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Abstract. We consider the extended Newton method for approaching a Pareto optimum of a multiobjec-

tive optimization problem, establish quadratic convergence criteria and estimate a radius of convergence ball

under the assumption that the Hessians of objective functions satisfy an L-average Lipschitz condition. These

convergence theorems significantly improve the corresponding ones in [SIAM J. Optim 20 (2009), pp. 602-626].
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extended Newton method with Armijo/Goldstein/Wolfe line-search schemes are also provided.
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1. Introduction. Let U ⊆ Rl be an open set, and let F : U → Rm be a twice contin-

uously differentiable function. In the present paper, we consider the following multiobjective

optimization problem:

min
x∈U

F (x). (1.1)

This type of problems has been widely studied by [6, 8, 24] and extensively applied in various

areas such as engineering [16], management science [2], environmental analysis [28], economy
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2 EXTENDED NEWTON METHODS FOR MULTIOBJECTIVE OPTIMIZATION

[44], radiotherapy [38], statistical regression [31] and so on. In particular, the intensity modu-

lated radiotherapy and multiple ridge regression are reformulated by (possibly unconstrained)

strongly convex multiobjective optimization problems in [38] and [31], respectively.

Motivated by its extensive applications, a great amount of attention has been attracted to

the development of optimization algorithms, and many iterative methods have been proposed

to approach a Pareto optimum of multiobjective optimization; see [3, 6, 7, 12, 13, 14, 15, 21, 22,

23, 41, 46] and references therein. Among them, there are mainly two different approaches for

solving multiobjective optimization. One is based on the scalarization technique (see [7, 15]),

the other is based on descent methods; see [3, 12, 13, 14, 22, 23]. Scalarization methods compute

the Pareto or weakly Pareto solutions by choosing some parameters in advance, and reformu-

lating them as single objective optimization problems. As shown in [22, p. 618], scalarization

methods might be problematic for some examples, where most choices of the parameters lead

to unbounded (and thus unsolvable) scalar problems. Usually, the descent methods do not

require any parameter information. For example, a steepest descent method was proposed in

[23] to solve multiobjective optimization problems, where neither ordering information (i.e.,

an ordering of importance of the components of the objective function vector) nor weighting

factors are assumed to be known. Other descent methods such as Newton method [22], pro-

jected gradient method [12], proximal point method [4, 9], trust-region method [37] and so on,

have been proposed and studied extensively for multiobjective optimization problems with an

ordering defined by the non-negative orthant. Moreover, the Newton method in [22] has also

been extended to solve multiobjective optimization problems with an ordering defined by a

closed, convex and pointed cone or a variable ordering structure, respectively in [13, 3], and the

convergence properties were studied therein.

In the present paper, we focus on the Newton method for solving multiobjective optimiza-

tion problems. Its original idea is from the classical Newton method for solving nonlinear

equations, the study of which has a long history; see [45]. One of the most famous results on

Newton method is the well-known Kantorovich’s theorem (cf. [26]), which provides a crite-

rion ensuring the quadratic convergence under some mild conditions around the initial point

x0. Another important result is Smale’s point estimate theory (i.e., α-theory and γ-theory)

developed in [39, 40], which provides the rules to judge an initial point to be an approximate

zero, depending on the information of the analytic nonlinear operator at this initial point or at

a solution. A significant development in this direction was made by Wang in [42], where the

notion of the generalized L-average Lipschitz condition was introduced for developing the con-

vergence theory of the Newton method for solving an equation in a Banach space, and unifying

the Kantorovich’s theorem and the Smale’s point estimate theory. Extensions of the mentioned

results on the Newton method have also been made for finding the singularities of the vector

fields on Riemannian manifolds [11, 20, 30].

The extended Newton method (with Armijo line-search scheme) which we considered here

for solving multiobjective optimization problems was introduced by Fliege et al. [22] for uncon-

strained (strongly) convex multiobjective optimization problems. Compared with other iterative

methods for multiobjective optimization, as pointed out in [22], the extended Newton method

enjoys several advantages: (a) it has a fast convergence rate under some mild conditions; (b)
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its subproblems can be solved effectively; and (c) it does not require a priori weighting factor

or any other priori information for the objective functions. Due to these benefits, there is a

great demand for further investigating the convergence theory of the extended Newton method,

which is formally stated as follows.

Algorithm 1.1.

Step 1. Choose x0 ∈ U and σ ∈ (0, 1), and set n := 0.

Step 2. Solve the direction search problem

min
s∈Rl

max
j=1,...,m

∇Fj(xn)
T s+

1

2
sT∇2Fj(xn)s

to obtain its minimizer s(xn) and its minimal value θ(xn).

Step 3. If θ(xn) = 0, then stop; otherwise, proceed to Step 4.

Step 4. Choose αn as the maximal value of {2−i : i ∈ N} such that

xn + αns(xn) ∈ U and Fj(xn + αns(xn)) ≤ Fj(xn) + σαnθ(xn) for all j = 1, . . . ,m.

Step 5. Define xn+1 = xn + αns(xn) and set n := n+ 1. Go back to Step 2.

It is worth mentioning that the idea of the extended Newton method was also proposed in [35,

Section 2.5] to solve the minimax problems of continuously differentiable and convex functions.

Under the assumption that each ∇2Fj(·) is positive definite and Lipschitz continuous on a

convex subset of U (with a nonempty interior), the authors studied in [22] the convergence of

Algorithm 1.1 for problem (1.1) and established three different quadratic convergence results,

which are in particular as follows: the first one is a semi-local convergence theorem, in which

the quadratic convergence to a local Pareto optimum is established under the assumptions,

depending on a lot of parameters, at the initial point; see [22, Theorem 6.1] for details; the

second one is a local convergence theorem (i.e., [22, Corollary 6.2]) that, for each local Pareto

optimum x∗, there exists r > 0 such that the generated sequence converges to a local Pareto

optimum at a quadratic rate whenever the initial point falls in B(x∗, r); the last one is a global

convergence theorem (i.e., [22, Corollary 6.3]), in which the sequence starting from any initial

point is shown to converge to a local Pareto optimum at a quadratic rate.

The purpose of the present paper is to continue the theoretical study of the extended New-

ton method for multiobjective optimization problems. We focus on the case when each ∇2Fj(·)
is Lipschitz continuous and develop a new approach to provide the quantitative convergence

analysis for the extended Newton methods, not only for Algorithm 1.1 but also the one without

the line-search scheme (see Algorithm 3.1). Under the classical Lipschitz continuity assump-

tion for the second derivatives ∇2Fj(·), our main results, concerning also the three types of

convergence properties mentioned above, are described as follows:

• Our theorem (i.e., Theorem 4.1) regarding the semi-local convergence property provides

some explicit convergence criteria, which are only based on the data at an initial point

and the Lipschitz constants of the second derivatives ∇2Fj(·) around the initial point,

for ensuring the convergence (to a local Pareto optimum) of Algorithms 3.1 and 1.1.
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• Our theorem (i.e., Theorem 4.2) regarding the local convergence property provides

some explicit estimates, which only depend on the data of a given local Pareto optimum

and the Lipschitz constants of the second derivatives ∇2Fj(·) around the local Pareto

optimum, for the radius of the convergence balls of Algorithms 3.1 and 1.1.

• Our theorem (i.e., Theorem 4.5) regarding the global convergence property provides

some sufficient conditions on the cluster point for ensuring the global convergence of the

extended Newton method not only with the Armijo line-search scheme (i.e., Algorithm

1.1) but also with Goldstein/Wolfe line-search schemes (i.e., Algorithm 3.2).

• The results obtained in the present paper, containing the local, semi-local and the

global types, provide explicit error estimates for any sequence generated by Algorithm

3.1 or 3.2 (and so Algorithm 1.1) in terms of the corresponding parameters/modulus,

which improve the corresponding ones in [22]; see Theorem 6.1 and Corollaries 6.2, 6.3

therein.

Most of results (such as Theorems 3.4, 3.5, 3.7, 3.9 and so on) in the paper are new, and some

of them (i.e., Theorems 4.1, 4.2 and 4.5), where less data is required, extend/improve partially

the corresponding ones in [22, Theorem 6.1 and Corollaries 6.2, 6.3] as explained in Remark

4.1; in particular, an example is provided to show the case where the convergence result in the

present paper (Theorem 4.1) is available but not the one in [22, Theorem 6.1]; see Example 4.1

for details.

Another important extension of the present paper is that the L-average Lipschitz condi-

tion, introduced by Wang [42] mentioned above, is involved in the convergence analysis of the

extended Newton method. This idea has been used extensively in numerical analysis and opti-

mization problems; see [17, 18, 29, 30] and references therein, but not been found to be applied

to study multiobjective optimization problems. Note that the L-average Lipschitz condition

implies actually the classical Lipschitz condition (with the Lipschitz constant being the supre-

mum of the function L(·) in the involved ball). However, as shown in Theorems 4.1 and 4.2, the

convergence criteria and/or the radius of the convergence ball of the extended Newton method

depend heavily on the choice of the function L(·) for the involved function F to satisfy. In fact,

the larger the value of the function L(·), the stricter the convergence criteria and the smaller

the estimated radius of the convergence ball. This means that using the classical Lipschitz

condition in our theorems rather than the L-average Lipschitz condition would produce the

weaker results on the convergence criteria and/or on the radius of the convergence ball. One

of the main advantages of adopting the L-average Lipschitz condition is shown in Example 4.2.

That is, when the theorem under the classical Lipschitz condition is not applicable, it provides

the possibility to choose a suitable non-negative and monotonically increasing function L such

that the convergence theorem (which we will establish under the general L-average Lipschitz

condition) is applicable for ensuring the convergence of the extended Newton method.

It should be remarked that the analysis tool used in the present paper is the majorizing

function technique, which deviates significantly from that of [22]. The majorizing function

technique has been widely used in the convergence analysis of the Newton method for nonlinear

equations [17, 19, 42, 43] and of the Gauss-Newton method for convex composite optimization

[18, 29], which enables us to establish an explicit convergence criterion and provides a precise
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estimation of the convergence radius. To the best of our knowledge, this is the first work to

develop the majorizing function technique for the convergence analysis of the extended Newton

method for multiobjective optimization.

The paper is organized as follows. In Section 2, we present the notations and preliminary

results to be used in the present paper. The quadratic convergence criterion and the estimation

of radius of convergence ball of the extended Newton method for multiobjective optimization

problems are provided in Section 3, under the L-average Lipschitz condition. In Section 4,

theorems under the classical Lipschitz condition, the global quadratic convergence results of the

extended Newton method and theorems under the γ-condition are presented for multiobjective

optimization problems. In Section 5, a preliminary numerical study is provided to show the high

efficiency of the extended Newton method for solving some convex bi-objective optimization

problems.

2. Notation and preliminary results. The notations used in the present paper are

standard in Euclidean spaces. As usual, for x ∈ Rl and r > 0, letB(x, r) andB[x, r] respectively

denote the open and closed balls in Rl, and let Rm
+ and Rm

++ denote the non-negative orthant

and positive orthant of Rm, respectively. The standard simplex in Rm is denoted by ∆m, i.e.,

∆m := {λ ∈ Rm
+ :

m∑
i=1

λi = 1}.

Let Rm×l denote the space of all m× l matrices, and let I denote the identity matrix in Rl×l.

For M ∈ Rm×l, the range of M is denoted by R(M). The following lemma regarding the

inverses of the perturbations of nonsingular matrix is well-known; see for example [34, p.45].

Lemma 2.1. Let A,B ∈ Rl×l be such that A is invertible and ∥A−1∥∥A−B∥ < 1. Then B

is invertible and

∥B−1∥ ≤ ∥A−1∥
1− ∥A−1∥∥A−B∥

.

If A and B are additionally symmetric, then B is positive definite.

2.1. Preliminary results about multiobjective optimization. In the present paper,

we consider the multiobjective optimization problem (1.1) with U ⊆ Rl being an open (not

necessarily convex) set and F : U → Rm being a vector-valued function, denoted by

F := (F1, . . . , Fm)T , (2.1)

where each Fi : U → R is a twice continuously differentiable and real-valued function. For a

convex subset V ⊆ U , F is said to be Rm-convex on V if Fi is convex on V for each i = 1, . . . ,m.

The following notions consider Pareto optima (also called efficient points).

Definition 2.2. A point x∗ ∈ U is said to be

(a) a (global) Pareto optimum of F on U if there does not exist y ∈ U such that F (x∗)−F (y) ∈
Rm

+ and F (y) ̸= F (x∗);
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(b) a weak Pareto optimum of F on U if there does not exist y ∈ U such that F (x∗)− F (y) ∈
Rm

++;

(c) a local Pareto optimum (resp. local weak Pareto optimum) if there exists a neighborhood

V ⊆ U of x∗ such that x∗ is a Pareto optimum (resp. weak Pareto optimum) of F on V .

Obviously, every Pareto optimum is also a weak Pareto optimum, and each local Pareto

optimum is a (global) Pareto optimum if U is convex and F is Rm-convex on U .

For each i ∈ N := {1, 2, . . . }, Ci(U,Rm) denotes the set of i-th continuously differentiable

functions from U to Rm. Let x ∈ U , f ∈ C2(U,R) and F ∈ C2(U,Rm) given by (2.1). We use

∇f(x) ∈ Rl and ∇2f(x) ∈ Rl×l to denote the gradient and the Hessian of f at x, respectively;

while, the Jacobian and the second derivative of F at x are denoted by DF (x) and D2F (x),

respectively, that is,

DF (x) = (∇F1(x), . . . ,∇Fm(x))T and D2F (x) = (∇2F1(x), . . . ,∇2Fm(x))T .

We say that D2F (x) is positive definite if so is each ∇2Fi(x).

The notion of a critical point is recalled in the following definition, which characterizes

a necessary (but in general not sufficient) condition for Pareto optimality and was used in

[23] and [22] to investigate a steepest descent algorithm and an extended Newton method for

multiobjective optimization, respectively.

Definition 2.3. A point x̄ ∈ U is said to be a critical point of F if R(DF (x̄))∩(−Rm
++) =

∅.

Note that, in the case when m = 1, R(DF (x̄)) ∩ (−Rm
++) = ∅ is reduced to the classical

optimality condition of scalar optimization. It follows from [22, Theorem 3.1] that, if F ∈
C2(U,Rm) and x∗ ∈ U is such that D2F (x∗) is positive definite, then

x∗ is a critical point of F ⇔ x∗ is a local Pareto optimum of F . (2.2)

Following [22], associated to (1.1), we consider, for a point x ∈ U such that D2F (x) is

positive definite, the following optimization problem:

min
s∈Rl

max
j=1,...,m

∇Fj(x)
T s+

1

2
sT∇2Fj(x)s, (2.3)

the solution of which is the Newton direction of the extended Newton method. By the positive

definiteness of the Hessians, the function s 7→ ∇Fj(x)
T s+ 1

2s
T∇2Fj(x)s is strongly convex for

each j = 1, . . . ,m, and so, problem (2.3) has a unique minimizer. Let V ⊆ U be convex such

that D2F (x) is positive definite for each x ∈ V . We use the functions s : V → Rl and θ : V → R
to denote the unique minimizer and the minimal value of problem (2.3), respectively, that is,

for each x ∈ V ,

s(x) := arg min
s∈Rl

max
j=1,...,m

∇Fj(x)
T s+

1

2
sT∇2Fj(x)s, (2.4)

θ(x) := min
s∈Rl

max
j=1,...,m

∇Fj(x)
T s+

1

2
sT∇2Fj(x)s. (2.5)
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By the KKT optimality condition for problem (2.3), for each x ∈ V , there exist parameters

λ(:= λ(x)) ∈ ∆m such that (see [22] for details)

s(x) = −

 m∑
j=1

λj(x)∇2Fj(x)

−1
m∑
j=1

λj(x)∇Fj(x). (2.6)

We end this subsection by recalling in the following lemmas some useful properties of the

functions s(x) and θ(x). Lemma 2.4 is taken from [22, Lemma 3.2].

Lemma 2.4. Let V ⊆ U be convex and let x̄ ∈ V . Suppose that D2F (x̄) is positive definite.

Then the following statements are true.

(i) θ(x̄) ≤ 0.

(ii) x̄ is not a critical point ⇔ [θ(x̄) < 0] ⇔ [s(x̄) ̸= 0].

(iii) If D2F (x) is positive definite for each x ∈ V , then s is bounded on any compact subset of

V and θ is continuous on V .

Let F := (F1, . . . , Fm)T ∈ C2(U,Rm). Throughout the whole paper, we define

Fλ(·) :=
m∑
j=1

λjFj(·) for each λ := (λ1, . . . , λm)T ∈ ∆m. (2.7)

Let λ ∈ ∆m and x ∈ U , and let ρmin(λ, x) and ρmax(λ, x) denote the minimum and maximum

eigenvalues of the matrix ∇2Fλ(x), respectively, that is,

ρmin(λ, x) := min{zT∇2Fλ(x)z : ∥z∥ = 1} = ∥∇2Fλ(x)
−1∥−1

and

ρmax(λ, x) := max{zT∇2Fλ(x)z : ∥z∥ = 1} = ∥∇2Fλ(x)∥. (2.8)

Relation (2.9) and the first inequality of (2.10) in the following lemma are known in [22, Lemmas

4.2 and 4.3]; while the second inequality of (2.10) is a direct consequence of the first inequality

of (2.9) and the first inequality of (2.10).

Lemma 2.5. Let x ∈ U and let λ ∈ ∆m be such that ∇2Fλ(x) is positive definite. Then

the following relations hold:

ρmin(λ, x)

2
∥s(x)∥2 ≤ |θ(x)| ≤ ρmax(λ, x)

2
∥s(x)∥2, (2.9)

|θ(x)| ≤ 1

2
∥∇2Fλ(x)

−1∥∥∇Fλ(x)∥2 and ∥s(x)∥ ≤ ∥∇2Fλ(x)
−1∥∥∇Fλ(x)∥. (2.10)

2.2. Preliminary results about majorizing function. To study the convergence prop-

erties of the extended Newton method for multiobjective optimization, we first recall some aux-

iliary results of a majorizing function. The majorizing function, originally introduced by Wang
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[42], is a powerful tool for the study of convergence criteria of the Newton method. Let R > 0

and let L : [0, R) → R+ be a nondecreasing and integrable function. Let a > 0 satisfy

1

R

∫ R

0

L(u)(R− u)du >
1

a
. (2.11)

Associated to the triple (a, β;L), we define the pair of positive constants (ra, ba) and the

majorizing function ha : [0, R) → R by

a

∫ ra

0

L(u)du = 1, ba = a

∫ ra

0

L(u)udu (2.12)

(noting that ra, ba are well defined by (2.11) and ba < ra; see [42, Lemma 1.2] and [29, p. 615]),

and

ha(t) := β − t+ a

∫ t

0

L(u)(t− u)du for each t ∈ [0, R), (2.13)

respectively. Then, we have
∫ ra
0

L(u)du <
∫ R

0
L(u)du and so ra < R (as L is positive) because∫ ra

0
L(u)du = 1

a < 1
R

∫ R

0
L(u)(R−u)du by (2.12) and (2.11). Note that ha is twice differentiable

on [0, R) with its derivatives being given by

h′
a(t) = a

∫ t

0

L(u)du− 1 and h′′
a(t) = aL(t) for each t ∈ [0, R), (2.14)

where and throughout the whole paper, h′
a(0) means the right derivative of ha at 0.

Let {ta,n} denote a sequence generated by the classical Newton method for approaching

the zeros of the majorizing function ha with the initial value ta,0 = 0. That is,

ta,n+1 := ta,n − h′
a(ta,n)

−1ha(ta,n) for each n ∈ N. (2.15)

Some properties of the majorizing function ha and the sequence {ta,n} are presented in the

following proposition, which will be useful in the quantitative convergence analysis of extended

Newton method. Part (i) of Proposition 2.6 is taken from [42, Lemma 1.2], while part (ii) is

well-known in the literature of the Newton method (cf. [42]).

Proposition 2.6. Suppose that 0 ≤ β ≤ ba. Then, the following assertions are true.

(i) ha is strictly decreasing on [0, ra] and strictly increasing on [ra, R) with

ha(β) > 0, ha(ra) = β − ba ≤ 0 and lim
t→R−

ha(t) > β > 0.

Moreover, if β < ba, then ha has two zeros r∗a and r∗∗a such that

β < r∗a <
ra
ba

β < ra < r∗∗a ; (2.16)

if β = ba, then ha has a unique zero r∗a ∈ (β,R) (in fact, r∗a = ra).

(ii) {ta,n} is monotonically increasing and converges to r∗a.
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(iii) If β < bα, then

lim
n→∞

2ta,n+1 − ta,n − r∗a
ta,n+1 − ta,n

= 1 and lim
n→∞

r∗a − ta,n+1

(2ta,n+1 − ta,n − r∗a)
2
≤ − aL(r∗a)

2h′(r∗a)
. (2.17)

Proof. To complete the proof, we only need to show assertion (iii). For simplicity, we omit

the first subscript a in the sequence {ta,n}, namely, write {tn} for {ta,n}. Then, one has by

(2.15) and assertion (ii) of this proposition that

lim
n→∞

2tn+1 − tn − r∗a
tn+1 − tn

= 2 + lim
n→∞

1

−h′
a(tn)

−1 ha(tn)−ha(r∗a)
tn−r∗a

= 1,

that is, the equality of (2.17) holds. On the other hand, note again by (2.15) that

r∗a − tn+1 = r∗a − tn + h′
a(tn)

−1ha(tn)

= −h′
a(tn)

−1
∫ 1

0
[h′

a(tn + t(r∗a − tn))− h′
a(tn)](r

∗
a − tn)dt

= −h′
a(tn)

−1
∫ 1

0

∫ 1

0
h′′
a(tn + τt(r∗a − tn))t(r

∗
a − tn)dτ(r

∗
a − tn)dt

≤ −h′
a(tn)

−1 aL(r∗a)
2 (r∗a − tn)

2,

where the inequality holds because h′
a(tn) < 0 (cf. (2.12) and (2.14)), h′′

a(·) = aL(·) (cf. (2.14))
and L(·) is nondecreasing. Then, we obtain

r∗a − tn+1

(2tn+1 − tn − r∗a)
2
≤

−h′
a(tn)

−1 aL(r∗a)
2 (r∗a − tn)

2

(−2h′
a(tn)

−1ha(tn) + tn − r∗a)
2
=

−h′
a(tn)

−1 aL(r∗a)
2

(−2h′
a(tn)

−1 ha(tn)−ha(r∗a)
tn−r∗a

+ 1)2
,

and thus, the inequality of (2.17) is seen to hold. The proof is complete.

The following lemma is useful for the convergence analysis of Newton method and is taken

from [42, pp. 175]. Recall that R > 0 and L : [0, R) → R+ is a nondecreasing and integrable

function.

Lemma 2.7. Let 0 ≤ ζ < R, and let φ : (0, R− ζ) → R+ be defined by

φ(t) :=
1

t2

∫ t

0

L(ζ + u)(t− u)du for each 0 < t < R− ζ.

Then, φ is increasing on (0, R− ζ).

3. Convergence analysis of the extended Newton method. This section aims to

establish the quadratic convergence criterion of the extended Newton method (without or with

line-search scheme) for multiobjective optimization under an L-average Lipschitz condition. The

extended Newton method without line-search scheme for solving the multiobjective optimization

problem (1.1) is formally stated as follows.

Algorithm 3.1.

Step 1. Choose x0 ∈ U and set n := 0.

Step 2. Solve problem (2.3) at xn to obtain s(xn) as in (2.4).

Step 3. Update xn+1 := xn + s(xn) and set n := n+ 1. Go back to Step 2.
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The Armijo rule, the Goldstein rule and the Wolfe rule are three popular and typical line-

search rules for the descent method for solving scalar optimization problems; see [1, 27, 33].

Below, we extend these three line-search schemes for the extended Newton method for solving

multiobjective optimization problems.

Definition 3.1. Let σ ∈ (0, 1) and let ν ∈ (σ, 1). Given n ∈ N and xn ∈ U . Let

s(xn) and θ(xn) be given by (2.4) and (2.5), respectively. A stepsize αn ∈ (0,+∞) such that

xn + αns(xn) ∈ U is said to satisfy

(i) the Armijo rule if

αn = max{2−i : i ∈ N, Fj(xn + 2−is(xn)) ≤ Fj(xn) + σ2−iθ(xn) for all j = 1, . . . ,m};

(ii) the Goldstein rule if αn satisfies

Fj(xn + αns(xn)) ≤ Fj(xn) + σαnθ(xn) for all j = 1, . . . ,m (3.1)

and

Fj(xn + αns(xn)) ≥ Fj(xn) + ναnθ(xn) for all j = 1, . . . ,m;

(iii) the Wolfe rule if αn satisfies (3.1) and

∇Fj(xn + αns(xn))
T s(xn) ≥ νθ(xn) for all j = 1, . . . ,m.

The extended Newton method with line-search scheme for solving the multiobjective opti-

mization problem (1.1) is formally stated as follows.

Algorithm 3.2.

Step 1. Choose x0 ∈ U , σ ∈ (0, 1), ν ∈ (σ, 1) and set n := 0.

Step 2. Solve problem (2.3) at xn to obtain s(xn) and θ(xn) as in (2.4) and (2.5), respectively.

Step 3. If θ(xn) = 0, then stop. Otherwise, proceed to Step 4.

Step 4. If xn + s(xn) ∈ U and

Fj(xn + s(xn)) ≤ Fj(xn) + σθ(xn) for all j = 1, . . . ,m,

then set xn+1 := xn + s(xn), and go to Step 6. Otherwise, go to Step 5.

Step 5. Choose a stepsize αn ∈ (0,+∞) satisfying the Armijo rule, or the Goldstein rule, or

the Wolfe rule. Set xn+1 := xn + αns(xn).

Step 6. Set n := n+ 1. Go back to Step 2.

Obviously, a sequence generated by Algorithm 1.1 can be regarded as the one generated by

Algorithm 3.2 with Step 5 using the Armijo rule.

Remark 3.1. The major computation cost of Algorithms 3.1 and 3.2 is on solving the

subproblem (2.3) at each iteration. Since it is a minimax problem of convex quadratic functions,

there are many effective algorithms for solving problem (2.3) (see, e.g., [33, 35]), and thus,
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the resulting extended Newton method is practically attractive in applications. In particular,

problem (2.3) can be reformulated as

min ρ

s.t. ∇Fj(x)
T s+ 1

2s
T∇2Fj(x)s− ρ ≤ 0, j = 1, . . . ,m,

(ρ, s) ∈ R× Rn,

(3.2)

which is a standard convex quadratically constrained quadratic problem (QCQP). The QCQP

can be cast into the semidefinite programming (SDP) and thus can be solved efficiently by

several classical algorithms such as the interior point method and the path following method;

see, e.g., [5, 32]. Hence, solving problem (2.3) can be implemented via several popular Matlab-

based solvers such as CVX∗, MOSEK†, TOMLAB‡. The numerical experiments in Section 5

validate the high efficiency of applying CVX in solving problem (2.3) for some examples.

The notion of the L-average Lipschitz condition was introduced by Wang in [42] (but using

the terminology “the center Lipschitz condition in the inscribed sphere with L-average”) and

has been widely used to analyze the convergence properties of the Newton method; see [29, 30]

and references therein. We extend in the following definition the notion of the L-average

Lipschitz condition to the setting of vector-valued functions. Recall that F := (F1, . . . , Fm)T ∈
C2(U,Rm), and that L : [0, R) → R+ is nondecreasing and integrable.

Definition 3.2. Let x0 ∈ U and r ∈ (0, R) be such that B(x0, r) ⊆ U . D2F is said

to satisfy the L-average Lipschitz condition on B(x0, r) if, for each i = 1, . . . ,m and any

x, y ∈ B(x0, r) with ∥x− x0∥+ ∥y − x∥ < r, the following inequality holds:

∥∇2Fi(y)−∇2Fi(x)∥ ≤
∫ ∥x−x0∥+∥y−x∥

∥x−x0∥
L(u)du.

By definition, we can check that the L-average Lipschitz condition on B(x0, r) implies the

classical Lipschitz condition with Lipschitz constant being L(r). The introduction of the L-

average Lipschitz condition is beneficial to provide the more precise convergence criterion and

estimation of the convergence radius for the Newton method.

Fixing the triple (x; a, r) with x ∈ U and (a, r) ∈ R2
+, we consider the following assumption

for F ∈ C2(U,Rm) associated to the triple (x; a, r) and L:

• L : [0, R) → R+ is nondecreasing and integrable;

• a satifies (2.11), and D2F (x) is positive definite with each ∥∇2Fi(x)
−1∥ ≤ a;

• D2F (·) satisfies the L-average Lipschitz condition on B(x, r) ⊆ U.

(3.3)

Lemma 3.3. Suppose that F satisfies assumption (3.3) associated to (x0; a, r) and L, and

that r ≤ ra. Let x ∈ B(x0, r), λ ∈ ∆m and Fλ be defined by (2.7). Then ∇2Fλ(x) is positive

∗http://cvxr.com/cvx/
†https://www.mosek.com/
‡https://tomopt.com/tomlab/
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definite, and

∥∇2Fλ(x)
−1∥ ≤ ∥∇2Fλ(x0)

−1∥
1− a

∫ ∥x0−x∥
0

L(u)du
≤ a

1− a
∫ ∥x0−x∥
0

L(u)du
.

Proof. By assumption, one has that

∥∇2Fλ(x0)
−1∥∥∇2Fλ(x)−∇2Fλ(x0)∥ ≤ a

∫ ∥x0−x∥

0

L(u)du < a

∫ ra

0

L(u)du = 1

(by (2.12)). Hence, Lemma 2.1 is applicable and the conclusions hold.

3.1. Convergence criterion. One of the main results of this subsection is presented in

the following theorem, in which we provide a quadratic convergence criterion of the extended

Newton method for multiobjective optimization under the assumption that the Hessians of

objective functions satisfy the L-average Lipschitz condition. Theorem 3.4 not only extends [22,

Theorem 6.1] under a weaker condition, but also improves it in the sense that the quantitative

convergence result is provided here (see (3.7) below).

Theorem 3.4. Suppose that

∥s(x0)∥ ≤ β ≤ ba (3.4)

and F satisfies assumption (3.3) associated to (x0; a, r
∗
a) and L. Then, the sequence {xn}

generated by Algorithm 3.1 with initial point x0 is well-defined, stays in B(x0, r
∗
a), and converges

to a local Pareto optimum x̄ ∈ B[x0, r
∗
a]. Moreover, the following error estimates hold for each

n ≥ 0:

∥xn+1 − xn∥ = ∥s(xn)∥ ≤ ta,n+1 − ta,n, (3.5)

and

∥xn − x̄∥ ≤ r∗a − ta,n. (3.6)

Moreover, if β < ba, then there exists N ∈ N such that

∥xn+1 − x̄∥ ≤ r∗a − ta,n+1

(2ta,n+1 − ta,n − r∗a)
2
∥xn − x̄∥2 for each n ≥ N, (3.7)

and so {xn} converges quadratically to x̄.

Proof. Since r∗a ≤ ra (cf. Proposition 2.6(i)), Lemma 3.3 is applicable to concluding that

∇2Fλ(x) is positive definite for any x ∈ B(x0, r
∗
a) and λ ∈ ∆m. (3.8)

Furthermore, by assumption (3.3), it is easy to see that there exists a constant c > 0 such that

sup
λ∈∆m,x∈B(x0,r∗a)

ρmax(λ, x) ≤ c, (3.9)
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where ρmax(λ, x) is given by (2.8). We first show that {xn} is well-defined and (3.5). For

simplicity, we, as before, omit the first subscript a in the sequence {ta,k}, write {tk} for {ta,k}.
Thus, in view of Algorithm 3.1, (3.8) and (3.4), one has that x1 is well-defined and ∥x1−x0∥ =

∥s(x0)∥ ≤ β = t1− t0 (due to (2.15)), namely (3.5) holds for n = 0. Fix k ∈ N. Below, we show
the following implication:

[xn is well-defined for all n = 0, 1, . . . , k + 1 and (3.5) holds for all n = 0, . . . , k]

⇒ xk+2 is well-defined and ∥s(xk+1)∥ ≤ (tk+2 − tk+1)
(

∥s(xk)∥
tk+1−tk

)2
.

(3.10)

Granting this, {xn} is well-defined and (3.5) is shown by mathematical induction. To proceed,

suppose that xn is well-defined for all n = 0, 1, . . . , k + 1 and (3.5) holds for all n = 0, . . . , k.

Recall from (2.6) that there exists λ = (λ1, . . . , λm)T ∈ ∆m such that

s(xk) = −

 m∑
j=1

λj∇2Fj(xk)

−1
m∑
j=1

λj∇Fj(xk) = −∇2Fλ(xk)
−1∇Fλ(xk). (3.11)

Note by the induction assumption that

∥xk+1 − x0∥ ≤
k∑

i=0

∥xi+1 − xi∥ ≤
k∑

i=0

(ti+1 − ti) = tk+1 < r∗a (3.12)

(by Proposition 2.6(ii)). Consequently, xk+1 ∈ B(x0, r
∗
a). Thus, in view of Algorithm 3.1,

(3.8) and (3.4), one has that xk+2 is well-defined. Furthermore, Lemma 3.3 is applicable to

concluding that

∥∇2Fλ(xk+1)
−1∥ ≤ a

1− a
∫ ∥xk+1−x0∥
0

L(u)du
≤ −a ha

′(tk+1)
−1, (3.13)

because, by (2.14),

−ha
′(tk+1)

−1 =
1

1− a
∫ tk+1

0
L(u)du

.

Observe further from (3.11) that

∇2Fλ(xk)s(xk) +∇Fλ(xk) = 0.

Thus, by the L-average Lipschitz condition assumption, we obtain

∥∇Fλ(xk+1)∥ = ∥∇Fλ(xk + s(xk))− (∇2Fλ(xk)s(xk) +∇Fλ(xk))∥
≤
∫ 1

0
∥∇2Fλ(xk + ts(xk))−∇2Fλ(xk)∥∥s(xk)∥dt

≤
∫ 1

0

∫ ∥xk−x0∥+t∥s(xk)∥
∥xk−x0∥ L(u)du∥s(xk)∥dt

=
∫ ∥s(xk)∥
0

L(∥xk − x0∥+ u)(∥s(xk)∥ − u)du.

(3.14)

Since by inductive assumption that ∥s(xk)∥ ≤ tk+1 − tk, it follows from Lemma 2.7 and (3.12)

(with k in place of k + 1) that∫ ∥s(xk)∥

0

L(∥xk − x0∥+ u)(∥s(xk)∥ − u)du ≤ ∥s(xk)∥2

(tk+1 − tk)2

∫ tk+1−tk

0

L(tk + u)(tk+1 − tk − u)du.
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Note by (2.13)-(2.14) that

a

∫ tk+1−tk

0

L(tk+u)(tk+1−tk−u)du = ha(tk+1)−ha(tk)−ha
′(tk)(tk+1−tk) = ha(tk+1), (3.15)

where the last equality holds because tk+1− tk = −h′
a(tk)

−1ha(tk) (see (2.15)). Hence, we have

from (3.14)-(3.15) that

a∥∇Fλ(xk+1)∥ ≤ ∥s(xk)∥2

(tk+1 − tk)2
ha(tk+1).

Note by (2.10) that ∥s(xk+1)∥ ≤ ∥∇2Fλ(xk+1)
−1∥∥∇Fλ(xk+1)∥. It follows from (3.13) that

∥s(xk+1)∥ ≤ −ha
′(tk+1)

−1ha(tk+1)
∥s(xk)∥2

(tk+1 − tk)2
= (tk+2 − tk+1)

(
∥s(xk)∥
tk+1 − tk

)2

.

Thus, implication (3.10) is proved.

Now, we show the convergence of {xn} to a local Pareto optimum. Since {tn} is monotoni-

cally increasing and converges to r∗a (by Proposition 2.6(ii)), (3.5) shows that {xn} is a Cauchy

sequence, and so, there exists x̄ ∈ B[x0, r
∗
a] such that limn→∞ xn = x̄. Furthermore, (3.5) says

that limn→∞ ∥s(xn)∥ = 0. Observe further from (2.9) and (3.9) that |θ(xn)| ≤ c
2∥s(xn)∥2 for

each n ∈ N, and then, passing to the limits, we get that limn→∞ |θ(xn)| = 0. Note by Lemma

2.4(iii) that θ is continuous and so θ(x̄) = 0. Then, by Lemma 2.4(ii), one has that x̄ is a

critical point, and thus, it is a local Pareto optimum (by (2.2)). Fix n ∈ N. One has by (3.5)

that ∥xn+l−xn∥ ≤ tn+l− tn for each l ∈ N, and so (3.6) is seen to hold by passing to the limits

(as l → ∞).

Finally, we prove the quadratic convergence rate of {xn} to x̄. Fix n ∈ N, and note from

(3.5) and implication (3.10) that

∥s(xn+j)∥ ≤ (tn+j+1 − tn+j)

(
∥s(xn)∥
tn+1 − tn

)2

for each j ∈ N. (3.16)

In view of Algorithm 3.1, one sees that ∥xi − xn+1∥ ≤
∑i−1

j=n+1 ∥s(xj)∥ for each i > n + 1.

Letting i → ∞, one has by the convergence of {xn} to x̄ and by (3.16) that

∥x̄− xn+1∥ ≤
∞∑

j=n+1

∥s(xj)∥ ≤ (r∗a − tn+1)

(
∥s(xn)∥
tn+1 − tn

)2

≤ r∗a − tn+1

tn+1 − tn
∥s(xn)∥ (3.17)

(by (3.5)). Then, it follows that

∥x̄− xn∥ ≥ ∥xn+1 − xn∥ − ∥x̄− xn+1∥ ≥ 2tn+1 − tn − r∗a
tn+1 − tn

∥s(xn)∥. (3.18)

By assumption that β < ba, Proposition 2.6(iii) is applicable, and then we have by the equality

of (2.17) that there exists N ∈ N such that

2tn+1 − tn − r∗a
tn+1 − tn

> 0 for each n ≥ N.
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Therefore, combining (3.17) and (3.18), we obtain (3.7). This, together with the inequality of

(2.17), ensures the quadratic convergence rate of {xn} to x̄. The proof is complete.

Theorem 3.5 below shows that under almost the same conditions as in Theorem 3.4, a

sequence {xn} generated by Algorithm 1.1 or 3.2 with initial point x0 is the one generated by

Algorithm 3.1 with the same initial point x0. Hence, all the conclusions of Theorem 3.4 hold

for Algorithm 1.1 or 3.2.

Theorem 3.5. Suppose that F satisfies assumption (3.3) associated to (x0; a, ra) and L,

and

∥s(x0)∥ ≤ β ≤
3(1− σ)

(
1− a

∫ r∗a
0

L(u)du
)

aL(r∗a)
. (3.19)

Then, with initial point x0, any sequence {xn} generated by Algorithm 3.2 coincides with the

one generated by Algorithm 3.1; consequently, the conclusions of Theorem 3.4 hold.

Proof. Below, we only show the case when {xn} is a sequence generated by Algorithm 1.1

with initial point x0 because the proof is similar for Algorithm 3.2. To finish the proof of this

theorem, fix i ∈ N. First, we show the following implication:

[∥s(xi)∥ ≤ ti+1 − ti, ∥xi − x0∥+ ∥s(xi)∥ ≤ r∗a] ⇒ [xi+1 = xi + s(xi)]. (3.20)

For this purpose, we assume that

∥s(xi)∥ ≤ ti+1 − ti and ∥xi − x0∥+ ∥s(xi)∥ ≤ r∗a. (3.21)

Noting by Proposition 2.6 that r∗a ≤ ra, we have xi ∈ B(x0, ra), and then obtain from Lemma

3.3 and (2.14) that for each λ ∈ ∆m, ∇2Fλ(xi) is positive definite and

∥∇2Fλ(xi)
−1∥ ≤ −ah′

a(∥xi − x0∥)−1. (3.22)

By assumption (3.21), one has xi + s(xi) ∈ B(x0, ra). Fix j ∈ {1, . . . ,m}. By the Taylor

formula, one has that

Fj(xi + s(xi))

= Fj(xi) +∇Fj(xi)
T s(xi) +

1
2s(xi)

T∇2Fj(xi)s(xi)

+
∫ 1

0
s(xi)

T (∇2Fj(xi + ts(xi))−∇2Fj(xi))s(xi)(1− t)dt

≤ Fj(xi) +∇Fj(xi)
T s(xi) +

1
2s(xi)

T∇2Fj(xi)s(xi) +
L(r∗a)

6 ∥s(xi)∥3,

where the inequality holds because

∥∇2Fj(xi + ts(xi))−∇2Fj(xi)∥ ≤
∫ ∥xi−x0∥+t∥s(xi)∥

∥xi−x0∥
L(u)du ≤ L(r∗a)∥s(xi)∥t

(due to assumption (3.3) and the fact that L(·) is nondecreasing and positive). By the definition

of θ (cf. (2.5)), this implies that

Fj(xi + s(xi)) ≤ Fj(xi) + θ(xi) +
L(r∗a)

6 ∥s(xi)∥3

= Fj(xi) + σθ(xi) + (1− σ)θ(xi) +
L(r∗a)

6 ∥s(xi)∥3,
(3.23)
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where σ ∈ (0, 1) is the parameter in Algorithm 1.1. Recall from (2.9) and Lemma 2.4(i) that

θ(xi) ≤ −ρmin(λ, xi)

2
∥s(xi)∥2. (3.24)

Recalling by (2.8) that ρmin(λ, xi) = ∥∇2Fλ(xi)
−1∥−1, it follows from (3.22) and (3.24) that

θ(xi) ≤
1

2a
h′
a(∥xi − x0∥)∥s(xi)∥2 ≤ 1

2a
h′
a(r

∗
a)∥s(xi)∥2, (3.25)

where the last inequality holds because that h′(·) is monotonically increasing on [0, r∗a]. Note

that {ti+1 − ti} is monotonically decreasing (cf [29, Lemma 2.4]), and so, for each i ∈ N,
ti+1 − ti ≤ t1 − t0 = β (by (2.15)). This, together with (3.21), implies that

∥s(xi)∥ ≤ ti+1 − ti ≤ t1 − t0 = β ≤
3(1− σ)

(
1− a

∫ r∗a
0

L(u)du
)

aL(r∗a)
=

−3(1− σ)h′
a(r

∗
a)

aL(r∗a)
,

where the last inequality is due to (3.19). Combining this with (3.25) yields that

(1− σ)θ(xi) +
L(r∗a)∥s(xi)∥

6
∥s(xi)∥2 ≤

(
L(r∗a)∥s(xi)∥

3
+

(1− σ)h′
a(r

∗
a)

a

)
∥s(xi)∥2

2
≤ 0;

then, (3.23) implies that

Fj(xi + s(xi)) ≤ Fj(xi) + σθ(xi) for all j = 1, . . . ,m.

Thus, in view of Algorithm 1.1, we have xi+1 = xi + s(xi) and so (3.20) is seen to hold.

Below, we show by induction that {xn} coincides with the sequence generated by Algorithm

3.1 with the same initial point x0, namely the following assertion holds for each n ∈ {0} ∪ N:

xn+1 = xn + s(xn) (3.26)

Since ∥s(x0)∥ ≤ β = t1 − t0 ≤ r∗a by (3.19) and Proposition 2.6(i), it follows from (3.20) that

(3.26) holds for n = 0. Suppose that x1, . . . , xk are the same points as generated by Algorithm

3.1. Then, by Theorem 3.4, we have that xi ∈ B(x0, r
∗
a) and ∥s(xi)∥ ≤ ti+1− ti for i = 1, . . . , k,

and

∥xk − x0∥+ ∥s(xk)∥ ≤ ∥xk − xk−1∥+ · · ·+ ∥x1 − x0∥+ ∥s(xk)∥ ≤ tk+1 < r∗a.

This implies that the assumptions of implication (3.20) hold when i = k. Then, it follows from

implication (3.20) that αk = 1, and so, (3.26) holds for n = k. Thus, xk+1 is the same point

as generated by Algorithm 3.1. Then, we obtain inductively that {xn} is same as the sequence

generated by Algorithm 3.1 with same initial point x0. Therefore, the conclusions of Theorem

3.4 hold and the proof is complete.

3.2. Estimation of convergence radius. This subsection is devoted to providing an

estimate of the radius of the convergence ball of the extended Newton method (without or with
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line-search scheme) for multiobjective optimization under the L-average Lipschitz condition.

For this purpose, let a∗ > 0 be such that (2.11) is reduced to

1

R

∫ R

0

L(u)(R− u)du >
1

a∗
. (3.27)

Let (ra∗ , ba∗) be the pair of positive constants given by (2.12) with a∗ in place of a. Let x∗ ∈ U

be a local Pareto optimum of F , and assume that F satisfies assumption (3.3) associated

to (x∗; a∗, ra∗) and L. Throughout this subsection, we always assume that L(·) is left-hand

continuous. Write

ξ∗ := max{∥∇2Fi(x
∗)∥ : i = 1, . . . ,m}. (3.28)

A useful proposition is as follows.

Proposition 3.6. Suppose that F satisfies assumption (3.3) associated to (x∗; a∗, ra∗) and

L. Let x0 ∈ B
(
x∗, ba∗

1+a∗ξ∗

)
. Then, the following assertions hold:

(i) F satisfies assumption (3.3) associated to (x0; ā, r̄) and L̄ given by

ā :=
a∗

1− a∗
∫ ∥x0−x∗∥
0

L(u)du
, r̄ := ra∗ − ∥x0 − x∗∥ (3.29)

and

L̄(u) := L(∥x0 − x∗∥+ u) for each u ∈ [0, R− ∥x0 − x∗∥); (3.30)

(ii) s(x0) satisfies that

∥s(x0)∥ ≤
a∗
∫ ∥x0−x∗∥
0

L(u)(∥x0 − x∗∥ − u)du+ a∗ξ∗∥x0 − x∗∥

1− a∗
∫ ∥x0−x∗∥
0

L(u)du
. (3.31)

Proof. (i) Write R̄ := R − ∥x0 − x∗∥. We first show (2.11) holds with ā, R̄, L̄ in place of

a,R, L. By definition of ra∗ in (2.12) (applied to a∗ in place of a), one has

a∗
∫ ra∗

0

L(u)du = 1. (3.32)

Thus, it suffices to show that∫ R

∥x0−x∗∥
L(u)(R− u)du ≥ (R− ∥x0 − x∗∥)

∫ ra∗

∥x0−x∗∥
L(u)du, (3.33)

thanks to the definitions of ā, R̄, L̄. To do this, by (3.27), one has∫ R

∥x0−x∗∥ L(u)(R− u)du ≥ R
a∗ −

∫ ∥x0−x∗∥
0

L(u)(R− u)du

= R
∫ ra∗

∥x0−x∗∥ L(u)du+
∫ ∥x0−x∗∥
0

L(u)udu,



18 EXTENDED NEWTON METHODS FOR MULTIOBJECTIVE OPTIMIZATION

where the equality holds because, by (3.32),

R

a∗
= R

∫ ra∗

0

L(u)du = R

∫ ra∗

∥x0−x∗∥
L(u)du+R

∫ ∥x0−x∗∥

0

L(u)du.

Hence, (3.33) is seen to hold, showing (2.11) (with ā, R̄, L̄ in place of a,R,L), namely the first

assumption in (3.3) (associated to (x0; ā, r̄) and L̄). To show the second assumption in (3.3),

noting first that ∥x0 − x∗∥ < ba∗
1+a∗ξ∗ < ba∗ < ra∗ , Lemma 3.3 is applicable to concluding that,

for each j = 1, . . . ,m, ∇2Fj(x0) is positive definite, and

∥∇2Fj(x0)
−1∥ ≤ ∥∇2Fj(x

∗)−1∥
1− a∗

∫ ∥x0−x∗∥
0

L(u)du
≤ a∗

1− a∗
∫ ∥x0−x∗∥
0

L(u)du
= ā;

consequently, the second assumption in (3.3) (associated to (x0; ā, r̄) and L̄) is checked. Now

let us verify the last assumption in (3.3) (associated to (x0; ā, r̄) and L̄). To do this, let

x, y ∈ B(x0, r̄) be such that ∥x− x0∥+ ∥y − x∥ < r̄, and fix j. Then,

∥x− x∗∥+ ∥y − x∥ ≤ ∥x0 − x∗∥+ ∥x− x0∥+ ∥y − x∥ ≤ ∥x0 − x∗∥+ r̄ = ra∗ .

Thus, it follows from the last assumption in (3.3) (associated to (x∗; a∗, ra∗) and L) that

∥∇2Fj(y)−∇2Fj(x)∥ ≤
∫ ∥x0−x∗∥+∥x0−x∥+∥x−y∥

∥x0−x∗∥+∥x0−x∥
L(u)du =

∫ ∥x0−x∥+∥x−y∥

∥x0−x∥
L̄(u)du.

This shows the third assumption in (3.3) (associated to (x0; ā, r̄) and L̄) and the proof for

assertion (i) is complete.

(ii) Noting that x∗ is a local Pareto optimum of F , we obtain from (2.2) that x∗ is a critical

point of F . Therefore, it follows from Lemma 2.4 that s(x∗) = 0. Note by (2.6) that there

exists λ(:= λ(x∗)) ∈ ∆m (the KKT multipliers of problem (2.3)) such that

s(x∗) = −

 m∑
j=1

λj(x
∗)∇2Fj(x

∗)

−1
m∑
j=1

λj(x
∗)∇Fj(x

∗) = −∇2Fλ(x
∗)−1∇Fλ(x

∗),

where Fλ is given by (2.7). Hence ∇Fλ(x
∗) = 0, and

∥∇Fλ(x0)−∇2Fλ(x
∗)(x0 − x∗)∥ = ∥

∫ 1

0
(∇2Fλ(x

∗ + τ(x0 − x∗))−∇2Fλ(x
∗))(x0 − x∗)dτ∥

≤
∫ 1

0

∫ ∥x0−x∗∥τ

0

L(u)∥x0 − x∗∥dudτ

=

∫ ∥x0−x∗∥

0

L(u)(∥x0 − x∗∥ − u)du,

thanks to the third assumption in (3.3) (associated to (x∗; a∗, ra∗)). Therefore,

a∗∥∇Fλ(x0)∥ ≤ a∗∥∇Fλ(x0)−∇2Fλ(x
∗)(x0 − x∗)∥+ a∗∥∇2Fλ(x

∗)∥∥x0 − x∗∥

≤ a∗
∫ ∥x0−x∗∥

0

L(u)(∥x0 − x∗∥ − u)du+ a∗ξ∗∥x0 − x∗∥.
(3.34)
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Furthermore, by Lemma 3.3, one has that

∥∇2Fλ(x0)
−1∥ ≤ ∥∇2Fλ(x

∗)−1∥
1− a∗

∫ ∥x0−x∗∥
0

L(u)du
≤ a∗

1− a∗
∫ ∥x0−x∗∥
0

L(u)du
.

This, together with (2.10) and (3.34), implies that

∥s(x0)∥ ≤ ∥∇2Fλ(x0)
−1∥∥∇Fλ(x0)∥ ≤

a∗
∫ ∥x0−x∗∥
0

L(u)(∥x0 − x∗∥ − u)du+ a∗ξ∗∥x0 − x∗∥

1− a∗
∫ ∥x0−x∗∥
0

L(u)du
.

The proof is complete.

Theorem 3.7. Suppose that F satisfies assumption (3.3) associated to (x∗; a∗, ra∗) and L.

Let x0 ∈ B(x∗, ba∗
1+a∗ξ∗ ). Then, the sequence {xn} generated by Algorithm 3.1 with initial point

x0 is well-defined and converges quadratically to a local Pareto optimum of F .

Proof. By Proposition 3.6, F satisfies assumption (3.3) associated to (x0; ā, r̄) and L̄ defined

by (3.29) and (3.30), respectively. Let

β̄ :=
a∗
∫ ∥x0−x∗∥
0

L(u)(∥x0 − x∗∥ − u)du+ a∗ξ∗∥x0 − x∗∥

1− a∗
∫ ∥x0−x∗∥
0

L(u)du
. (3.35)

Then ∥s(x0)∥ ≤ β̄ (by (3.31)). Thus, to apply Theorem 3.4 with β̄, ā, L̄, in place of β, a, L, we

have to show that

β̄ < b̄ā and r̄∗ā ≤ r̄, (3.36)

where r̄∗ā and b̄ā denote respectively the corresponding r∗a and ba given by (2.16) and (2.12)

with β̄, ā, L̄, in place of β, a, L. To do this, write τ := ∥x0 − x∗∥ for simplicity. Let r̄ā be the

corresponding ra defined by (2.12) with ā, L̄ in place of a, L. Then,

a∗
∫ r̄ā
0

L(∥x0 − x∗∥+ u)du

1− a∗
∫ ∥x0−x∗∥
0

L(u)du
= ā

∫ r̄ā

0

L(τ + u)du = 1 (3.37)

by the definition of ā (see (3.29)). By the definition of ra∗ (see (3.32)), it follows from (3.37)

that

a∗
∫ r̄ā

0

L(τ + u)du = 1− a∗
∫ τ

0

L(u)du = a∗
∫ ra∗

0

L(u)du− a∗
∫ τ

0

L(u)du = a∗
∫ ra∗

τ

L(u)du;

hence ∫ r̄ā+τ

τ

L(u)du =

∫ ra∗

τ

L(u)du. (3.38)

Since a∗ > 0 and L(·) is positive and nondecreasing, it follows from (3.38) and the definition of

τ that

r̄ā + ∥x0 − x∗∥ = r̄ā + τ = ra∗ . (3.39)
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This, together with the definition of b̄ā, implies that

b̄ā = ā

∫ r̄ā

0

L̄(u)udu = ā

∫ ra∗−∥x0−x∗∥

0

L(∥x0−x∗∥+u)udu = ā

∫ ra∗

∥x0−x∗∥
L(u)(u−∥x0−x∗∥)du.

Note also by the definition of β̄ in (3.35) that

β̄ = ā

(∫ ∥x0−x∗∥

0

L(u)(∥x0 − x∗∥ − u)du+ ξ∗∥x0 − x∗∥

)
.

Therefore, β̄ < b̄ā if and only if

ξ∗∥x0 − x∗∥ <

∫ ra∗

0

L(u)(u− ∥x0 − x∗∥)du =
ba∗

a∗
− ∥x0 − x∗∥

a∗

(noting that a∗
∫ ra∗

0
L(u)du = 1 and ba∗ = a∗

∫ ra∗

0
L(u)udu by definition), which holds by the

assumption that 0 < ∥x0 − x∗∥ < ba∗
1+a∗ξ∗ . Hence, β̄ < b̄ā and so, by (2.16) (with β̄, ā, L̄, in

place of β, a, L), one has r̄∗ā ≤ r̄ā = ra∗ − ∥x0 − x∗∥ = r̄ (by (3.39)). Consequently, (3.36) is

proved and the proof is complete.

For the following theorem, we need some more notations and an additional lemma. Fix

τ ∈ (0, ra∗), and set

aτ :=
a∗

1− a∗
∫ τ

0
L(u)du

and βτ :=
a∗
∫ τ

0
L(u)(τ − u)du+ a∗ξ∗τ

1− a∗
∫ τ

0
L(u)du

. (3.40)

Let h̄aτ (·) be the majorizing function given by (2.13) with βτ , aτ , L(τ + ·) in place of β, a, L(·),
that is,

h̄aτ (t) := βτ − t+ aτ

∫ t

0

L(τ + u)(t− u)du for each t ∈ [0, R− τ).

Lemma 3.8. Let τ ∈
(
0, ba∗

1+a∗ξ∗

)
. Then, h̄aτ has two zeroes on [0, R− τ), and there exists

r ∈
(
0, ba∗

1+a∗ξ∗

)
such that

βτ ≤
3(1− σ)

(
1− aτ

∫ r̄∗aτ
0

L(τ + u)du
)

aτL(τ + r̄∗aτ
)

for each τ ∈ (0, r), (3.41)

where r̄∗aτ
is the smaller zero of h̄aτ on [0, R− τ).

Proof. Let r̄aτ and b̄aτ denote respectively the corresponding ra and ba given by (2.12)

with βτ , aτ , L(τ + ·) in place of β, a, L(·). Then as we did for proving (3.39) and that β̄ < b̄ā in

the proof of Theorem 3.7 (cf. (3.36)), we can verify that

βτ < b̄aτ and r̄aτ = ra∗ − τ. (3.42)

Thus, Proposition 2.6 is applicable (to βτ , aτ , L(τ+·) in place of β, a, L(·)) to concluding that h̄aτ

has two zeroes on [0, R− τ), and the proof of the first assertion is complete. To show the second
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assertion, note by definition that limτ→0+ βτ = 0, limτ→0+ aτ = a∗, limτ→0+ b̄aτ = ba∗(see

(3.40) and (2.12)), and that limτ→0+ r̄aτ = ra∗ by (3.42). Hence, limτ→0+ r̄∗aτ
= 0 thanks to

(2.16) (applied to βτ , aτ , L(τ + ·) in place of β, a, L(·)) and so limτ→0+ aτ
∫ r̄∗aτ
0

L(τ +u)du = 0.

Thus, it follows from the assumed left-hand continuity assumption for L that

lim
τ→0+

3(1− σ)
(
1− aτ

∫ r̄∗aτ
0

L(τ + u)du
)

aτL(τ + r̄∗aτ
)

≥ 3(1− σ)

a∗L(r∗a)
> 0.

Since limτ→0+ βτ = 0 and the function τ 7→ βτ is continuous on [0, ra∗), it follows that there

exists 0 < r ≤ ba∗
1+a∗ξ∗ satisfying (3.41), and the proof is complete.

Theorem 3.9 below shows that if F satisfies assumption (3.3) associated to (x∗; a∗, ra∗) and

L, then there exists r > 0 such that any sequence {xn} generated by Algorithm 1.1 or 3.2 with

initial point x0 ∈ B(x∗, r) converges quadratically to a local Pareto optimum of F . In the next

section, we provide an explicitly estimate of the radius r for the special case when L(·) is a

constant function.

Theorem 3.9. Suppose that F satisfies assumption (3.3) associated to (x∗; a∗, ra∗) and L.

Let r ∈
(
0, ba∗

1+a∗ξ∗

)
satisfy (3.41), and let x0 ∈ B(x∗, r). Then, any sequence {xn} generated

by Algorithms 3.2 with initial point x0 converges quadratically to a local Pareto optimum of F .

Proof. Note by assumption that x0 ∈ B
(
x∗, ba∗

1+a∗ξ∗

)
. The proof is similar to that for

Theorem 3.7. Indeed, let β̄, ā, r̄, r̄ā, r̄
∗
ā and L̄ be as in the proof of Theorem 3.7. Then, one

has that r̄ā = r̄ (by (3.39)), and that ∥s(x0)∥ ≤ β̄ and F satisfies assumption (3.3) associated

to (x0; ā, r̄) and L̄ (by Proposition 3.6) and so to (x0; ā, r̄ā). Thus, by Theorem 3.5 (applied to

β̄, ā, L̄ in place of β, a, L), it suffices to show that

β̄ ≤
3(1− σ)

(
1− ā

∫ r̄∗ā
0

L̄(u)du
)

āL̄(r̄∗ā)
. (3.43)

To do this, we write τ := ∥x0 − x∗∥ for simplicity. Then, one has by definition that βτ = β̄,

aτ = ā and r̄∗aτ
= r̄∗ā, where βτ and aτ are defined by (3.40). Since τ = ∥x0 − x∗∥ < r by

assumption, (3.43) follows from (3.41) because L̄(·) = L(∥x0 − x∗∥ + ·) = L(τ + ·), and the

proof is complete.

4. Applications. By virtue of the results established in the preceding section, this section

is devoted to establishing convergence analysis theorems under the classical Lipschitz condition

or the γ-condition for multiobjective optimization. In particular, the global convergence of

Algorithm 3.2 is established under the classical Lipschitz condition.

4.1. Theorems under the classical Lipschitz condition and global version of the

extended Newton method with its convergence.

4.1.1. Theorems under the classical Lipschitz condition. Kantorovich’s theorem

[26] is one of the famous results on the Newton method, which provides a criterion for ensuring
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its quadratic convergence under the classical Lipschitz condition. The main point of Kan-

torovich’s type premise is to let L(·) mentioned in the preceding section be a constant function.

In this case, the L-average Lipschitz condition of ∇2Fj is reduced to the classical Lipschitz

condition of ∇2Fj for each j = 1, . . . ,m. That is, there are L > 0 and r > 0 such that

∥∇2Fj(x)−∇2Fj(y)∥ ≤ L∥x− y∥ for each x, y ∈ B(x0, r).

Then the function L(τ + ·) is independent of the choice of τ and coincides with L, that is,

L(τ + ·) = L(·) = L on R+. Thus, for any a > 0, one has that

ba =
1

2aL
, ra =

1

aL
,

and the majorizing functions ha defined by (2.13) is reduced to

ha(t) = β − t+
aL

2
t2 for each t ∈ R.

Therefore, if β ≤ 1
2aL , one has by (2.12), (2.15) and (2.16) (see also [42]) that

r∗a =
1−

√
1− 2aLβ

aL
, (4.1)

ta,n =
1− q2

n−1
a

1− q2na
r∗a and ta,n+1 − ta,n =

1− qa
1− q2n+1

a

q2
n−1

a r∗a for each n ∈ N,

where

qa :=
1−

√
1− 2aLβ

1 +
√
1− 2aLβ

, (4.2)

and we adopt the convention that
1−q2

n−1
a

1−q2na
:= 1− ( 12 )

n and 1−qa
1−q2n+1

a

:=
(
1
2

)n+1
if qa = 1.

Theorem 4.1 follows directly from Theorems 3.4 and 3.5, and establishes a quantitative

convergence criterion of the extended Newton method for multiobjective optimization under

the classical Lipschitz condition.

Theorem 4.1. Suppose that ∥s(x0)∥ ≤ β and F satisfies assumption (3.3) associated to

(x0; a, r
∗
a) and L(·) ≡ L. Let qa be given by (4.2). Then, with initial point x0, we have the

following assertions:

(i) If β ≤ 1
2aL , then the sequence {xn} generated by Algorithm 3.1 is well-defined, stays

in B(x0, r
∗
a), and converges to a local Pareto optimum x̄ ∈ B[x0, r

∗
a] with the following error

estimates:

∥xn+1 − xn∥ ≤ 1− qa
1− q2n+1

a

q2
n−1

a r∗a and ∥xn − x̄∥ ≤ 1− qa
1− q2na

q2
n−1

a r∗a for each n ∈ N. (4.3)

(ii) If β < 1
2aL , then the sequence {xn} generated by Algorithm 3.1 converges quadratically

to x̄ with the following error estimate for some N ∈ N:

∥xn+1 − x̄∥ ≤ qa(1− q2
n+1

a )

(1− qa)(1− q2na )2r∗a
∥xn − x̄∥2 for each n ≥ N. (4.4)
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(iii) If β ≤ −9(1−σ)2+3(1−σ)
√

1+9(1−σ)2

aL , then β < 1
2aL , and any sequence {xn} generated by

Algorithm 3.2 coincides with the one generated by Algorithm 3.1, and satisfies (4.3) and (4.4).

Proof. Assertions (i) and (ii) follow directly from Theorem 3.4. Then, it remains to

show assertion (iii). In fact, assume that β ≤ −9(1−σ)2+3(1−σ)
√

1+9(1−σ)2

aL . Then β < 1
2aL

because −9(1 − σ)2 + 3(1 − σ)
√
1 + 9(1− σ)2 < 1

2 . Since L(·) ≡ L, it follows from (4.1)

that
3(1−σ)

(
1−a

∫ r∗a
0 L(u)du

)
aL(r∗a)

= 3(1−σ)
√
1−2aLβ

aL . Thus, (3.19) holds because it is equivalent that

aLβ ≤ 3(1− σ)
√
1− 2aLβ, which is true by assumption. Hence, the conclusion follows from

Theorem 3.5.

Remark 4.1. Under the assumption made in Theorem 4.1, we see that there exist V ⊆
B(x0, r

∗
a), ā := 1

a and b̄ > 0 such that āI ≤ ∇2Fj(x) ≤ b̄I for all x ∈ V and all j = 1, . . . ,m,

where, for A, B ∈ Rn×n, A ≥ B means that A−B is positive semi-definite. Thus [22, Theorem

6.1] could apply. However, Theorem 4.1 cannot be derived via a direct application of [22,

Theorem 6.1]. In fact, Example 4.1 below illustrates the case where Theorem 4.1 is applicable

but not [22, Theorem 6.1].

Example 4.1. Let σ ∈ ( 12 , 1) and let τ satisfy

(1− σ)σ < τ ≤ −9(1− σ)2 + 3(1− σ)
√
1 + 9(1− σ)2. (4.5)

Consider problem (1.1) with m = l = 1 and F : R → R defined by

F (x) := −τx+
1

2
x2 − 1

6
x3 for each x ∈ R.

Then

F ′′(x) = 1− x for each x ∈ R. (4.6)

Let x0 = 0. Then, one checks that

a := ∥F ′′(x0)
−1∥ = 1, ∥s(x0)∥ = ∥ − (F ′′(x0))

−1F ′(x0)∥ = τ, (4.7)

and F ′′ satisfies the Lipschitz condition with modulus L = 1 on [−1, 1]. By (4.5), we see

that Theorem 4.1(iii) is applicable, and we can conclude that any sequence {xn} generated

by Algorithm 3.2 (and so Algorithm 1.1) with initial point x0 converges to a local Pareto

optimum. We show in the below that [22, Theorem 6.1] is not applicable. To do this, suppose

on the contrary that [22, Theorem 6.1] is applicable. Then, there exist 0 < r < 1 and positive

numbers ar, br, δ, ε such that

ε

ar
≤ 1− σ, ∥s(x0)∥ ≤ min

{
δ, r(1− ε

ar
)

}
, ar ≤ F ′′(x) ≤ br for all x ∈ (−r, r), (4.8)

and ∥F ′′(x) − F ′′(y)∥ ≤ ε for all x, y ∈ (−r, r) with ∥x− y∥ ≤ δ. Then, by (4.6), without loss

of generality, we take ar = 1 − r and δ = ε ≤ (1 − r)(1 − σ). Thus, if r ≥ 1 − σ, one has

that ∥s(x0)∥ ≤ δ ≤ σ(1 − σ). Below we shows that this is also true if r ≤ 1 − σ. Granting

this, one has from (4.7) that τ ≤ σ(1 − σ), which is a contradiction to (4.5). To proceed,



24 EXTENDED NEWTON METHODS FOR MULTIOBJECTIVE OPTIMIZATION

assume r ≤ 1 − σ, and note that the function t 7→ min{t, r(1 − t
1−r )} attains its maximum t0

on [0, (1 − r)(1 − σ)] at t0 satisfying t0 = r(1 − t0
1−r ), i.e., t0 = r(1 − r). Since σ ∈ ( 12 , 1) by

assumption, it follows that r ≤ 1−σ ≤ 1
2 and so min{δ, r(1− δ

1−r )} ≤ t0 = r(1− r) ≤ σ(1−σ).

Thus we have by (4.8) that ∥s(x0)∥ ≤ min{δ, r(1− δ
1−r )} ≤ σ(1− σ), as desired to show.

Theorem 4.2 below follows directly from Theorems 3.7 and 3.9, and provides explicit esti-

mates of the convergence radius of the extended Newton method for multiobjective optimization

under the classical Lipschitz condition. In particular, assertions (ii) improves the corresponding

result in [22, Corollary 6.21], which only asserts the existence of such convergence radius under

the stronger assumption than that for assertions (ii). Recall that x∗ is a local Pareto optimum

of F and ξ∗ is defined by (3.28).

Theorem 4.2. Suppose that F satisfies assumption (3.3) associated to (x∗; a∗, 1
a∗L ) with

L(·) ≡ L. Let x0 ∈ B(x∗, 1
2(1+a∗ξ∗)a∗L ). Then, with initial point x0, we have the following

assertions:

(i) The sequence {xn} generated by Algorithm 3.1 is well-defined and converges quadratically

to a local Pareto optimum of F .

(ii) If ∥x0 − x∗∥ ≤ −9(1−σ)2+3(1−σ)
√

1+9(1−σ)2

(1+4a∗ξ∗)a∗L , then any sequence {xn} generated by Al-

gorithm 3.2 with initial point x0 is well-defined and converges quadratically to a local Pareto

optimum of F .

Proof. Assertion (i) follows directly from Theorem 3.7. Then, it remains to verify assertion

(ii). To do this, write r :=
−9(1−σ)2+3(1−σ)

√
1+9(1−σ)2

(1+4a∗ξ∗)a∗L . Then r < 1
2(1+a∗ξ∗)a∗L (due to the fact

−9(1− σ)2 + 3(1− σ)
√

1 + 9(1− σ)2 < 1
2 ), and, La

∗τ < 1
2(1+a∗ξ∗) < 1

2 for each τ ∈ (0, r). As

L(·) ≡ L, one checks that, for each τ ∈ (0, r),

βτ =
a∗
∫ τ

0
L(u)(τ − u)du+ a∗ξ∗τ

1− a∗
∫ τ

0
L(u)du

=
L
2 a

∗τ2 + a∗ξ∗τ

1− La∗τ
< (

1

2
+ 2a∗ξ∗)τ ≤ (

1

2
+ 2a∗ξ∗)r.

Moreover, since aτL = a∗L
1−a∗Lτ < 2a∗L, it follows that, for each τ ∈ (0, r),

3(1−σ)

(
1−aτ

∫ r̄∗aτ
0 L(τ+u)du

)
aτL(τ+r̄∗aτ

) = 3(1−σ)
√
1−2aτLβτ

aτL

≥ 3(1−σ)
√

1−2(1+4a∗ξ∗)a∗Lr

2a∗L

= ( 12 + 2a∗ξ∗)r,

where the last equality holds by the definition of r. Thus, one checks that r ∈ (0, ba∗
1+a∗ξ∗ )

satisfies (3.41), and the conclusion follows from Theorem 3.9.

4.1.2. Global convergence of Algorithm 3.2. This subsection aims to establish the

global convergence of Algorithm 3.2 under the classical Lipschitz condition.

The following proposition shows that any accumulation point of a sequence {xn} generated

by Algorithm 3.2, where the stepsize {αn} satisfies the Armijo rule, or the Goldstein rule, or

the Wolfe rule, is a critical point of F .
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Proposition 4.3. Let {xn} be a sequence generated by Algorithm 3.2. Then, any accumu-

lation point x∗ of {xn} such that D2F (x∗) is positive definite and D2F is Lipschitz continuous

around x∗, is a local Pareto optimum of F .

Proof. Let x∗ be an accumulation point of {xn} such that D2F (x∗) is positive definite

and D2F is Lipschitz continuous around x∗. Then, it is easy to show that D2F (·) is positive

definite around x∗. By (2.2), we only need to verify that x∗ is a critical point of F . As x∗ is an

accumulation point of {xn}, there exists a subsequence {xni} such that limi→∞ xni = x∗. Let

j ∈ {1, . . . ,m}. Noting that {Fj(xn)} is monotonically nonincreasing (by Algorithm 3.2) and

Fj is continuous, it follows that

lim
n→∞

Fj(xn) = lim
i→∞

Fj(xni) = Fj(x
∗). (4.9)

By (i) and (ii) of Lemma 2.4, to complete the proof, it suffices to verify that θ(x∗) ≥ 0. To do

this, let

K1 := {i : Fj(xni + s(xni)) ≤ Fj(xni) + σθ(xni) for all j = 1, . . . ,m}.

Then, we divide the proof into two cases.

Case 1. K1 is infinite. Then, there exists a subsequence of {xni}, denoted by itself, such

that

Fj(xni + s(xni)) ≤ Fj(xni) + σθ(xni) for all i ∈ N and j = 1, . . . ,m. (4.10)

In view of Step 4 of Algorithm 3.2, one has that xni+1 = xni + s(xni). Passing to the limit as

i → ∞ in (4.10), we get from (4.9) that θ(x∗) ≥ 0 and the proof is complete in this case.

Case 2. K1 is finite. Then, there exist j0 ∈ {1, . . . ,m} and a subsequence of {xni}, denoted
by itself, such that

Fj0(xni + s(xni)) > Fj0(xni) + σθ(xni) for all i ∈ N.

Thus, in view of Step 5 in Algorithm 3.2 (cf. (3.1)) and Lemma 2.4(i), we have

Fj0(xni)− Fj0(xni+1) ≥ −σαniθ(xni) ≥ 0,

where each αni ∈ (0,+∞) satisfies the Armijo rule, or the Goldstein rule, or the Wolfe rule.

This, together with (4.9), implies that limi→∞ αniθ(xni) = 0. Recall that θ is continuous around

x∗ (due to Lemma 2.4) and that limi→∞ xni = x∗. We only need to consider the case when

limi→∞ αni = 0 because, otherwise, one has that limi→∞ αni > 0 and thus

θ(x∗) lim
i→∞

αni ≥ lim
i→∞

αniθ(xni) = 0;

this implies θ(x∗) ≥ 0. To proceed, let ζ := min{σ, ν}, and define for each ni

Θ(xni) := max
k=1,2

{
Fj0(xni + kαnis(xni))− Fj0(xni)

kαni

,∇Fj0(xni + αnis(xni))
T s(xni)

}
. (4.11)
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Then, ζ ∈ (0, 1). Below, we show that

lim
i→∞

Θ(xni) ≤ θ(x∗) and ζθ(xni) ≤ Θ(xni) for each ni. (4.12)

Granting this and noting limi→∞ θ(xni) = θ(x∗), one checks that θ(x∗) ≥ ζθ(x∗) and so θ(x∗) ≥
0 (as ζ ∈ (0, 1)), completing the proof.

Note by Definition 3.1 that if αni satisfies the Armijo rule, then

Θ(xni
) ≥ Fj0(xni

+ 2αni
s(xni

))− Fj0(xni
)

2αni

> σθ(xni
) ≥ ζθ(xni

)

where the first and the last inequality holds by the definition of Θ(xni) (see (4.11)) and ζ,

respectively. Similar argument is also valid for the Goldstein rule or the Wolfe rule, and thus

the second relation in (4.12) is seen to hold. To show the first one in (4.12), we first note θ is

continuous around x∗ and {s(xni)} is bounded (due to Lemma 2.4(iii)). Note further that ∇Fj0

is continuous. It follows from limi→∞ αni = 0 and the inequality ∇Fj0(xni)
T s(xni) ≤ θ(xni)

(due to the definition of θ) that

limi→∞ ∇Fj0(xni + αnis(xni))
T s(xni)

≤ limi→∞((∇Fj0(xni + αnis(xni))−∇Fj0(xni))
T s(xni) + θ(xni))

= limi→∞ θ(xni) = θ(x∗).

Thus it remains to verify that

lim
i→∞

Fj0(xni + kαnis(xni))− Fj0(xni)

kαni

≤ θ(x∗) for k = 1, 2. (4.13)

To do this, consider a sequence {tni} ⊆ (0,+∞) converging to zero. Then we have that

lim
i→∞

∫ 1

0

(∇Fj0(xni + τtnis(xni))−∇Fj0(xni))
T s(xni)dτ = 0 (4.14)

as ∇Fj0 is continuous and {s(xni)} is bounded. Note for each i ∈ N that

Fj0(xni + tnis(xni))− Fj0(xni)

tni

=

∫ 1

0

(∇Fj0(xni + τtnis(xni))−∇Fj0(xni))
T s(xni)dτ

+∇Fj0(xni)
T s(xni).

Hence, thanks again to the inequality ∇Fj0(xni)
T s(xni) ≤ θ(xni) (due to the definition of θ)

and using again the continuity of θ, we conclude from (4.14) that

lim
i→∞

Fj0(xni + tnis(xni))− Fj0(xni)

tni

≤ lim
i→∞

θ(xni) = θ(x∗).

Applying this fact to {αni} and {2αni} in place of {tni}, one sees that (4.13) holds, and the

proof is complete.

Corollary 4.4. Let {xn} be a sequence generated by Algorithm 3.2. Suppose that the

set
∩

j=1,...,m{x ∈ U : Fj(x) ≤ Fj(x0)} is bounded. Then, there exists an accumulation point
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x∗ of {xn}. Furthermore, if x∗ satisfies that D2F (x∗) is positive definite and D2F is Lipschitz

continuous around x∗, then x∗ is a local Pareto optimum of F .

Proof. Note by Algorithm 3.2 that {Fj(xn)} is monotonically nonincreasing for each j =

1, . . . ,m. Hence, by assumption, we have that {xn} ⊆
∩

j=1,...,m{x ∈ U : Fj(x) ≤ Fj(x0)} and

so {xn} is bounded. Thus, there exists an accumulation point of {xn}. Then, the conclusion

follows from Proposition 4.3.

Now we are ready to establish the global quadratic convergence of a sequence generated by

Algorithm 3.2.

Theorem 4.5. Let {xn} be a sequence generated by Algorithm 3.2. Suppose that {xn} has

an accumulation point x∗ such that D2F (x∗) is positive definite and D2F is Lipschitz continuous

around x∗. Then, x∗ is a local Pareto optimum of F and {xn} converges quadratically to x∗.

Proof. In view of Proposition 4.3, it suffices to show that {xn} converges quadratically to

x∗. For this purpose, note by the Lipschitz continuity assumption that there exists a pair of

positive numbers (r, L) such that each D2F satisfies the Lipschitz condition with modulus L on

B(x∗, r). Since each ∇2Fj(x
∗) is positive definite by assumption, we can take

a∗ > max
j=1,...,m

{
1

rL
, ∥∇2Fj(x

∗)−1∥
}
.

Then, F satisfies assumption (3.3) associated to (x∗; a∗, 1
a∗L ) and L(·) ≡ L. Let

r̂ =
−9(1− σ)2 + 3(1− σ)

√
1 + 9(1− σ)2

(1 + 4a∗ξ∗)a∗L
,

and let {xni} ⊆ {xn} be a subsequence such that limi→∞ xni = x∗. Then there exists i0 ∈ N
such that ∥xni0

−x∗∥ ≤ r̂. Thus, Theorem 4.2(ii) is applicable to concluding that the sequence

{xn}∞n=ni0
converges quadratically to a local Pareto optimum of F . This completes the proof.

4.2. Theorems under the γ-condition. The notion of the γ-condition was introduced

by Wang in [42] for differentiable operator, and was used to improve Smale’s corresponding

results for convergence analysis of the Newton method (cf. [40]). Below, we present an analogue

of the γ-condition (with a slight modification). Let r > 0 and γ > 0 be such that rγ ≤ 1.

Definition 4.6. Let x0 ∈ U and r > 0 be such that B(x0, r) ⊆ U . DF is said to satisfy

the γ-condition on B(x0, r) if

∥∇3Fi(x)∥ ≤ 2γ

(1− γ∥x− x0∥)3
for each i ∈ {1, . . . ,m} and x ∈ B(x0, r).

Remark 4.2. As in [42], one checks by definition that if F is analytic at x0, then DF

satisfies the γ-condition on B(x0,
1
γ ), where γ := max

i=1,...,m
{supk≥2 ∥ 1

k!F
(k+1)
i (x0)∥

1
k−1 }.

The following proposition shows that the γ-condition of DF implies the L-average Lipschitz

condition of D2F , the proof of which is easy and so is omitted here.
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Proposition 4.7. Suppose that DF satisfies the γ-condition on B(x0, r). Then, D2F

satisfies the L-average Lipschitz condition on B(x0,
1
γ ) with the function L : [0, 1

γ ) → R+

defined by

L(u) :=
2γ

(1− γu)
3 for each u ∈ [0,

1

γ
). (4.15)

Let a > 0 and β ≥ 0. For L(·) given by (4.15), the majoring function ha defined in (2.13)

is reduced to

ha(t) = β − t+
aγt2

1− γt
for each 0 ≤ t <

1

γ
.

Then, it follows from (2.12) that

ra =

(
1−

√
a

1 + a

)
1

γ
and ba =

(
1 + 2a− 2

√
a(1 + a)

) 1

γ
.

Let {ta,n} denote a sequence generated by the classical Newton method for approaching the

zeros of ha with the initial value t0 = 0, and assume

γβ ≤ 1 + 2a− 2
√
a(1 + a).

Then, by [42, p.180], the smaller zero r∗a of ha and the Newton sequence {ta,n} have the following
closed forms:

r∗a =
1 + γβ −√

ϱ

2(1 + a)γ
, and ta,n =

1− µ2n−1

1− µ2n−1η
r∗a for each n ∈ N, (4.16)

where ϱ := (1 + γβ)2 − 4(1 + a)γβ ≥ 0,

µ :=
1− γβ −√

ϱ

1− γβ +
√
ϱ

and η :=
1 + γβ −√

ϱ

1 + γβ +
√
ϱ
. (4.17)

Fixing the triple (x; a, r) with x ∈ U and (a, r) ∈ R2
+, we consider the following assumption

for F ∈ C3(U,Rm) associated to the triple (x; a, r):

• D2F (x) is positive definite with each ∥∇2Fi(x)
−1∥ ≤ a;

• DF satisfies the γ-condition on B(x, r) ⊆ U.
(4.18)

Then, we have the following theorem about the quadratic convergence criterion of the

extended Newton method under the γ-condition.

Theorem 4.8. Suppose that ∥s(x0)∥ ≤ β and F satisfies assumption (4.18) associated to

(x0; a, r
∗
a). Let µ and η be given by (4.17). Then, with initial point x0, we have the following

assertions:

(i) If β ≤
(
1 + 2a− 2

√
a(1 + a)

)
1
γ , then the sequence {xn} generated by Algorithm 3.1 is

well-defined, stays in B(x0, r
∗
a), and converges to a local Pareto optimum x̄ ∈ B[x0, r

∗
a] with the

following error estimate for each n ∈ N:

∥xn − x̄∥ ≤ (1− η)µ2n−1

1− µ2n−1η
r∗a. (4.19)
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(ii) If β <
(
1 + 2a− 2

√
a(1 + a)

)
1
γ , then the sequence {xn} generated by Algorithm 3.1

converges quadratically to x̄ with the following error estimate for some N ∈ N:

∥xn+1 − x̄∥ ≤ µ(1− µ2n+1−1η)(1− µ2n−1η)2

(1− η)(1− µ2n(2− µ2n−1η))2r∗a
∥xn − x̄∥2 for each n ≥ N. (4.20)

(iii) If β ≤ 3(1−σ)(1−γβ)(1−2γβ(1+2a)+γ2β2)
2aγ(1+γβ)3 , then any sequence {xn} generated by Algorithm

3.2 coincides with the one generated by Algorithm 3.1, and satisfies (4.19) and (4.20).

Proof. With L defined by (4.15), one checks that γ
∫ 1

γ

0 L(u)
(

1
γ − u

)
du = +∞ and so

(2.11) holds with 1
γ in place of R. This and assumption (4.18) in combination with Proposition

4.7 imply that F satisfies assumption (3.3) associated to (x0; a, r
∗
a) and L. Hence, Theorem 3.4

is applicable to concluding that assertions (i) and (ii) hold. Then, it remains to show assertion

(iii). In fact, as L(·) is given by (4.15), it follows that

3(1− σ)
(
1− a

∫ r∗a
0

L(u)du
)

aL(r∗a)
=

3(1− σ)(1− r∗aγ)((1 + a)(1− r∗aγ)
2 − a)

2aγ
. (4.21)

Note further by (4.16) that

r∗aγ =
1 + γβ −√

ϱ

2(1 + a)
=

(1 + γβ)2 − ϱ

2(1 + a)(1 + γβ +
√
ϱ)

≤ 2γβ

1 + γβ
.

Combing this with (4.21) gives that

3(1− σ)(1− γβ)(1− 2γβ(1 + 2a) + γ2β2)

2aγ(1 + γβ)3
≤

3(1− σ)
(
1− a

∫ r∗a
0

L(u)du
)

aL(r∗a)
.

Thus, if β ≤ 3(1−σ)(1−γβ)(1−2γβ(1+2a)+γ2β2)
2aγ(1+γβ)3 , then (3.19) holds. Hence, the conclusion follows

from Proposition 4.7 and Theorem 3.5.

Similarly, we have the following results by using Theorem 3.7 in combination with Propo-

sition 4.7, regarding an estimate of the radius of the convergence ball of the extended Newton

method for multiobjective optimization under the γ-condition. Recall that x∗ is a local Pareto

optimum of F and ξ∗ is defined by (3.28).

Theorem 4.9. Suppose that F satisfies assumption (4.18) associated to (x∗; a∗, ra∗). Let

x0 ∈ B

(
x∗,

1+2a∗−2
√

a∗(1+a∗)

(1+a∗ξ∗)γ

)
. Then, with initial point x0, we have the following assertions:

(i) The sequence {xn} generated by Algorithm 3.1 is well-defined and converges quadratically

to a local Pareto optimum of F .

(ii) Let 0 < r <
1+2a∗−2

√
a∗(1+a∗)

(1+a∗ξ∗)γ satisfy (3.41). Then for any x0 ∈ B(x∗, r), any sequence

{xn} generated by Algorithms 3.2 with initial point x0 converges quadratically to a local Pareto

optimum of F .
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The advantage of considering the L-average Lipschitz condition rather than the classical

Lipschitz condition is shown in the following example, for which Theorem 4.8 is applicable but

not Theorem 4.1.

Example 4.2. Consider problem (1.1) with m = l = 1 and F : R → R defined by

F (x) :=

{
(τ − 1)x− ln(1− x), x ≤ 1

2 ,

(τ + 1)x− 2x2 + 8
3x

3 − 5
6 + ln 2, x ≥ 1

2 .

where τ ∈ (10
√
2− 14, 3− 2

√
2). Then one checks that

F ′′(x) =

{
1

(1−x)2 , x ≤ 1
2 ,

−4 + 16x, x ≥ 1
2 ,

and F
′′′
(x) =

{
2

(1−x)3 , x ≤ 1
2 ,

16, x ≥ 1
2 .

Let x0 := 0 and γ := 1. It follows that a := ∥F ′′(x0)
−1∥ = 1, and that F ′ satisfies the

γ-condition on B(x0, 1). Note that

β := ∥s(x0)∥ = ∥ − (F ′′(x0))
−1F ′(x0)∥ = τ < 3− 2

√
2.

Therefore, Theorem 4.8 is applicable to concluding that the sequence {xn} generated by Algo-

rithm 3.1 with initial point x0 converges to a local Pareto optimum of F . We below show that

Theorem 4.1 is not applicable. To do this, we first note that F ′′ is also Lipschitz continuous on

B(x0, r) with the smallest Lipschitz constant Kr given by

Kr :=

{
2

(1−r)3 , r ≤ 1
2 ,

16, r ≥ 1
2 .

(4.22)

Now suppose on the contrary that Theorem 4.1 is applicable. Then there exists a positive

constant L such that

L ≥ Kr, r ≥ 1−
√
1− 2Lτ

L
and τ ≤ 1

2L
≤ 1

2Kr
, (4.23)

as a = 1 and β = τ . Recalling τ > 10
√
2− 14 > 1

32 , we have that Kr < 16, and then it follows

from (4.22) that r < 1
2 . Hence L ≥ Kr = 2

(1−r)3 ≥ 2. Consequently, by the second inequality

in (4.23), we have that τ ≤ r − Lr2

2 and so τ ≤ r − r2. Combining this and the last inequaliity

in (4.23), and (4.22), we have that τ ≤ min{ (1−r)3

4 , r − r2}. Since the function r 7→ (1−r)3

4 is

decreasing and r 7→ r − r2 increasing on [0, 1
2 ], it follows that, for each r ∈ (0, 1

2 ),

min

{
(1− r)3

4
, r − r2

}
≤ s0 − s20 = 10

√
2− 14,

where s0 := 3 − 2
√
2 is the least positive root of equation (1−s)3

4 = s − s2. Therefore, τ ≤
10
√
2− 14, which contradicts the choice of τ , and thus Theorem 4.1 is not applicable.

We end this section with the following example, which concerns nontrivial examples of

functions (F,L) satisfying the L-average Lipschitz condition.
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Example 4.3. Let {γn} be a positive sequence, and let F : U ⊆ Rl → Rm be an analytic

operator (at least locally around the point x0 under consideration). Let x0 ∈ U . Suppose that

max
j=1,··· ,m

∥F (n+2)
j (x0)∥ ≤ γn for each n ≥ 1. (4.24)

Let γ, c ∈ (0,+∞) and p ∈ (−1, 0)∪ (0,+∞). Below, we consider some special examples of the

sequence {γn} used by Wang in [42]:

Exponential type: {γn} := {cγn};
Binomial type: {γn} := {c (p+n)!

p! γn};
The first logarithmic type: {γn} := {cn!γn};
The second logarithmic type: {γn} := {c(n− 1)!γn}.

(4.25)

Then, one can check, as done in [42], that D2F satisfies the L-average Lipschitz condition on

B(x0, R) with L defined by

L(u) := g′′(u) for each 0 ≤ u < R, (4.26)

and the majorizing function ha is given by

ha(t) := β − t+ ag(t) for each t ∈ [0, R),

where R and the function g : [0, R) → R corresponding to the sequences {γn} given by (4.25)

are listed in Table 4.1 below.

Table 4.1

Values of R and g.

γn R g(t)

cγn +∞ c
γ (eγt − γt− 1)

c (p+n)!
p! γn 1

γ
c
pγ

(
(1− γt)

−p − pγt− 1
)

cn!γn 1
γ

c
γ ln 1

1−γt − ct

c(n− 1)!γn 1
γ

c
γ (1− γt) ln(1− γt) + ct

Let a > 0 and assume further that a > 1
c in the case when {γn} is the second logarithmic

type. Then (2.11) holds because 1
R

∫ R

0
L(u)(R − u)du = limu→R−

1
ug(u) is equal to c if {γn}

is the second logarithmic type, and to +∞ otherwise. Thus, assuming (4.24) with {γn} given

by each in (4.25), F satisfies assumption (3.3) associated to (x0; a, ra) (and so to (x0; a, r
∗
a))

and L defined by (4.26). Therefore, Theorems 3.4-3.5, and Theorems 3.7-3.9 (assuming (4.24)

with x∗ in place of x0, and a∗ > 1
c in the case when {γn} is the second logarithmic type)

are applicable to establish the corresponding results regarding the convergence criteria and the

radius of convergence balls for Algorithms 3.1 and 3.2, respectively. As illustrating examples, we

provide in the following Table 4.2 the values of ba and the radius r = ba∗
1+a∗ξ∗ of the convergence

balls for Algorithm 3.1, where ξ∗ is defined by (3.28).
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Table 4.2

Values of ba and r.

γn ba r

cγn ac+1
γ ln ac+1

ac − 1
γ

1
γ(1+a∗ξ∗)

(
a∗c+ 1) ln a∗c+1

a∗c − 1
)

c (p+n)!
p! γn 1

γ + ac
γ

p+1
p

(
1−

(
ac+1
ac

) p
p+1

)
1

γ(1+a∗ξ∗)

(
1 + a∗cp+1

p

(
1−

(
a∗c+1
a∗c

) p
p+1

))
cn!γn 1

γ − ac
γ ln ac+1

ac
1

γ(1+a∗ξ∗)

(
1− a∗c ln a∗c+1

a∗c

)
c(n− 1)!γn 1

γ − ac
γ + ac

γ e−
1
ac

1
γ(1+a∗ξ∗)

(
1− a∗c+ a∗ce−

1
a∗c

)
5. Numerical experiments. The purpose of this section is to carry out some numerical

experiments and demonstrate the numerical performance of the extended Newton method for

some multiobjective optimization problems. All numerical experiments are implemented in

Matlab R2014a and executed on a personal desktop (Intel Core Duo i7-6700, 3.40 GHz, 8.00

GB of RAM).

Two classical bi-objective optimization problems are tested as follows. Example 5.1 is

taken from [25] and has been tested as a benchmark problem in various works; see [22, 25]

and references therein. Example 5.2 is an extension of Example 5.1 to the negative likelihood

function of logistic regression.

Example 5.1. Consider problem (1.1) with F : Rn → R2 defined by

F1(x) :=
1

n
∥x∥2 and F2(x) :=

1

n
∥x− 2e∥2 for each x ∈ Rn,

where e denotes the vector of ones in Rn.

Example 5.2. Consider problem (1.1) with F : Rn → R2 defined by

F1(x) :=
1

n
∥x∥2 and F2(x) := − 1

m

m∑
i=1

log(1 + exp(−bix
Tai)) for each x ∈ Rn,

where A := (a1, . . . , am) ∈ Rn×m and b ∈ Rm are randomly generated i.i.d. Gaussian ensembles

according to the logistic regression model (cf. [10]).

For each test problem, we set the dimension of variables n from [100,1000], and for each n,

we apply the extended Newton method to solve the corresponding problem in 500 simulations by

using random initial points from a joint uniform random distribution. In particular, the initial

points in Example 5.1 are randomly selected via the Matlab script x0 := 2∗rand∗rand(n, 1), and
the ones in Example 5.2 are x0 := −

√
n∗rand∗rand(n, 1). The solver and the parameters used in

the extended Newton method are described as follows. The subproblem (2.3) of finding Newton

direction is implemented by adopting the CVX solver to solve the corresponding problem (3.2);

see Remark 3.1 for the explanation. We use the Armijo line-search with σ = 0.1 and set the

stopping criterion of the extended Newton method as θ(xk) ≤ 1e-6 or the number of iterations

is greater than 100.

By taking the average of these 500 simulations, the numerical results of applying the ex-
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tended Newton method to solve Examples 5.1 and 5.2 are illustrated in Figures 5.1 and 5.2,

respectively. In these figures, subfigures (a) plot the Pareto frontier generated by the extended

Newton method when n = 100 and by using different (random) initial points, subfigures (b)

plot the error bars of the number of outer iterations used by the extended Newton method

in these 500 simulations along with the dimensions of variables, and subfigures (c) plot the

error bars of the cost CPU time (in seconds) for solving each subproblem (2.3) in these 500

simulations along with the dimensions of variables.

Three observations are indicated from Figures 5.1 and 5.2 consistently: (a) most of the

Pareto frontier could be constructed by the extended Newton method via using many different

(random) initial points; (b) the extended Newton method usually converges very fast, and

particularly, achieves a Pareto solution within only a few iterations; (c) the subproblem (2.3)

could be solved efficiently by the CVX solver, even for large-scale problems.
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Fig. 5.1. Numerical performance of the extended Newton method in Example 5.1.
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Fig. 5.2. Numerical performance of the extended Newton method in Example 5.2.

Finally, we test on two more challenging bi-objective optimization problems. Example 5.3

is a convex problem taken from [22], and Example 5.4 is a 2-dimensional nonconvex problem

taken from [36].

Example 5.3. Consider problem (1.1) with F : Rn → R2 defined by

F1(x) :=
1

n2

n∑
i=1

i(xi − i)4 and F2(x) :=
1

n(n+ 1)

n∑
i=1

i(n− i+ 1)e−xi for each x ∈ Rn.
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Example 5.4. Consider problem (1.1) with F : R2 → R2 defined by

F1(x) := x4
1 + x4

2 − x2
1 + x2

2 − 10x1x2 + 10x1 + 20 and F2(x) := ∥x− e∥2 for each x ∈ R2.

The experiment setting and the implementation of the extended Newton method are similar

to the preceding ones, except what is mentioned below. The dimension of variables are set

from [10,100] in Example 5.3. The initial points in Example 5.3 are selected via two random

strategies: (i) x0 := 2 ∗ rand(n, 1) and (ii) x0 := 2 ∗ rand(n, 1). ∗ [1 : n]′, and the ones in

Example 5.4 are randomly selected from a normal distribution x0 := 2 ∗ randn(n, 1). For

the nonconvex Example 5.4, the Matlab solver “fminunc” is used to solve the corresponding

nonconvex subproblem (2.3).

The numerical results are illustrated in Figures 5.3 and 5.4, respectively. In these figures,

subfigures (a) plot the Pareto frontier generated by the extended Newton method when using

different (random) initial points, and subfigures (b) plot the number of outer iterations used by

the extended Newton method in the simulation trials.

In Example 5.3, it is observed from Figure 5.3 that (a) most of the Pareto frontier could be

constructed by the extended Newton method via using the two random initialization strategies;

(b) the extended Newton method usually converges fast and stably, although it employs more

iterations than the preceding experiments. Each subproblem can be solved by CVX in 1 second.

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

700

F1(x)

F
2
(x
)

(a) Pareto frontier (n = 10)

0 20 40 60 80 100
0

5

10

15

20

25

30

35

# of variables

# 
of

 o
ut

er
 it

er
at

io
ns

(b) Number of outer iterations

Fig. 5.3. Numerical performance of the extended Newton method in Example 5.3. The blue and red symbols

denote the different random initialization strategies, x0 := 2 ∗ rand(n, 1) and x0 := 2 ∗ rand(n, 1). ∗ [1 : n]′,

respectively.

In Example 5.4, it is indicated from Figure 5.4(a) that some of the Pareto frontier could be

constructed by the extended Newton method, but some of the estimated solutions (over 25%) are

not the Pareto optimum of this problem. It is demonstrated from Figure 5.4(b) that about 40%

trials can be efficiently solved by the extended Newton method within a few iterations, while

others cannot. The main reason of failure could be that the iterative sequence falls into some

local optimum. In a word, the extended Newton method is an efficient numerical algorithm

for convex bi-objective optimization problems, but may be not effective for the nonconvex

problems.
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Fig. 5.4. Numerical performance of the extended Newton method in Example 5.4. The red circle in (a)

denotes the obtained solution that is not a Pareto optimum.
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