Theorems 3.1 and 4.1] (as explained in Remarks 3.2 and 4.2), and some

imperfections in [17, Theorems 3.2 and 4.2] (as explained in Remarks 3.3, 4.3

and Examples 3.1, 3.2).

In this paper, we consider a family of projection gradient methods for

solving the MSSFP in Hilbert spaces, which include the cyclic/simultaneous

iteration methods introduced in [17] as special cases. For the general case where

the involved sets are given by level sets of a series of convex functions, the

projections onto the level sets are not easily implemented in general. To avoid

this difficulty, we introduce a family of relaxed projection gradient methods, in

which the projections onto the approximated halfspaces are adopted in place

of the ones onto the level sets; they cover the relaxed cyclic/simultaneous

iteration methods introduced in [17]. Global weak convergence theorems of

these methods will be established in the present paper. In particular, when

applied to the cyclic/simultaneous iteration methods, our results fill the gaps

and correct the imperfections appeared in [17] mentioned above, and hence,
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extend and improve the corresponding results in [17]. This is also a motivation

of this paper.

The rest of this paper is organized as follows. In Section 2, we introduce

some basic notations and preliminary results that will be used in the remaining

sections. In Section 3, we propose a family of projection gradient methods for

solving the MSSFP and establish their global weak convergence. In Section

4, we investigate a family of relaxed projection gradient methods and explore

their global weak convergence. Conclusions will be drawn in the last section.

2 Notations and Preliminary Results

The notations used in this paper are standard (cf. [18]). We consider a real

Hilbert space H, associated with the inner product ⟨·, ·⟩, and the induced norm

∥ · ∥. As usual, N∗ denotes the set of all positive integers, and N := N∗ ∪ {0}.

For {xn} ⊆ H, xn ⇀ x denotes that {xn} converges weakly to x. For C ⊆ H,

the distance function of C and the projection operator onto C are denoted by

dC : H → R and PC : H → H respectively, namely

dC(x) := inf{∥x− c∥ : c ∈ C} for each x ∈ H,

and

PC(x) := {x̄ ∈ C : ∥x̄− x∥ = dC(x)} for each x ∈ H.

Some useful properties about PC(·) are presented in the following lemma;

see [18].

Lemma 2.1 Let C ⊆ H be nonempty, closed and convex. Then, the following

assertions hold for any x, y ∈ H and z ∈ C:

(i) ⟨x− PC(x), z − PC(x)⟩ ≤ 0;

(ii) ∥PC(x)− PC(y)∥2 ≤ ⟨PC(x)− PC(y), x− y⟩;

(iii) ∥PC(x)− z∥2 ≤ ∥x− z∥2 − ∥PC(x)− x∥2.

Recall that a mapping T : H → H is said to be nonexpansive, if

∥Tx− Ty∥ ≤ ∥x− y∥ for each x, y ∈ H.
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Clearly, it follows from Lemma 2.1(ii) that PC is nonexpansive. The following

demiclosedness principle of a nonexpansive mapping is well-known in Hilbert

spaces; see [18, Theorem 4.17]. Let I be the identity operator in H, and let

Fix(T ) denote the set of all fixed points of T , namely

Fix(T ) := {x ∈ H : T (x) = x}.

Lemma 2.2 Let C ⊆ H be nonempty, closed and convex, and let T : C → C

be a nonexpansive mapping with Fix(T ) ̸= ∅. If {xn} ⊆ C converges weakly to

x and {(I−T )(xn)} converges strongly to y, then (I−T )(x) = y. In particular,

if y = 0, then x = T (x).

The following lemma (cf. [18, Theorem 5.5]) will be useful in convergence

analysis of projection gradient methods.

Lemma 2.3 Let C ⊆ H be nonempty, closed and convex. Let {xn} ⊆ H satisfy

that limn→∞ ∥xn − x∥ exists for each x ∈ C and that each weak cluster point

of {xn} belongs to C. Then, {xn} converges weakly to a point in C.

For a convex function f : H → R, the subdifferential of f at x is denoted

by ∂f(x) and defined by

∂f(x) := {v ∈ H : f(x) + ⟨v, y − x⟩ ≤ f(y) for each y ∈ H}.

f is said to be subdifferentiable at x ∈ H if ∂f(x) ̸= ∅. It is shown in [18,

Proposition 16.3] that the convex function is subdifferentiable everywhere.

Let H1 and H2 be two real Hilbert spaces, and let A : H1 → H2 be a

bounded linear operator. Let t, r ∈ N∗, and consider two families of closed

convex sets in H1 and H2: {Ci : i = 1, . . . , t} and {Qj : j = 1, . . . , r},

respectively. In the present paper, we consider the following multiple-sets split

feasibility problem (MSSFP): Find a point x∗ ∈ H1 such that

x∗ ∈
t∩

i=1

Ci and Ax∗ ∈
r∩

j=1

Qj . (1)

In particular, if t = r = 1, then the MSSFP is reduced to the classical

split feasibility problem (SFP). Let S denote the solution set of problem (1).
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Throughout the paper, we always assume that the MSSFP is consistent, that

is, S ̸= ∅.

Let βj > 0 for j = 1, . . . , r. We recall that the proximity function associated

to (1), which was introduced in Xu [13]:

p(x) :=
1

2

r∑
j=1

βj∥Ax− PQj (Ax)∥2 for each x ∈ H1. (2)

The following lemma describes the property of p(·); see [13, pp. 2028].

Lemma 2.4 The function p(·) is differentiable with its gradient given by

∇p(·) =
r∑

j=1

βjA
∗(I− PQj )(A·), (3)

and the Lipschitz constant of ∇p(·) is L := ∥A∥2
∑r

j=1 βj.

We end this section by the following lemma, which will be useful in the

sequel.

Lemma 2.5 Let x ∈ H1, z ∈ S, and λ > 0. Then,

∥x− λ∇p(x)− z∥2 ≤ ∥x− z∥2 + λ2∥∇p(x)∥2 − 4λp(x). (4)

Proof Note that

∥x− λ∇p(x)− z∥2 = ∥x− z∥2 + λ2∥∇p(x)∥2 − 2λ ⟨∇p(x), x− z⟩ . (5)

One has from (3) that

⟨∇p(x), x− z⟩ =
r∑

j=1

βj

⟨
(I− PQj )(Ax), Ax−Az

⟩
. (6)

For j = 1, . . . , r, it follows from Lemma 2.1(i) that⟨
(I− PQj )Ax,Ax−Az

⟩
= ∥Ax− PQj (Ax)∥2 +

⟨
Ax− PQj (Ax),PQj (Ax)−Az

⟩
≥ ∥Ax− PQj

(Ax)∥2.

Combining this with (6) yields that

⟨∇p(x), x− z⟩ ≥
r∑

j=1

βj∥Ax− PQj (Ax)∥2 = 2p(x).

This, together with (5), implies (4). The proof is complete. ⊓⊔
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3 Projection Gradient Methods for MSSFP

In this section, for the case where the projections onto Ci and Qj are easily

implemented (e.g., they are halfspaces or box constraints), we propose a family

of projection gradient methods for solving the MSSFP (1), and investigate its

global weak convergence. Write I := {1, . . . , t} and recall p(·) defined by (2).

Throughout the paper, we adopt the convention that 0
0 := 0. The projection

gradient method for solving the MSSFP is formally stated as follows.

Algorithm 3.1

Step 0 Choose x0 ∈ H1, δ > 0, 0 < ρ < ρ < 4, and set n := 0.

Step 1 Determine the step-size λn by

λn :=
ρnp(xn)

∥∇p(xn)∥2
, where ρ ≤ ρn ≤ ρ. (7)

Step 2 Take the weights {ωn
i ∈ R+ : i ∈ I} such that

t∑
i=1

ωn
i = 1 and inf

i∈In
ωn
i > δ, where In := {i ∈ I : ωn

i > 0} . (8)

Step 3 Set

xn+1 :=
t∑

i=1

ωn
i PCi(xn − λn∇p(xn)).

Step 4 Set n := n+ 1 and go to Step 1.

Remark 3.1 Algorithm 3.1 includes the cyclic/simultaneous iteration

methods introduced in [17] as special cases. In particular, we choose the weights

as

wn
i :=

1, if i = (n mod t) + 1,

0, otherwise.

(9)

Then, {xn} can be regarded as a sequence generated by the cyclic iteration

method. Let {wi} be defined in [17, Theorem 3.2], and set

wn
i := wi for each i = 1, . . . , t. (10)

Then, {xn} is identical to a sequence generated by the simultaneous iteration

method.
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The notion of set control was introduced in [19,20] for feasibility problems,

which is useful in convergence analysis of projection algorithms; see [8,21,22].

Here, we introduce a practical set control scheme for Algorithm 3.1, which will

be useful in its convergence analysis.

Definition 3.1 Let {xn} be a sequence generated by Algorithm 3.1, and let

q ∈ N∗. We say that {xn} satisfies the q-intermittent set control, if

In ∪ · · · ∪ In+q−1 = I for each n ∈ N.

The main result of this section is presented in the following theorem, which

establishes the global weak convergence property of the sequence generated by

Algorithm 3.1. Recall that S is the solution set of (1).

Theorem 3.1 Let {xn} be a sequence generated by Algorithm 3.1. Suppose

that there exists q ∈ N∗ such that {xn} satisfies the q-intermittent set control.

Then, {xn} converges weakly to a solution of (1).

Proof Let z ∈ S and un := xn − λn∇p(xn). In view of Algorithm 3.1, we

obtain by the convexity of ∥ · ∥2 and Lemma 2.1(iii) that

∥xn+1 − z∥2 = ∥
t∑

i=1

ωn
i (PCi(un)− z)∥2

≤
t∑

i=1

ωn
i ∥PCi(un)− z∥2

≤
t∑

i=1

ωn
i (∥un − z∥2 − ∥PCi(un)− un∥2)

≤ ∥un − z∥2 − ∥xn+1 − un∥2.

(11)

This, together with (7) and (4), implies that

∥xn+1 − z∥2 ≤ ∥xn − z∥2 + λ2
n∥∇p(xn)∥2 − 4λnp(xn)

= ∥xn − z∥2 − ρn(4− ρn)
p2(xn)

∥∇p(xn)∥2
.

(12)

Since 0 < ρn < 4, it follows that ∥xn+1−z∥ ≤ ∥xn−z∥, which shows that {xn}

is a bounded sequence and limn→∞ ∥xn − z∥ exists. Let x∗ be a weak cluster
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point of {xn}. That is, there exists a subsequence {xnl
} such that xnl

⇀ x∗.

Below, we will show that x∗ ∈ S. Granting this, one has from Lemma 2.3 that

{xn} converges weakly to a point in S; hence the conclusion follows.

To complete the proof, it suffices to show that x∗ ∈ S. By (12) and the

fact that 0 < ρ ≤ ρn ≤ ρ < 4, we obtain

ρ(4− ρ)
p2(xn)

∥∇p(xn)∥2
≤ ∥xn − z∥2 − ∥xn+1 − z∥2.

Letting n → ∞, one has

lim
n→∞

p2(xn)

∥∇p(xn)∥2
= 0. (13)

Since ∇p is Lipschitz continuous (cf. Lemma 2.4) and {xn} is bounded,

{∥∇p(xn)∥} is bounded. Hence, we conclude from (13) that limn→∞ p(xn) = 0

and so by (2) that

lim
n→∞

∥Axn − PQj (Axn)∥ = 0 for j = 1, . . . , r.

Since xnl
⇀ x∗ and dQj (A·) is lower semicontinuous (thanks to its convexity),

it follows that

dQj (Ax∗) ≤ lim inf
l→∞

dQj (Axnl
) = 0,

which implies Ax∗ ∈ Qj for j = 1, . . . , r; consequently, Ax∗ ∈
∩r

j=1 Qj .

Finally, it remains to show that x∗ ∈
∩t

i=1 Ci. Note that xnl
⇀ x∗ and it

follows from (7) and (13) that

lim
n→∞

λn∥∇p(xn)∥ = 0. (14)

This, together with the definition of un, implies that unl
⇀ x∗ and

lim
n→∞

∥un − z∥2 = lim
n→∞

∥xn − z∥2. (15)

Observing from Lemma 2.1(iii) and the convexity of ∥ · ∥2, we obtain

t∑
i=1

ωn
i ∥PCi(un)− un∥2 ≤ ∥un − z∥2 −

t∑
i=1

ωn
i ∥PCi(un)− z∥2

≤ ∥un − z∥2 − ∥xn+1 − z∥2.
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Combining this with (15) yields

lim
n→∞

t∑
i=1

ωn
i ∥PCi(un)− un∥2 = 0. (16)

Fix i ∈ I and nl ∈ N. Since {xn} satisfies the q-intermittent set control, one

has

Inl
∪ · · · ∪ Inl+q−1 = I.

Hence, there exists qli ∈ {0, 1, . . . , q − 1} such that i ∈ Inl+qli
and so

ω
nl+qli
i > δ > 0.

Let ñl := nl + qli. Note that, for each ñl,

δ∥PCi(uñl
)− uñl

∥ ≤
t∑

i=1

ωñl
i ∥PCi(uñl

)− uñl
∥,

which, together with (16), implies

lim
l→∞

∥PCi(uñl
)− uñl

∥ = 0. (17)

Below, we will show that uñl
⇀ x∗. Granting this, it follows from (17) and

Lemma 2.2 (with PCi in place of T ) that x∗ ∈ Ci. As i ∈ I is arbitrary, one

has x∗ ∈
∩t

i=1 Ci, as desired.

To proceed, we obtain by (11) and (15) that

lim
n→∞

∥xn+1 − un∥2 = 0. (18)

Note by the definition of un that

∥xn+1 − un∥2 = ∥xn+1 − xn∥2 + λ2
n∥∇p(xn)∥2 + 2 ⟨xn+1 − xn, λn∇p(xn)⟩ .

Letting n → ∞, we get from (18) and (14) that limn→∞ ∥xn+1 − xn∥ = 0.

Then, it follows from the definition of un and (14) that

lim
n→∞

∥un+1 − un∥ = 0. (19)

Let v ∈ H1. For each nl ∈ N, one has

⟨uñl
− x∗, v⟩ = ⟨uñl

− uñl−1, v⟩+ · · ·+ ⟨unl
− x∗, v⟩ .
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Since unl
⇀ x∗ and ñl − nl ≤ q, it follows from (19) that

lim
l→∞

⟨uñl
− x∗, v⟩ = 0,

and thus, uñl
⇀ x∗ because v ∈ H1 is arbitrary. The proof is complete. ⊓⊔

By Remark 3.1 and Theorem 3.1, the convergence results of the iteration

projection methods proposed in [17] can be directly obtained as follows.

Corollary 3.1 Let {xn} be a sequence generated by Algorithm 3.1 with {wn
i }

given by (9). Then, {xn} converges weakly to a solution of (1).

Proof One can verify by (9) that In ∪ · · · ∪ In+t−1 = I for each n ∈ N;

consequently, {xn} satisfies the t-intermittent set control. Hence, Theorem 3.1

is applicable and the conclusion follows. ⊓⊔

Corollary 3.2 Let {wi}ti=1 ⊂]0, 1[ be such that
∑t

i=1 wi = 1. Let {xn} be

a sequence generated by Algorithm 3.1 with {wn
i } given by (10). Then, {xn}

converges weakly to a solution of (1).

Proof By the assumption, it is easy to see by (10) that In = I for each

n ∈ N, namely, {xn} satisfies the 1-intermittent set control. Thus, Theorem

3.1 is applicable and the conclusion follows. ⊓⊔

Remark 3.2 As mentioned in Remark 3.1, a sequence generated by

Algorithm 3.1 with {wn
i } given by (9) is identical to the one by the cyclic

iteration method, whose weak convergence result was shown in [17, Theorem

3.1]. However, there is some gap in the proof of [17, Theorem 3.1]. More

precisely, the authors claimed that “Notice that the pool {1, . . . , t} is finite,

then for any i ∈ {1, . . . , t}, we can choose a subsequence {nkl
} ⊂ {nk}

such that (nkl
mod t) = i.” Whereas, this is not true if the subsequence is

{nk : nk := tk + i0} for some fixed i0 or some other relevant cases. Corollary

3.1 fills the gap, and Theorem 3.1 extends the result of [17, Theorem 3.1].

Remark 3.3 As mentioned in Remark 3.1, a sequence generated by

Algorithm 3.1 with {wn
i } given by (10) is identical to the one by the
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simultaneous iteration method, which was discussed in [17, Theorem 3.2]. In

particular, the condition that {wi}ti=1 ⊂ [0, 1] is assumed in [17, Theorem 3.2].

As shown in Examples 3.1 and 3.2 below, [17, Theorem 3.2] may fail to (weakly)

converge to a solution of (1) if {wi}ti=1 ⊂ [0, 1] is assumed. Our Corollary 3.2

and Theorem 3.1 corrects and extends [17, Theorem 3.2], respectively.

We end this section by providing two counter examples of [17, Theorem

3.2], in which a sequence generated by the simultaneous iteration method with

{wi}ti=1 ⊂ [0, 1] fails to (weakly) converge to a solution of (1). It should be

remarked that ∇p(xn) = 0 and ∇p(xn) ̸= 0 for each n ∈ N in Examples 3.1

and 3.2, respectively.

Example 3.1 Consider problem (1) with t := 3, r := 1, A := I (the identity

matrix in R2) and

C1 := [0, 4]× [0, 4], C2 := [2, 6]× [2, 6], C3 := [1, 3]× [2, 6], Q := [0, 4]× [2, 6].

Clearly, the solution set of this problem is S = [2, 3] × [2, 4]. Recall in [17,

Theorem 3.2] that the simultaneous iteration method is presented as

xn+1 :=
3∑

i=1

ωiPCi(xn − λn∇p(xn)) for each n ≥ 0, (20)

where ωi ∈ [0, 1] such that ω1 + ω2 + ω3 = 1, and λn is given by (7). Select

parameters β = 1, ω1 = ω2 = 1
2 , ω3 = 0 and ρn ≡ 2, and take an initial point

x0 = (4, 6)⊤. Then, by (2) and (7), one has ∇p(xn) = 0 and λn = 0 for each

n ∈ N, and thus, {xn} is well generated and

xn =

(
4, 4 +

1

2n−1

)⊤

for each n ∈ N.

Consequently, {xn} converges to (4, 4)⊤ /∈ S. Hence, [17, Theorem 3.2] fails in

this example.

Example 3.2 Consider problem (1) with t = r = 2, A := I and

C1 := {(x1, x2) ∈ R2 : −1 ≤ x1 ≤ 1, x1 = x2},

C2 := {(x1, x2) ∈ R2 : −2 ≤ x1 ≤ 0,−2 ≤ x2 ≤ 0,−2 ≤ x1 + x2 ≤ −1},
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Q1 := [−1, 0]× [−1, 1], Q2 := [−1, 1]× [−1, 0].

Then, the solution set of (1) is S = {(x1, x2) ∈ R2 : −1 ≤ x1 ≤ − 1
2 , x1 = x2}.

Select parameters β1 = β2 = 1
2 , ω1 = 1, ω2 = 0 and ρn ≡ 1, and take an initial

point x0 = (1, 1)⊤. Then, by (2) and (20), one has ∇p(xn) ̸= 0 and λn is well

defined for each n ∈ N, and thus, {xn} is well generated and

xn = (2−n, 2−n)⊤ for each n ∈ N.

Consequently, {xn} converges to the origin, which is not a solution of (1).

Hence, [17, Theorem 3.2] fails in this example.

4 Relaxed Projection Gradient Methods for MSSFP

In this section, we consider a general case of the MSSFP, where {Ci}ti=1 and

{Qj}rj=1 in (1) are given by level sets of convex functions. Throughout this

section, we assume that each ci : H1 → R and qj : H2 → R are convex

functions and the sets Ci and Qj are given respectively by

Ci := {x ∈ H1 : ci(x) ≤ 0} and Qj := {y ∈ H2 : qj(y) ≤ 0} . (21)

We assume that ∂ci and ∂qj are bounded operators (i.e., bounded on any

bounded set) for each i = 1, . . . , t and j = 1, . . . , r.

In this situation, the projections onto Ci and Qj are not easily implemented

in general. To avoid this difficulty, we introduce a family of relaxed projection

gradient methods, in which the projections onto the approximated halfspaces

are adopted in place of the projections onto Ci and Qj (as in Algorithm 3.1).

In particular, letting n ∈ N, i ∈ {1, . . . , t} and j ∈ {1, . . . , r}, we use Cn
i and

Qn
j to denote the approximated halfspaces of Ci and Qj at xn, i.e.,

Cn
i := {x ∈ H1 : ci(xn) + ⟨ξni , x− xn⟩ ≤ 0} , where ξni ∈ ∂ci(xn),

and

Qn
j :=

{
y ∈ H2 : qj(Axn) +

⟨
ηnj , y −Axn

⟩
≤ 0

}
, where ηnj ∈ ∂qj(Axn),



14 Jinhua Wang1 et al.

respectively. By the definition of subgradient, it follows that Ci ⊆ Cn
i and

Qj ⊆ Qn
j . As in [17], letting βj > 0 for j = 1, . . . , r, we define the following

(relaxed) proximity function

pn(x) :=
1

2

r∑
j=1

βj∥Ax− PQn
j
(Ax)∥2 for each x ∈ H1. (22)

It follows from Lemma 2.4 that pn(·) is differentiable with its gradient given

by

∇pn(x) =

r∑
j=1

βjA
∗(I− PQn

j
)(Ax).

Recall that I := {1, . . . , t}. The relaxed projection gradient method for solving

the MSSFP (1) with {Ci} and {Qj} given by (21) is formulated as follows.

Algorithm 4.1

Step 0 Choose x0 ∈ H1, δ > 0, 0 < ρ < ρ < 4, and set n := 0.

Step 1 Choose the step-size λn by

λn :=
ρnpn(xn)

∥∇pn(xn)∥2
, where ρ ≤ ρn ≤ ρ.

Step 2 Take the weights {ωn
i ∈ R+ : i ∈ I} satisfying (8).

Step 3 Set

xn+1 :=

t∑
i=1

ωn
i PCn

i
(xn − λn∇pn(xn)).

Step 4 Set n := n+ 1 and go to Step 1.

Remark 4.1 Algorithm 4.1 includes the relaxed cyclic/simultaneous iteration

methods introduced in [17] as special cases where the weights {ωn
i : i ∈ I} are

chosen by (9) and (10), respectively.

The main result of this section is stated in the following theorem, in which

we prove the global weak convergence of the sequence generated by Algorithm

4.1. Recall that S is the solution of (1).

Theorem 4.1 Let {xn} be a sequence generated by Algorithm 4.1. Suppose

that there exists q ∈ N∗ such that {xn} satisfies the q-intermittent set control.

Then, {xn} converges weakly to a solution of (1).
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Proof Let z ∈ S and un := xn − λn∇pn(xn). Following the same lines as in

the beginning of the proof of Theorem 3.1, we can deduce that lim
n→∞

∥xn − z∥

exists and

lim
n→∞

pn(xn) = 0 and lim
n→∞

∥un − xn∥ = 0. (23)

Let x∗ be a weak cluster point of {xn}, namely, there exists a subsequence

{xnk
} such that xnk

⇀ x∗. Below, we will show that x∗ ∈ S. Granting this,

one has from Lemma 2.3 that {xn} converges weakly to a point in S; hence

the conclusion follows.

To accomplish the proof, it suffices to show that x∗ ∈ S. Note by (22) and

the first equality of (23) that

lim
n→∞

∥Axn − PQn
j
(Axn)∥ = 0 for j = 1, . . . , r. (24)

By assumption that ∂qj is bounded on bounded set and noting that {xn} is

bounded, there exists η > 0 such that ∥ηnj ∥ ≤ η for each n ∈ N and j = 1, . . . , r.

Hence, one has by the definition of Qn
j that

qj(Axn) ≤ ⟨ηnj , Axn − PQn
j
(Axn)⟩ ≤ η∥Axn − PQn

j
(Axn)∥. (25)

By the convexity of qj , it is weakly lower semicontinuous, and then, we obtain

from (24) and (25) that qj(Ax
∗) ≤ lim inf

k→∞
qj(Axnk

) ≤ 0, which says Ax∗ ∈ Qj

for j = 1, . . . , r; consequently, Ax∗ ∈
∩r

j=1 Qj .

Finally, it remains to show that x∗ ∈
∩t

i=1 Ci. Fix i ∈ I. Following the

same arguments as in the proof of Theorem 3.1 (cf. (18)), we can show that

there exists a subsequence {ñk} such that

lim
k→∞

∥P
C

ñk
i

(uñk
)− uñk

∥ = 0. (26)

and xñk
⇀ x∗. Note that there exists ζ > 0 such that ∥ξñk

i ∥ ≤ ζ for each

k ∈ N (by the assumption that ∂ci is bounded on bounded set); consequently,

one has by the definition of Cn
j that

ci(xñk
) ≤ ⟨ξñk

i , xñk
− P

C
ñk
i

(uñk
)⟩

≤ ζ(∥xñk
− uñl

∥+ ∥uñk
− P

C
ñk
i

(uñk
)∥).
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By the lower semicontinuity of ci(·) (thanks to its convexity) and xñk
⇀ x∗,

this, together with (26) and the second equality of (23), yields that

ci(x
∗) ≤ lim inf

k→∞
ci(xñk

) ≤ 0;

consequently, x∗ ∈ Ci. As i ∈ I is arbitrary, it follows that x∗ ∈
∩t

i=1 Ci, as

desired. The proof is complete. ⊓⊔

By applying Remark 4.1 and Theorem 4.1, the convergence results of the

relaxed cyclic/simultaneous iteration methods proposed in [17] are directly

obtained as follows.

Corollary 4.1 Let {xn} be a sequence generated by Algorithm 4.1 with {wn
i }

given by (9). Then, {xn} converges weakly to a solution of (1).

Corollary 4.2 Let {wi}ti=1 ⊂]0, 1[ such that
∑t

i=1 wi = 1. Let {xn} be a

sequence generated by Algorithm 4.1 with {wn
i } given by (10). Then, {xn}

converges weakly to a solution of (1).

Remark 4.2 As mentioned in Remark 4.1, a sequence generated by

Algorithm 4.1 with {wn
i } given by (9) is identical to the one by the relaxed

cyclic iteration method, whose weak convergence result was shown in [17,

Theorem 4.1]. However, there is some gap in the proof of [17, Theorem 4.1].

More precisely, the authors claimed that “Since the pool of convex sets {Ci}ti=1

is finite. For any i ∈ {1, . . . , t}, we can choose a subsequence {nkl
} ⊂ {nk}

such that (nkl
mod t) = i.” Whereas, this is not true if the subsequence is

{nk : nk := tk + i0} for some fixed i0 or some other relevant cases. Our

Corollary 4.1 fills the gap, and Theorem 4.1 extends the result in [17, Theorem

4.1].

Remark 4.3 As mentioned in Remark 4.1, a sequence generated by

Algorithm 4.1 with {wn
i } given by (10) is identical to the one by the relaxed

simultaneous iteration method, which was discussed in [17, Theorem 4.2].

The condition {wi}ti=1 ⊂ [0, 1] is assumed in [17, Theorem 4.2]; however,

the convergence may fail under this assumption (see Example 3.1). Hence,
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our Corollary 4.2 and Theorem 4.1 corrects and extends [17, Theorem 4.2],

respectively.

5 Conclusions

The multiple-sets split feasibility problem (MSSFP) is a generalization of the

split feasibility problem, which has attracted a great amount of attention

in numerical algorithms and has been widely applied in various fields. In

the present paper, a family of projection gradient methods for the MSSFP

were proposed for the cases where the projections onto the involved sets are

easily implemented, which include the cyclic/simultaneous iteration methods

introduced in [17] as special cases. For the general case where the involved

sets are given by level sets of convex functions, we proposed a family of

relaxed projection gradient methods (with projections onto the approximated

halfspaces in place of the ones onto the level sets), which cover the relaxed

cyclic/simultaneous iteration method introduced in [17] as special cases.

Global weak convergence theorems of these methods were established in the

present paper. In particular, as their direct applications, our results fill some

gaps and imperfections, and improve/extend the corresponding results in [17].
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