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Abstract. Clustering is one of fundamental tasks in unsupervised learning and plays a very important
role in various application areas. This paper aims to present a survey of five types of clustering meth-
ods in the perspective of optimization methodology, including center-based methods, convex clustering,
spectral clustering, subspace clustering, and optimal transport based clustering. The connection between
optimization methodology and clustering algorithms is not only helpful to advance the understanding of
the principle and theory of existing clustering algorithms, but also useful to inspire new ideas of efficient
clustering algorithms. Preliminary numerical experiments of various clustering algorithms for datasets
of various shapes are provided to show the preference and specificity of each algorithm.

Keywords. Machine learning; Clustering methods; Optimization; Numerical algorithms; Optimal trans-
port

1. INTRODUCTION

In the era of big data, machine learning plays a very important role in various application
areas, such as pattern recognition, image science, bioinformatics, data compression and com-
puter graphics. In general, machine learning approaches are divided into supervised learning
and unsupervised learning; the former one aims to infer a function from labeled training data
set (e.g., classification), and the latter one aims to learn undetected patterns in a data set with
no pre-existing labels (e.g., clustering). It was predicted by professor Yann LeCun that “Next
artificial intelligence revolution is unsupervised learning”.

1.1. Clustering. Clustering is one of fundamental tasks in unsupervised learning. It aims to
find a partition to segment the unlabeled data into several different groups (called clusters) such
that the objects in the same group have a higher degree of similarity to each other than to those
in different groups. Motivated by its vast applications, tremendous efforts have been devoted
to the development of clustering algorithms; see [40, 66] and references therein. Originating
from the classical k-means algorithm proposed by MacQueen [36] in 1967, many exclusive and
efficient algorithms have been proposed and developed for clustering. Existing clustering algo-
rithms can mainly be divided into several categories: hierarchical clustering [10], center-based
methods [18, 25, 56], density-based methods [28, 48], grid-based methods [35, 50], spectral-
based methods [41, 51, 62], model-based methods [17, 69] and bayesian and nonparametric
methods [5]. Moreover, in the last two decades, with effective acquisition of high-dimensional
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data (in face images, videos or web pages), subspace clustering [15, 52, 60] and multi-view
clustering [19, 67] have been developed and widely applied.

1.2. Optimization. Mathematical optimization is a fundamental tool for solving practical prob-
lems in many disciplines from economics and engineering to artificial intelligence and data
science. It aims to select the best element (with regard to certain criterion/objective) from
constraint set of feasible alternatives. Convex optimization plays a key role in mathematical
optimization because it has nice theoretical properties and fast numerical algorithms; however
it maybe too restrictive for certain practical problems. In contrast to convex optimization, non-
convex optimization usually provides a much more accurate representation of reality, but it is
inconvenient to design efficient and globally convergent optimization algorithms.

In applications, a wide class of problems usually have certain special structures, and design-
ing numerical algorithms due to the special structures has become an active topic in mathe-
matical optimization. Exploiting the special structures and inspired by the ideas in numerical
optimization methodology, a large number of exclusive and efficient optimization algorithms
have been developed and applied for structured optimization problems and large-scale applica-
tions; see [7, 42, 47] and references therein.

1.3. This paper. In this paper, we aim to provide a survey of clustering algorithms in the
perspective of mathematical optimization; particularly, we build up a connection between op-
timization models and clustering algorithms. This connection is not only helpful to advance
the understanding of the principle and theory of existing clustering algorithms, but also useful
to inspire new ideas of efficient clustering algorithms. For example, the center-based cluster-
ing algorithm can be equivalently converted to an optimization model that minimizes the total
distance from each point to the corresponding cluster. Convex clustering algorithms [23] are
based on a convex optimization problem in which the objective function is a sum-of-norms.
In subspace clustering algorithms, the similarity matrix is obtained by solving an optimiza-
tion problem under the self-expressiveness property. For clustering of distribution data, opti-
mal transport (OT) based clustering algorithms aim to minimize the total Wasserstein distance
(in place of Euclidean distance in k-means) from each point to the corresponding Wasserstein
barycenter. Optimization models of clustering (mentioned above or discussed in the sequel) can
be efficiently solved by optimization algorithms including alternating direction method of mul-
tipliers (ADMM) [8], block coordinate descent (BCD) [63], majorization-minimization (MM)
[29], and proximal gradient method (PGM) [24]. For the details and principles of these opti-
mization algorithms, one can refer to Appendix A.

In this paper, we review five types of clustering methods in the perspective of optimization
methodology: center-based clustering, convex clustering, spectral clustering, subspace cluster-
ing, and OT based clustering. The remainder of this paper is organized as follows. In sections
2-6, we review the mathematical ideas and optimization models of five types of clustering algo-
rithms, respectively. Preliminary numerical experiments of clustering algorithms are conducted
for datasets of various shapes in section 7.

1.4. Notations. We consider the d-dimensional Euclidean space Rd with inner product 〈·, ·〉
and its associated norm ‖ · ‖. Vectors and matrices are represented in bold lowercase letters
and uppercase letters, respectively. X ∈ Rd×n denotes the data matrix, where n is the number
of samples and d is the dimension of each sample; each sample xi ∈ Rd is a column vector.
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A := (a1, . . . ,ak) ∈ Rd×k denotes the matrix of k cluster centers. Ai ⊆ {1, . . . ,n} represents
the index set of samples that are allocated to i-th cluster center ai. z ∈ Rn denotes the cluster
assignment given by algorithms. The `p norm (p > 0) of x ∈ Rd and the Frobenius norm of

X ∈ Rd×n are defined by ‖x‖p := (∑d
i=1 |xi|p)

1
p and ‖X‖F :=

√
∑

d
i=1 ∑

n
j=1 x2

i j, respectively.

2. CENTER-BASED CLUSTERING

Center-based clustering is a type of most classical clustering algorithms, in which it is as-
sumed that each cluster has a center. This assumption is rational for the spherical clusters,
while might not hold for the general manifold.

2.1. k-means and center-based optimization framework. The principle of center-based clus-
tering is to find a set of cluster centers such that the total Euclidean distance of the samples from
their nearest centers is minimal. For each sample xi, the distance from its nearest cluster center
is obtained among the cluster centers {a j}:

min
1≤ j≤k

‖xi−a j‖2.

Hence the center-based clustering can be cast into the following optimization problem

min
A

F(a1, · · · ,ak) :=
n

∑
i=1

min
1≤ j≤k

‖xi−a j‖2. (2.1)

Problem (2.1) is non-smooth and non-convex because of the presence of minimizing function,
and thus, is in general NP-hard to solve; see [37].

The classic k-means algorithm is one of the most well-known algorithms for center-based
clustering, which was introduced by MacQueen [36] and Lloyd [34]. The main idea of the k-
means is to approximately solve problem (2.1) through two alternative steps: (i) assign samples
to their nearest centers, and (ii) update centers by samples involved. Hence, the k-means initially
generates a series of random cluster centers, and then allocates the sample points to their nearest
centers and update centers by the arithmetic mean of sample points contained in each cluster,
alternatively, and finally arrives at the k cluster centers and the associated partition of data. The
classic k-means algorithm is formally stated as follows.
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Algorithm 1: k-means

1 Input: data matrix X, number of clusters k.
2 Output: center matrix A and allocation label z.
3 Randomly initialize a center matrix A;
4 Assign points: for each point xi, calculate its distance from each center and assign it to

the nearest one:
zi := argmin

j
‖xi−a j‖2;

5 Recalculate centers: for each cluster, update the arithmetic mean of sample points
involved in it as the new cluster center of them:

a j :=
1
|A j| ∑

i∈A j

xi;

Repeat steps 4 and 5 until convergence.

In despite of its wide applications, the k-means algorithm suffers from several known draw-
backs [65]: (i) the clustering assignment is highly sensitive to the initialization of cluster centers;
(ii) the k-means performs well on spherical data with equal radii, but instable for other types of
data. For the spherical cluster with different radii (i.e., they have different variances), it is natu-
ral to use Mahalanobis distance that takes the covariance matrix into account. More generally,
using a general distance-like function d(·, ·) (see [56, Definition 1] for the definition) in place
of the squared Euclidean distance in (2.1), the center-based clustering can be reformulated as

min
A

F(a1, · · · ,ak) :=
n

∑
i=1

min
1≤ j≤k

d(xi,a j). (2.2)

Problem (2.2) inherits the non-smooth and non-convex property of (2.1) due to the presence
of minimizing function. To deal with the non-smoothness of problem (2.2), Teboulle [56] in-
troduced an idea of exact smooth (ES) mechanism. In particular, let ∆⊆ Rk be a unit simplex,
i.e.,

∆ := {y ∈ Rk :
k

∑
j=1

y j = 1, y≥ 0}.

Then the component function of (2.2) can be re-written as

min
1≤ j≤k

d(xi,a j) = min{〈wi,(d(xi,a1), · · · ,d(xi,ak))
T 〉 : wi ∈ ∆}

for each i = 1, · · · ,n. Hence problem (2.2) is equivalent to the following smooth one

min
A,W

F(a1, · · · ,ak) := ∑
n
i=1 ∑

k
j=1 wi

jd(xi,a j)

s.t. ∑
k
j=1 wi

j = 1, wi ≥ 0.
(2.3)

In (2.3), A and W denote the matrices of cluster centers and assignment weights, respectively.
In particular, if wi

j only takes 0 or 1, then sample i is assigned to cluster j whenever wi
j = 1;

otherwise, wi
j denotes the probability of sample i belongs to cluster j and we can proceed the

clustering assignment with the maximal probability. The former one is called hard clustering,
and the latter one is called soft clustering. Teboulle [56] proposed a hard clustering algorithm
with distance-like functions (HCD) to solve the ES problem (2.3).
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Besides the clustering assignment, the minimizing term in (2.1) and (2.2) also contributes to
take arithmetic mean in recalculating cluster centers. Given a general averaging scheme M(·),
the center-based clustering (2.2) can be represented as

min
A

F(a1, · · · ,ak) :=
n

∑
i=1

M(d(xi,a1),d(xi,a2), · · · ,d(xi,ak)). (2.4)

2.2. Distance measure. Different types of distance measures are appropriate for clustering
algorithms on different types of data. For example, the Euclidean distance is used in k-means,
which performs well on spherical data with equal radii. For other types of data, several types of
distance measures are preferred in the corresponding clustering algorithms.

2.2.1. Elliptic norm. Given a positive definite matrix Q ∈Rd×d , the elliptic norm is defined by

‖v‖Q := 〈v,Qv〉
1
2 for each v ∈ Rd. (2.5)

Example 2.1. Euclidean distance and Mahalanobis distance are special cases of elliptic norm.

(i) When Q = I (the identity matrix), the elliptic norm (2.5) is reduced to the Euclidean
distance.

(ii) When Q = Σ−1 (Σ is the covariance matrix of the data involved), the elliptic norm (2.5) is
reduced to the Mahalanobis distance.

Remark 2.1. The probabilistic distance clustering (d-clustering), proposed by Ben-Israel and
Iyigun [6], adopts model (2.3) with the principle that the probability of each sample point be-
longing to a certain cluster is inversely proportional to the distance from the center. When the
elliptic norm is used in d-clustering, problem (2.3) has closed-form solutions (see [6, Corollaries
1-3]).

2.2.2. Bregman distance. Bregman distance has been extensively applied in information sci-
ence and machine learning. Let φ : Rd → R∪ {+∞} be a Legendre function satisfying the
following conditions:

(a) φ is proper, lower semicoutinuous, and convex with domφ ⊆ clC and dom∇ϕ =C;
(b) φ is strictly convex and continuous on domφ , and continuously differentiable on C.

The Bregman distance based on φ is denoted by dφ : Rd×Rd → [0,+∞] and defined by

dφ (x,y) :=
{

φ(x)−φ(y)−〈x−y,∇φ(y)〉, for x ∈ Rd,y ∈C,
+∞, otherwise.

(2.6)

Separable Bregman distances are the most commonly used in the literature. In detail, when
C := ∏

n
i=1Ci is of separable structure, the Legendre function is written as the summation of

one-dimensional functions

φ(x) :=
n

∑
i=1

ϕ(xi),

where ϕ : R→R+∪{+∞} satisfies conditions (a) and (b) and is twice differentiable on Ci. By
the separable structure and (2.6), one has dφ (x,y) = ∑

n
i=1 dϕ(xi,yi).
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Several popular Bregman kernels are described as follows, in which the squared Euclidean
distance, the Kullback-Leibler divergence and the Itakura-Saito divergence are Bregman dis-
tances generated by the energy, the Boltzmann-Shannon entropy and the Burg entropy, respec-
tively; see Examples 2.2-2.4. For more examples of Bregman distance, one can refer to [2,
Table 1].

Example 2.2. Let ϕ(t) := t2 be the energy. The Bregman distance can be calculated by (2.6) as

dφ (x,y) = ‖x‖2−‖y‖2−〈x−y,∇φ(y)〉= ‖x−y‖2,

which is the squared Euclidean distance.

Example 2.3. Let ϕ(t) := t log t be the Boltzmann-Shannon entropy. The Bregman distance
can be calculated by (2.6) as

dφ (x,y) =
n

∑
i=1

xi log
xi

yi
− xi + yi = dKL(x,y),

which is the Kullback-Leibler divergence.

Example 2.4. Let ϕ(t) :=− log t be the Burg entropy. The Bregman distance can be calculated
by (2.6) as

dφ (x,y) =
n

∑
i=1

log
yi

xi
+

xi

yi
−1 = dIS(x,y),

which is the Itakura-Saito divergence.

Remark 2.2. The k-means algorithm is based on the squared Euclidean distance. The infor-
mation theoretic clustering algorithm [14] is based on the Kullback-Leibler divergence. The
Linde-Buzo-Gray (LBG) algorithm [31] is based on Itakura-Saito divergence. The hard cluster-
ing algorithm based on Bregman distance and distance-like function were proposed by [2] and
[56], respectively.

2.2.3. `1 distance. The `1 distance is also called the Manhattan distance. The `1 distance be-
tween x,y ∈ Rd is

‖x−y‖1 :=
d

∑
i=1
|xi− yi|.

The proportional data, i.e., satisfying ‖xi‖1 = 1 and xi > 0 for each i = 1, . . . ,n, are encountered
in many domains, such as skill allocation in workforce management, consumption patterns
in marketing studies, and topic distributions in text mining. For the proportional data, the `1
distance is a preferred metric because it offers intuitive and actionable interpretations. Hence,
the k-means algorithm based on `1 distance was proposed by [27] to solve the following problem

min
A

F(a1,a2, · · · ,ak) := ∑
n
i=1 min1≤ j≤k ‖xi−a j‖1

s.t. ‖a j‖1 = 1, a j > 0.



CLUSTERING METHODS VIA OPTIMIZATION METHODOLOGY 7

2.3. Generalized means. In k-means (Algorithm 1), the arithmetic mean is adopted to update
cluster centers at each iteration. Alternatively, the geometric mean and harmonic mean can be
used for certain purposes, as well as the general nonlinear mean. In details, for a continuous
and monotone function g : R+→ R+, the nonlinear mean Mg is defined by

Mg(y) := g−1

(
1
k

k

∑
i=1

g(yi)

)
, (2.7)

where g−1 is the inverse function of g. Several popular nonlinear means are listed as follows.

Example 2.5. When the nonlinear kernel g(y) := y, logy and 1
y , the nonlinear mean (2.7) is

reduced to arithmetic mean, geometric mean and harmonic mean, respectively.

Example 2.6. When the nonlinear kernel g(y) := ys with s ∈ R, the nonlinear mean (2.7) is
called the power means.

(i) If s = 1, then Mg is reduced to the arithmetic mean.
(ii) If s =−1, then Mg is reduced to the harmonic mean.

(iii) If s tends to 0, then Mg converges to the geometric mean.
(iv) If s tends to −∞, we have

lim
s→−∞

Mg(y) = min
1≤i≤k

yi. (2.8)

In view of (2.8), the center-based clustering (2.2) can be considered as problem (2.4) with power
means and s→−∞. Inspired by this idea, a power k-means algorithm was introduced in [65],
in which the power s is iteratively pushed to−∞ and an MM optimization framework is applied
to solve the sum-minimization problem of s-power means at each iteration. Particularly, when
s≡−1, it is reduced to the k-harmonic means.

The power k-means algorithm shares the same computational complexity of O(nkd) with
k-means. It was shown in [65, Propositions 2.1 and 3.2] that the power k-means algorithm
converges uniformly to a solution of problem (2.1).

3. CONVEX CLUSTERING

Convex clustering was originally proposed by Hocking et al. [23] and Lindsten et al. [32],
which is also known as the SON (sum-of-norms) model or clustering path. Convex clustering
has significant and stable clustering capability for the manifold data; see, e.g., [11].

3.1. Basic model and framework. Instead of the forward style of allocating each sample to
certain cluster in center-based clustering, the convex clustering adopts a backward style: it
assigns a cluster representative for each sample and remove the close representatives (also called
cluster recovery). In particular, let ui be the cluster representative of sample xi for each i =
1, . . . ,n. The principle of the convex clustering is that (i) sample xi shall be near to its cluster
representative ui; and (ii) different clusters shall be separative while samples in the same cluster
have the same representative. Hence the convex clustering can be transformed into the following
SON minimization problem:

min
U∈Rd×n

n

∑
i=1
‖xi−ui‖2 +λ ∑

i< j
‖ui−u j‖q, (3.1)
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where ‖ · ‖q is the `q norm (usually q := 1,2 or +∞). In (3.1), the first term aims to minimize
the total distance between samples and their representatives, the second term is to penalize the
difference between cluster representatives, and the parameter λ > 0 provides a tradeoff between
them. By solving (3.1), one can obtain the solution of representative matrix U, in which the
number of disparate values of {ui}n

i=1 is the one of clusters. Thus, in convex clustering, the
number of clusters is not required to be provided in advance that is an advantage over center-
based clustering.

When dealing with large-scale data sets, a k-nearest neighborhood (KNN) graph of the data
set was recommended in [55] to improve the accuracy of convex clustering (3.1), which is
formulated as

min
U∈Rn×d

n

∑
i=1
‖xi−ui‖2 +λ ∑

(i, j)∈E
wi j‖ui−u j‖q, (3.2)

where E is the edge set of KNN-graph, and wi j > 0 is the weight of edge. The KNN-graph is
constructed by each point’s k-nearest neighbors. The principle of the weight is that the larger
the ‖xi−x j‖, the smaller the wi j. A common one is via the Gaussian kernel:

wi j :=

{
exp
(
−‖xi−x j‖2

2σ2

)
, if (i, j) ∈ E ,

0, otherwise,
(3.3)

where σ > 0 is a parameter controlling the width of neighborhoods; and another option was
introduced by [49] that

wi j :=

{
∑

n
t=1 Nt

n
√

NiN j
, if (i, j) ∈ E ,

0, otherwise,

where Ni is the number of edges with vertex i.
The cluster recovery theory of models (3.1) and (3.2) were established in [43, Theorem 1]

and [54, Theorem 5], respectively. Two algorithms based on ADMM and AMA frameworks,
respectively, were proposed to solve problem (3.2) in [11]. An efficient algorithm based on
semismooth Newton was proposed by [54] to solve problem (3.2), and the superlinear conver-
gence theory was established in [54, Theorems 12 and 13].

3.2. Robust continuous clustering. Composing a robust estimator ρ(·) on the penalty term of
(3.2), the robust continuous clustering (RCC) was proposed by [49] that is formulated as

min
U∈Rd×n

n

∑
i=1
‖xi−ui‖2 +λ ∑

(i, j)∈E
wi, jρ(‖ui−u j‖2). (3.4)

The Geman-McClure estimator [20] is a typical and robust M-estimator, namely,

ρ(t) :=
µt2

µ + t2 .

An algorithm based on BCD framework was proposed by [49] to solve RCC (3.4) with the
Geman-McClure estimator, and it was shown in [49] that RCC (3.4) owns more robust perfor-
mance than SON (3.2).

Moreover, in order to attain robust clustering and dimensionality reduction (DR) simultane-
ously for high-dimensional data sets, the RCC-DR was proposed by [49] by combining RCC
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and dictionary learning techniques:

min
U,Z,D

n

∑
i=1
‖xi−Dzi‖2 + γ

n

∑
i=1
‖zi‖1 +

n

∑
i=1
‖zi−ui‖2 +λ ∑

(i, j)∈E
wi, jρ(‖ui−u j‖),

where D ∈ Rd×d′ is a dictionary, and zi ∈ Rd′ is a sparse code.

3.3. KNN-graph alternative. Note that SON (3.2) and RCC (3.4) are both based on the KNN-
graph which is constructed from the original data, the quality of graph has significant impact on
the performance of clustering algorithms. However, it is unavoidable that a KNN-graph contains
some false connections. In order to reduce the influence of false connections in KNN-graph, an
auxiliary variable {li, j : (i, j) ∈ E } is introduced to build up the RCC model as

min
U,L

n

∑
i=1
‖xi−ui‖2 +λ ∑

(i, j)∈E
wi, j(li, j‖ui−u j‖2 +ϕ(li, j)), (3.5)

where ϕ(·) is a penalty function on the removed connections, so as to make the connections as
in KNN-graph be used in a self-adapting manner. Particularly,

li j→
{

1, if (xi,x j) are in the same cluster,
0, if (xi,x j) are in different clusters,

and ϕ(t)→
{

1, if t→ 0,
0, if t→ 1.

When ϕ(t) := µ(
√

t−1)2, (3.5) is reduced to (3.4) with Geman-McClure estimator; see [49].
Besides the penalty approach on the KNN-graph, another alternative is the adaptive graph

shrinking (AGS) technique [57]. Its idea is to update the graph at each iteration and to take
advantage of higher quality graph than a fixed KNN-graph in RCC. Particularly, in place of the
fixed weight matrix W of KNN-graph in RCC (3.5), the AGS technique views W as a variable
of non-negative and symmetric matrix. Consequently, an AGS-based RCC was introduced in
[57], namely,

min
U,L,W

n

∑
i=1
‖xi−ui‖2 +α‖W‖2

F −β1T log(W1)+λ ∑
(i, j)∈E

wi, j(li, j‖ui−u j‖2 +ϕ(li, j))

s.t. WT = W, W≥ 0,

where the second term aims to penalize the weight either too big or too small, and the third term
is a logarithmic barrier that is able to avoid the isolated vertex. An AGS algorithm based on
ADMM framework was proposed by [57] to solve the above problem, which takes the KNN-
graph as initialization and updates the graph with progressively higher quality at each iteration.
It was shown in [57] that the AGS algorithm outperforms RCC (3.5) with a fixed KNN-graph.

4. SPECTRAL CLUSTERING

Spectral clustering is to transform the clustering problem into an optimal partition problem
of the graph constructed by the data set. Compared with the traditional clustering algorithms
such as k-means, spectral clustering has several significant advantages; for example, spectral
clustering is capable to handle data set with arbitrary shape and release the stalemate of local
optima [62]. It was revealed by experimental evaluations [9] that spectral clustering outperforms
k-means on accuracy and robustness.
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Spectral clustering algorithm stems from spectral graph theory [12]. Let G := {V,E} be an
undirected graph, where V := {xi}n

i=1 and E are the sets of vertices (i.e., sample points) and
edges, respectively. Let W := (wi j) denote the adjacency matrix of the graph with wi j ≥ 0
being a non-negative weight of the edge linking xi and x j (denotes the similarity of xi and x j;
wi j = 0 means that xi and x j are not connected). The principle of spectral clustering is to find a
partition of the graph such that the edges between different subgraphs have low weights and the
edges within a subgraph have high weights, i.e., the sample points in the same cluster are more
similar than the ones in other clusters.

Spectral clustering methods usually involve three steps:

(1) construct a Laplacian matrix;
(2) perform eigen-decomposition of the Laplacian matrix;
(3) attain clustering assignments from eigenvectors space via k-means.

4.1. Similarity graph and Laplacian matrix. The similarity graph plays a key role in the
construction of graph Laplacian matrix, which is the major tool for spectral clustering. Three
popular approaches for constructing the similarity graph and the adjacency matrix are listed as
follows. For more classes of similarity graphs, one can refer to [62] and references therein.

(i) ε-neighborhood graph. It connects the vertices whose distance is smaller than ε , and
provides an unweighted graph. Particularly, letting si j := ‖xi− x j‖2, the adjacency matrix
W is constructed by

wi j :=
{

ε, if si j ≤ ε,
0, if si j > ε.

(ii) KNN-graph. It connects every vertex with its k-nearest neighbors. The adjacency matrix
W can be constructed by (3.3).

(iii) Fully connected graph. The edge between arbitrary two vertices is connected and weighted
by a similarity function: the more similar the vertices, the larger the function value. A
typical similarity function is the Gaussian similarity function

wi j := exp
(
−
‖xi− x j‖2

2σ2

)
,

where the parameter σ controls the width of neighborhoods.

Given an adjacency matrix W as mentioned above, the degree of a vertex xi is defined by
di := ∑

n
j=1 wi j (the total weights of edges linking xi), and D := diag(d1, · · · ,dn) is the degree

matrix of the graph. Then an unnormalized graph Laplacian matrix [12] is defined by

L := D−W. (4.1)

The Laplacian matrix L is positive semi-definite, and the eigenvector corresponding to its s-
mallest eigenvalue (i.e., λmin = 0) is the one vector (i.e., 1). Two types of normalized graph
Laplacian matrices [12] are defined by

Lsym = D−
1
2 LD−

1
2 and Lrw = D−1L.

The former one is a symmetric matrix, and the latter one is closely related to a random walk.
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4.2. Graph cut. The total weights of edges between two subgraphs of G is called cut, i.e.,

cut(G1,G2) = ∑
i∈G1, j∈G2

wi j.

As mentioned above that the principle of spectral clustering is to find an optimal partition such
that the edges between different subgraphs have low weights, one popular idea of spectral clus-
tering is the so-called minimum cut [3]. Several variants have been devised to balance the
partition structures such as ratio cut [21], normalized cut [51], and minmax Cut.

4.2.1. Minimum cut. Consider the case of two subgraphs for example. An auxiliary indicator
vector f ∈ Rn is introduced to indicate the subgraph of each vertex, i.e.,

fi :=
{

c1, if xi ∈G1,
c2, if xi ∈G2,

where c1 and c2 are labels of subgraphs. Then the cut can be reformulated by (4.1) as

cut(G1,G2) =
∑

n
i=1 ∑

n
j=1 wi j( fi− f j)

2

2(c1− c2)2 =
fTLf

(c1− c2)2 . (4.2)

Therefore, setting c1 := 1 and c2 :=−1, the minimum cut model is expressed as

min
f

cut(G1,G2) := fTLf

s.t. fTf = n, f⊥ 1, f ∈ {−1,1}n.
(4.3)

It was noticed in [64] that the minimum cut favors cutting small sets of isolated nodes in the
graph, and thus may lead to an unbalanced partition.

4.2.2. Ratio cut. In order to obtain a balanced partition, the ratio cut was introduced in [21]
and defined by

Rcut(G1,G2) := cut(G1,G2)

(
1
|G1|

+
1
|G2|

)
, (4.4)

where |Gi| means the number of nodes in Gi. Letting c1 :=
√
|G1|
|G2| and c2 := −

√
|G2|
|G1| and by

(4.2), (4.4) can be re-written as Rcut(G1,G2) =
fTLf
|G| , and thus the ratio cut model is

min
f

fTLf

s.t. fTf =
√

n, f⊥ 1, f ∈
{
−
√
|G2|
|G1| ,

√
|G1|
|G2|

}n
.

Extended to a partition into k subgraphs {Gi}n
i=1, the indicator matrix H = (hi j) ∈ Rn×k is

defined by

hi j :=

{
1√
|G j|

, if xi ∈G j,

0, otherwise,
and the corresponding ratio cut model is

min
H

trace(HTLH)

s.t. HTH = I, h j ∈
{

0, 1√
|G j|

}n

.
(4.5)

Marco
删划线
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4.2.3. Normalized cut. Another balance technique is to use the degree of vertices in the sub-
graph. Consequently, the normalized cut is defined by

Ncut(G1,G2) := cut(G1,G2)

(
1

vol(G1)
+

1
vol(G2)

)
,

where vol(Gi) := ∑x j∈Vi d j. By using the similar arguments for (4.5), the normalized cut model
can be expressed as

min
H

trace(HTLH)

s.t. HTDH = I, h j ∈
{

0, 1√
vol(G j)

}n

.
(4.6)

4.2.4. Bi-criteria cut. Liu et al. [33] introduced a bi-criteria cut:
(i) minimize the total weight of removing edges;

(ii) maximize the number of connected components in the graph.
Let κ denote the number of connected components in the graph. It was shown in [33, Lemma
1] that

κ = n− rank(L).
Then, via the scalarization technique, the bi-criteria cut model can be formulated as

min
Z

rank(L(W◦Z))−β trace(WZ)

s.t. Z ∈ Sn∩{0,1}n×n, supp(Z)⊆ supp(W),
(4.7)

where ◦ denotes the Hardmard product, Z is a 0-1 matrix that reflects whether the edge survives
after partition, Sn denotes the set of symmetric matrices in Rn×n, and supp(·) indicates the
support set.

4.3. Spectral clustering algorithms. The spectral clustering problems mentioned in the pre-
ceding subsection are discrete optimization and thus NP-hard to solve. One natural approach for
spectral clustering is the continuous relaxation, i.e., the indicator variable f (or H, Z) is relaxed
to be variable in Rn.

Through the continuous relaxation approach, problems (4.3), (4.5) and (4.6) are relaxed to
the minimization problems on Rayleigh quotient

trace(HTLH) =
k

∑
i=1

RayQ(L,hi), where RayQ(L, f) :=
f>Lf
f>f

.

By Courant-Fischer Theorem [12], the minimal solution of Rayleigh quotient is the eigenvector
corresponding to the smallest nonzero eigenvalue of L, and the minimal solution of the latter
one is H ∈ Rn×k consisting of the eigenvectors corresponding to the first k smallest nonzero
eigenvalue of L; see, e.g., [51].

In the bi-criteria cut problem (4.7), relaxing Z to a continuous variable in [0,1]n×n and re-
placing the rank function by the trace norm of the first k smallest eigenvalues, a continuous
optimization problem of bi-criteria cut spectral clustering was introduced in [33] as

min
Z,H

trace(HTL(W◦Z)H)−β trace(WZ)

s.t. Z ∈ Sn∩ [0,1]n×n, supp(Z)⊆ supp(W), HTH = Ik.

An algorithm based on BCD framework was proposed by [33] to solve the above problem.
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Obtaining the optimal solution H via the continuous relaxation technique mentioned above,
one standard approach to clustering assignment is treating each row of H as a representation of
the origin data and applying k-means to partition H into k clusters.

5. SUBSPACE CLUSTERING

Subspace clustering is designed to handle high-dimensional data sets such as images, audios
and videos. These types of data are generally multi-dimensional tensors, which are quite high-
dimensional data while only a small number of features therein contribute to the clustering.

5.1. Sparse subspace clustering. Subspace clustering is a spectral clustering based method.
As mentioned in section 4, the input of spectral clustering is the similarity matrix of data set
defined by similarity graphs. Instead, subspace clustering acquires the similarity matrix by dis-
covering the latent subspace information of high-dimensional data set and via an optimization
problem.

Subspace clustering is based on the self-expressiveness property [60] of data: each data point
in a union of subspaces can be efficiently re-constructed by a linear combination of other points
in the data set. More precisely, each data point xi can be expressed as

xi = Xci, i = 1,2, · · · ,n

where ci ∈Rn is a weight vector satisfying cii = 0 that eliminates a trivial solution. Equivalently,

X = XC with diag(C) = 0.

One key observation (assumption) is that each data point is represented only by points from
the same subspace, and thus the weights contributed by data points from other subspaces are
all zeros. This leads to a sparsity structure of the expression matrix C. By using the sparsity
structure of C, Vidal [60] introduced a sparse subspace clustering (SSC) optimization problem

min
C
‖C‖1

s.t. X = XC, diag(C) = 0,
(5.1)

where ‖C‖1 := ∑i ∑ j |ci j| is a (convex) sparsity promoting norm.
Obtained the expression matrix C via SSC (5.1), the similarity matrix W can be constructed

by
W = |C|+ |CT|, (5.2)

and then apply spectral clustering technique to achieve clustering assignments. To conclude,
the framework of SSC is stated in Algorithm 2.

Algorithm 2: Sparse subspace clustering

1 Input: data matrix X, parameter λ .
2 Output: clustering assignments Z.
3 Calculate the expression matrix C by solving (5.1).
4 Construct the similarity matrix W by (5.2).
5 Apply spectral clustering using similarity matrix W to attain clustering assignments Z.

Marco
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5.2. Generalization of SSC. From practical considerations and application circumstances, the
high-dimensional data set always contains noise, outlier and missing entries. To deal with the
phenomena of noise and missing data, several generalizations of the SSC have been devised and
widely applied; see [15, 45] and references therein.

(i) Noise and sparse outlying entries. To handle the noisy high-dimensional data set, Elham-
ifar and Vidal [15] proposed a noise-aware SSC optimization model, i.e.,

min
C,E

‖C‖1 +λpen(E)

s.t. X = XC+E, 1TC = 1T, diag(C) = 0.

where pen(·) could be `1 norm, squared Frobenius norm and other penalty terms adjusted
to the types of noise E, and the constraint 1TC = 1T is for the self-expressiveness property
in affine subspaces. For example, when the data set is corrupted by random noise or sparse
outlying entries, the penalty term pen(·) is suggested to adopt the squared Frobenius norm
or the `1 norm, respectively; see, e.g., [15].

(ii) Missing entries. It is commonly believed that the high-dimensional data in reality always
underlie at a low-dimensional subspace. This leads to the low-rank property of high-
dimensional data. The low-rank matrix completion is a popular technique to deal with
missing entries, and has been applied to subspace clustering; see [16, 45] and references
therein. For example, the sparse representation with missing entries and matrix completion
(SRME-MC) [16] is formulated as the following optimization problem

min
X0,C,E

‖C‖1 +α‖X0‖∗+λ‖E‖q

s.t. X0 = X0C+E, PΩ(X0) = PΩ(X), diag(C) = 0,
(5.3)

where ‖ · ‖∗ is the nuclear norm promoting the low-rank structure, Ω is the index set of
known entries of X, X0 is the completed data from X, and PΩ(·) indicates the entries with
positions in Ω. An algorithm based on ADMM framework was proposed by [16] to solve
SRME-MC (5.3).

6. OPTIMAL TRANSPORT BASED CLUSTERING

Optimal transport (OT) was originally raised by G. Monge [39] in the 18th century and rep-
resented by L. Kantorovich [26], which aims to find a transportation map for matching dis-
tribution data with the minimum transportation cost. In the theory of computational OT [46],
the Wasserstein distance is a metric for distributions that is defined by the minimal transporta-
tion cost between distributions, and can be understood as an extension of Euclidean distance to
distribution data; the Wasserstein barycenter [1] is the mean of a set of distributions measured
by the Wasserstein distance, and thus can be understood as a cluster center of distributions in
the sense of the Wasserstein distance. By virtue of the Wasserstein distance and Wasserstein
barycenter, a Wasserstein clustering was introduced by [22, 68] that extends the k-means to
cluster distribution data.

6.1. Optimal transport. Let X and Y be two separable metric spaces, and let c : X ×Y → R+

be a Borel-measurable function, which represents the cost of transporting a unit mass from
x ∈ X to y ∈ Y . Given Borel probability measures µ and ν on X and Y , Monge’s formulation

Marco
插入号
s
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[39] of OT is to find a (measure-preserving) transport map T : X → Y that minimizes the total
transportation cost; namely,

min
T

∫
X c(x,T (x))dµ(x)

s.t. T#µ = ν ,

where T#µ(·) := µ(T−1(·)) is the push-forward of µ by T . Equivalently, Kantorovich’s formu-
lation [26] of OT aims to find a transportation plan with minimal total transportation cost; that
is,

min
π

∫
X×Y c(x,y)dπ(x,y)

s.t. π ∈ Γ(µ,ν),
(6.1)

where Γ(µ,ν) := {π : (ΓX)#π = µ,(ΓY )#π = ν} denotes the set of transportation plans from
µ to ν , i.e., joint distributions with marginals µ and ν . Clearly, the discrete version of Kan-
torovich’s OT can be cast into a linear optimization problem

min
Π∈Rn×m

+

〈C,Π〉

s.t. ∑
m
j=1 Πi, j = ui, ∑

n
i=1 Πi, j = v j,

(6.2)

where the cost matrix Ci, j := c(xi,y j), the transport matrix Πi, j := π(xi,y j), and the distributions
µ := (ui)

n
1 and ν := (vi)

m
1 .

6.2. Wasserstein distance and barycenter. The Wasserstein distance is the minimal trans-
portation cost of Kantorovich’s OT (6.1) with c(x,y) := ‖x− y‖p, that is

Wp(µ,ν) :=
(

inf
π∈Γ(µ,ν)

∫
π

‖x− y‖pdπ(x,y)
) 1

p

; (6.3)

or the minimal transportation cost of discrete OT (6.2) with Ci j := ‖xi− y j‖p. It is also called
the earth mover’s distance (EMD) in computer science and the Mallows distance in statistics.

The Wasserstein distance is one of the most fundamental metrics on spaces of probability
measures and enjoys several significant benefits: (i) it incorporates the geometry of the ground
space, (ii) it not only describes the distance between two distributions, but also explains how
to transport one distribution to another, and (iii) it is applicable to distributions with differen-
t dimensions, even to discrete and continuous distributions; see [44] and references therein.
The Wasserstein distance provides an useful tool for the clustering of distributions because it
captures key shape characteristics of the distributions. Particularly, the 2-Wasserstein distance
(i.e., (6.3) with p = 2 and written as W (·, ·) for the sake of simplicity) is the most common one
because of the geometric properties such as Wasserstein barycenters.

Given a set of distributions {µi} ⊆ P(X) and a set of non-negative weights {λi}. The
Wasserstein barycenter [1] is defined by the mean of the set of distributions under the Wasser-
stein distance, that is

µ := argmin
µ

N

∑
i=1

λiW 2(µi,µ). (6.4)

Several popular and efficient optimization algorithms were developed to compute Wasserstein
barycenters [13, 68]. It was reported in [59] that the Wasserstein barycenter µ preserves the
shape of distributions {µi}.
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It is worth noting that problem (6.4) has an analytical solution as a (weighted) arithmetic
mean of distributions, when the Wasserstein distance is replaced by the Euclidean distance.
Hence the Wasserstein barycenter could be understood as a cluster center of distributions in the
sense of Wasserstein distance.

6.3. Wasserstein clustering. Recalling the center-based clustering in section 2.1, it seeks to
assign a set of cluster centers such that the total Euclidean distance of the samples from their
nearest centers is minimal.

Consider a set of discrete distributions {(xi,µi), i = 1, · · · ,m}. As mentioned in the preceding
section, it is better to use the Wasserstein distance to measure the distance between distributions
than the Euclidean distance. By virtue of the Wasserstein distance and inspired by the idea
of center-based clustering, a Wasserstein clustering, also called discrete distribution clustering
(D2-clustering), was introduced by [30] to find a set of Wasserstein barycenters {ν j}k

1 such that
the total Wasserstein distance of the distributions from their nearest barycenters is minimal:

min
ν

n

∑
i=1

min
1≤ j≤k

W 2(µi,ν j). (6.5)

Inspired by the idea of k-means, a natural approach for approximately solving Wasserstein
clustering (6.5) was proposed by [30] through two alternative steps: (i) assign sample distri-
butions to their nearest Wasserstein barycenters in terms of Wasserstein distance (6.3), and (ii)
apply (6.4) to update Wasserstein barycenters of distributions involved.

Moreover, a variational Wasserstein clustering was proposed by [38] based on the variational
OT technique that aims to find a set of discrete sparse barycenters to best represent a continuous
probability measure, or its discrete empirical representation.

7. NUMERICAL EXPERIMENTS

This section is contributed to carry out numerical experiments to compare clustering algo-
rithms mentioned in the preceding sections for datasets of various shapes. All numerical ex-
periments are implemented in Matlab R2018b and executed on a personal desktop (Intel Core
i7-7700HQ, 2.80GHz, 24.00GB of RAM).

7.1. Generated datasets and clustering algorithms. Six datasets of typical shapes are gener-
ated to explore the numerical performance of clustering algorithms. In Figure 1, three datasets
in the first row are spherical data: “blob” has four clusters with equal radii; “aniso” has three
clusters and each one is not isotropic; “varied” has three clusters with different radii. Three
datasets in the second row are manifolds.

In numerical experiments, clustering algorithms mentioned in the preceding sections are con-
ducted to compared with a state-of-the-art density-based clustering algorithm [48]. In order to
facilitate the reading of numerical results, we list the abbreviations of clustering algorithms in
Table 1.

7.2. Evaluation index. Normalized mutual information (NMI) [53] and adjusted mutual in-
formation (AMI) [61] are two criteria widely used to evaluate numerical results of clustering.
Given a cluster assignment z and the true label z0, NMI and AMI are defined by

NMI(z,z0) =
MI(z,z0)

f (H(z),H(z0))
and AMI(z,z0) =

MI(z,z0)−E(MI(z,z0))

f (H(z),H(z0))−E(MI(z,z0))
,
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FIGURE 1. Experimental datasets

TABLE 1. List of clustering algorithms used in numerical experiments

Abbreviations Algorithms
HCD Hard clustering with Euclidean distance [56] for center-based clustering
RCC Robust continuous clustering [49] for convex clustering
SPC Continuous bi-criteria cut [33] for spectral clustering
SSC ADMM for sparse subspace clustering [15]

CFSFDP Clustering by fast search and find of density peaks [48]

where MI(·, ·) is the mutual information, H(·) is the information entropy, E(·) is the expectation,
f (·, ·) can be min/max function, arithmetic mean and geometric mean; in this experiment, we
use arithmetic mean. Clearly, NMI ∈ [0,1] and AMI ∈ [0,1]. The larger the NMI and AMI, the
more accurate the algorithm.

7.3. Numerical results. Numerical results and performance of clustering algorithms on dataset-
s mentioned above are illustrated in Table 2 and Figure 2, respectively. The following observa-
tions are indicated from numerical results:

(i) For center-based clustering, its performance on spherical data depends on the distribu-
tion of radii: the more uniform the radii, the better the performance; its performance on
manifold data is not well, except for the separable manifold “smile”.

(ii) Convex clustering and spectral clustering work well on manifold data, in which NMI and
AMI are generally larger than 0.8.

(iii) Subspace clustering fails for data “moon”, while other algorithms generally perform well.
It is indicated that subspace clustering may not suitable for low-dimensional data, because
the hypothesis of sparse self-expressiveness property may not hold for low-dimensional
data.



18 XIAOTIAN LI, LINJU CAI, JINGCHAO LI, CARISA KWOK WAI YU, YAOHUA HU

In conclusion, center-based clustering is suitable for spherical data; convex clustering and
spectral clustering are able to handle manifold data; and subspace clustering is capable to deal
with high-dimensional data.

TABLE 2. Numerical results of clustering algorithms

HCD RCC SPC SSC CFSFDP
Datasets NMI AMI NMI AMI NMI AMI NMI AMI NMI AMI

blob 1.000 1.000 0.987 0.987 0.765 0.746 1.000 1.000 1.000 1.000
aniso 0.593 0.592 0.295 0.074 0.010 0.005 0.902 0.901 0.954 0.954
varied 0.784 0.783 0.803 0.799 0.565 0.518 0.742 0.741 0.642 0.642
moon 0.208 0.206 1.000 1.000 1.000 1.000 0.016 0.014 1.000 1.000
smile 1.000 1.000 1.000 1.000 0.960 0.960 0.884 0.884 1.000 1.000
circle 0.000 0.000 0.994 0.994 0.000 0.000 0.000 0.000 0.003 0.002

HCD

blob aniso varied moon smile circle

RCC

SPC

SSC

CFSFDP

FIGURE 2. Performance of clustering algorithms
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APPENDIX A. OPTIMIZATION ALGORITHM

The connection between optimization models and clustering algorithms has been built up in
the preceding sections, which is not only helpful to advance the understanding of the principle
of existing clustering algorithms, but also useful to inspire new ideas of efficient clustering
algorithms. In the era of big data, it is an important issue to design and develop efficient and
fast optimization algorithms by virtue of certain structure of large-scale optimization problems;
see [7, 42, 47] and references therein. Several popular first-order optimization algorithms in
clustering are presented as follows.

A.1. BCD. The block coordinate descent (BCD) method [63] has a long history in optimiza-
tion and has been extensively applied in machine learning, especially in parallel and distributed
computation. Consider an unconstrained convex optimization problem with a block-wise vari-
able

min
x1,x2,··· ,xn

f (x1,x2, · · · ,xn).

The original BCD adopts the Gauss-Seidel scheme to alternately minimize the objective func-
tion according to each block xi in place of the full variable x; one can refer to [63] for other-types
of BCD. The original BCD is formally described as follows.

Algorithm 3: BCD framework

1 Input: function f .
2 Output: optimal solution x∗.
3 Initialize x0 = (x1,x2, · · · ,xn).
4 while not convergent do
5 for k = 1, · · · do
6 for i = 1, · · · ,n do
7 xk

i := argminxi
f (xk

1, · · · ,xk
i−1,xi,xk−1

i+1 , · · · ,xk−1
n ).

8 end
9 end

10 end

A.2. ADMM. The alternating direction method of multipliers (ADMM) [8] is a widely used
algorithm in machine learning. Particularly, consider a composite convex optimization problem

min
x,y

f (x)+g(y)

s.t. Ax+By = c.
(A.1)

Its augmented Lagrangian function is

Lλ (x,y,z) := f (x)+g(y)+ zT(Ax+By− c)+
λ

2
‖Ax+By− c‖2,

where z is a dual multiplier and λ > 0 is a parameter. The idea of ADMM is to apply the Gauss-
Seidel decomposition technique to solve the above joint minimization problem of augmented
Lagrangian function Lλ ; consequently, minimize Lλ according to variable x, y, z, respectively,
at an alternating manner.
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Algorithm 4: ADMM framework

1 Input: data A, B, c, parameter λ .
2 Output: optimal solution x∗,y∗.
3 while not convergent do
4 for k = 0,1, · · · do
5 xk+1 := argminx Lλ (x,yk,zk),
6 yk+1 := argminy Lλ (xk+1,y,zk),
7 zk+1 := zk +λ (Axk+1 +Byk+1− c).
8 end
9 end

A.3. AMA. The alternating minimization algorithm (AMA) [58] is a popular algorithm for
solving problem (A.1). It shares a similar pattern with ADMM, except that AMA assumes f is
strongly convex and update the first block with λ = 0.

Algorithm 5: AMA framework

1 Input: data A, B, c, parameter λ .
2 Output: optimal solution x∗,y∗.
3 while not convergent do
4 for k = 0,1, · · · do
5 xk+1 := argminx L0(x,yk,zk),
6 yk+1 := argminy Lλ (xk+1,y,zk),
7 zk+1 := zk +λ (Axk+1 +Byk+1− c).
8 end
9 end

A.4. MM. The majorization-minimization (MM) method [29] is a popular algorithm for solv-
ing nonconvex optimization problems. Consider a general (nonconvex) optimization problem

min
x

f (x).

The idea of MM is to use a series of (convex) surrogate functions {gk} satisfying

gk(xk) = f (xk) and gk(x)≥ f (x) for each x ∈ Rn

(minimizing gk is much easier than f ). At each iteration, we minimize the surrogate function
gk in place of f , namely,

xk+1 := argminx gk(x),

and hence the descent property of the objective function is guaranteed as

f (xk+1)≤ gk(xk+1)≤ gk(xk) = f (xk).
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Algorithm 6: MM framework

1 Input: surrogate functions gk.
2 Output: optimal solution x∗.
3 Find a feasible point x0.
4 while not convergent do
5 for k = 0,1, · · · , do
6 xk+1 := argminx gk(x).
7 end
8 end

A.5. PGM. The proximal gradient method (PGM) [4] is a famous algorithm for solving (pos-
sibly nonsmooth and nonconvex) composite optimization problem and has been extensively
applied in machine learning and image science. Consider a composite optimization problem

min
x

f (x)+ϕ(x), (A.2)

where f : Rn→ R is convex and continuously differentiable, and ϕ : Rn→ R is possibly non-
convex and nonsmooth. The idea of PGM is to blend the gradient descent method and proximal
point method; that is, employ the gradient decent operator to minimize the smooth function
f , and then apply the proximal operator to minimize the nonconvex and nonsmooth g at each
iteration. Consequently, the framework of PGM is stated as follows.

Algorithm 7: PGM framework

1 Input: parameter t.
2 Output: optimal solution x∗.
3 Initialize x0.
4 while not convergent do
5 for k = 0,1, · · · , do
6 yk+1 := xk− t∇ f (xk),
7 xk+1 := proxtϕ(yk+1) = argminx ϕ(x)+ 1

2t ‖x−yk+1‖2.
8 end
9 end

The proximal operator proxtϕ(·) is still an optimization subproblem. Fortunately, it has ana-
lytical solutions for certain functions ϕ which are widely used in sparse optimization, such as
`p norm (p = 0, 1

2 ,
2
3 ,1), `2,p norm (p = 0, 1

2 ,
2
3 ,1) and nuclear norm; one can refer to [24] for

details.
In fact, PGM can be understood as a version of MM for solving problem (A.2) with the

surrogate function being the second-order Taylor expansion of f at point xk plus ϕ , i.e.,

gk(x) := f (xk)+ 〈∇ f (xk)),x−xk〉+ 1
2t
‖x−xk‖2 +ϕ(x) with t < sup

x
‖∇2 f (x))‖.
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