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A B S T R A C T   

An efficient two-stage heuristic approach is developed for solving the fleet management problem 
under time-varying demand. Stage 1 of the approach optimizes the vehicles’ utilization schedule. 
Continuous-time approximation is employed to yield a set of near-optimality conditions that can 
greatly reduce the solution space of this stage. Stage 2 then optimizes the vehicle purchase and 
retirement schedules. Numerical experiments showed that our approach outperformed a number 
of previous methods and commercial solvers by large margins in terms of solution quality, 
computational efficiency, or both.   

1. Introduction 

Freight and passenger transport service providers operate vehicle fleets (e.g., trucks, buses, ships and aircrafts) of variable sizes to 
serve time-varying demands. Optimal decisions on fleet management are crucial for those service providers to minimize the overall 
purchase, operation, maintenance, and retirement costs of their fleets. These decisions pertain to: (i) when to purchase new vehicles 
and retire old ones; and (ii) how to utilize the fleet to meet forecasted demands. 

The fleet management problem under demand constraint belongs to the realm of “parallel replacement problems” in the literature 
(Vander Veen, 1985; Leung and Tanchoco, 1990; Jones et al., 1991; Karabakal et al., 1994). This class of problems aim to find the 
optimal replacement schedules (or more generally, the purchase and retirement schedules if the number of assets is not fixed) of assets 
(in our case, the vehicles) that minimize the total cost over a given planning horizon. The assets considered in these problems are 
interdependent due to budget constraints (Karabakal et al., 1994; Lee et al., 2016; Lee and Madanat, 2015; Zhang et al., 2017), 
economies of scale (Jones et al., 1991; Büyüktahtakın et al., 2014), demand constraints (Wu et al., 2003, Wu et al., 2005; Guerrero 
et al., 2013; Guerrero, 2014; Seif et al., 2019; Shields et al., 2019), or combinations of the above (Büyüktahtakın and Hartman, 2016; 
Des-Bordes and Büyüktahtakın, 2017). 

The parallel replacement problems are known to be difficult to solve due to the large solution space (Vander Veen, 1985). As a 
result, heuristic approaches were often used instead of exact methods (e.g., Karabakal et al., 2000). Simplifying assumptions were also 
made to reduce the solution complexity. Specifically, many works assumed that an asset’s unit operation and maintenance (O&M) cost 
per period or per utilization unit (e.g., mile) was a constant (Li et al., 2018), or a function of the asset age (Abdi and Taghipour, 2018; 
Islam and Lownes, 2019; Parthanadee et al., 2012; Redmer, 2009; Wu et al., 2003, 2005; Yatsenko and Hritonenko, 2015) or 
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maintenance type (Ngo et al., 2018). However, for vehicle assets, empirical studies have shown that their unit O&M costs depend 
rather on their cumulative mileages than on the above factors (CARB, 2008; Hartman and Tan 2014). Hence, in the fleet management 
problem, the vehicles’ utilization in terms of mileage (which is a continuous variable), or the mileage-based demand assignment to the 
vehicles, must be jointly optimized with the fleet purchase and retirement schedules. This joint optimization problem is nonlinear and 
has a much greater solution space. It thus becomes rather difficult to develop an efficient solution method for this problem. Although 
some previous studies have also jointly optimized assets’ purchase and retirement plan together with their utilization schedules, most 
of those works did not account for the dependency of unit O&M cost on an asset’s cumulative utilization (e.g., Wu et al., 2003, 2005; 
Büyüktahtakın and Hartman, 2016; Des-Bordes and Büyüktahtakın, 2017). Only a handful of those joint optimization studies 
considered the impacts of cumulative utilization on the unit O&M cost. Regrettably, some of them assumed simple, binary utilization 
variables (Seif et al., 2019; Shields et al., 2019). Others relied on either a linear modeling approach associated with even larger solution 
spaces (Hartman, 1999), or overly-simplified heuristic approaches that may result in poor solution quality (Jin and Kite-Powell, 2000; 
Guerrero et al., 2013). In short, an efficient approach to solving the fleet management problem is still lacking. 

Of note, some works in the literature also developed useful analytical insights that have practical implications or can assist in the 
development of efficient solution methods. For example, Jones et al. (1991) showed for a replacement problem of single-type assets 
that two properties, namely the “no-splitting” property and the “older cluster replacement” property, should hold simultaneously at 
optimality. The former means assets of the same age must be replaced at the same time; and the latter means old assets should be 
replaced before new ones. However, these two seemingly intuitive properties were only proved for cases where the number of assets is 
fixed (i.e., always a new asset replacing an old one) and where demand or utilization is not concerned (Tang and Tang, 1993; Hopp 
et al., 1993; McClurg and Chand, 2002; Childress and Durango-Cohen, 2005). In the fleet management problem, however, the optimal 
fleet size naturally varies in response to the fluctuating demand. We show by numerical examples that the widely-cited “no-splitting” 
and “older cluster replacement” properties cannot both hold at optimality in this case. Thus, those earlier insights also cannot be 
applied to solve our joint optimization problem with time-varying demand. 

In light of the above, this paper develops an efficient heuristic approach for solving a general fleet management optimization 
model. The model is a generalization of the truck fleet optimization model proposed by Guerrero et al. (2013), which jointly optimized 
the truck mileages assigned and the purchase and retirement schedule of multiple types of trucks subject to a time-varying demand 
constraint. Our approach solves the problem in two stages. Stage 1 optimizes the vehicle mileage assignment problem given the vehicle 
purchase and retirement schedules. Solution at this stage utilizes an analytical property developed from a continuous-time approxi-
mation of the original, discrete-time nonlinear model. This property indicates that, at the optimality, mileage should be allocated to 
those vehicles with the lowest marginal utilization cost. Built upon this property, we propose a Stage-1 solution approach that can 
greatly reduce the solution space without notably compromising the solution quality. Stage 2 employs a tabu search algorithm (Glover 
and Laguna, 1998) to optimize the fleet purchase and retirement schedule. The benefits of our two-stage approach are demonstrated 
through extensive numerical experiments. For cases where the Stage-1 problem is convex (the simpler case), our approach produced 
solutions within 0–2% of those developed by a commercial solver (i.e., CVX in Matlab) using only 0.3–13% of the latter’s runtimes. 
Even greater advantages were observed for more general cases with a non-convex Stage-1 problem, where our approach outperformed 
previous methods in both solution quality and computational efficiency. 

The rest of the paper is organized as follows. Section 2 presents the general problem formulation and an equivalent two-stage 
formulation. Section 3 proposes the heuristic approach. The computation time and solution quality of our approach are tested in 
Section 4. Numerical case studies are furnished in Section 5. Section 6 demonstrates the robustness of numerical solutions when some 
parameter values contain errors and uncertainties, and when actual vehicle utilizations deviate from the optimal schedule. Insights and 
potential extensions are discussed in Section 7. 

2. Problem formulations 

Section 2.1 presents a general formulation. Section 2.2 presents an equivalent two-stage formulation. Notations used in this paper 
are summarized in Table A1 of Appendix A. 

2.1. A general formulation 

The problem is formulated as [P1] below, where the decision variables are: the number of vehicles purchased at time t (those 
vehicles are termed cohort t from now on), denoted by Pt; the type of vehicles in cohort t, γt; the mileage served at time τ by a vehicle in 
cohort t, uτ,t ; and the time when the vehicles in cohort t are retired, St. The subscripts in the above notations satisfy 1 ≤ t ≤ τ ≤ T, 
where T denotes the planning horizon. The unit of time can be a year, a month, or even a day. Here we assume that all the vehicles in a 
specific cohort are of the same type, have the same utilization plan over their service lives, and retire at the same time. This assumption 
is consistent with the “no-splitting” property specified by Jones et al. (1991), and with those commonly assumed in the literature (e.g., 
Guerrero et al., 2013; Parthanadee et al., 2012; Laksuwong et al., 2014). 

[P1] 

min
Pt ,γt ,St ,uτ,t

J =
∑T

t=1
A(γt)Pte− rt +

∑T

t=1

∑St

τ=t
Ptuτ,tM

(
yτ,t, γt

)
e− rτ −

∑T

t=1
PtF
(
ySt ,t, γt

)
e− rSt (1a) 

subject to: 
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∑

t:1≤t≤τ≤St

Ptuτ,t = Dτ, 1 ≤ τ ≤ T (1b)  

yτ,t =
∑τ

s=t
us,t, and yt− 1,t = 0, 1 ≤ t ≤ τ ≤ St ≤ T (1c)  

γt ∈ H, 1 ≤ t ≤ T (1d)  

St is an integer, 1 ≤ t ≤ St ≤ T (1e)  

Pt is an integer,Pt ≥ 0, 1 ≤ t ≤ T (1f)  

0 ≤ uτ,t ≤ U, 1 ≤ t ≤ τ ≤ St ≤ T (1g)  

ySt ,t ≤ y, 1 ≤ t ≤ St ≤ T (1h) 

In the RHS of the objective function (1a), the first term is the total discounted vehicle purchase cost, where A(γt) denotes the cost for 
purchasing a type-γt vehicle, and r the discount rate; the second term is the total discounted O&M cost, where M(yτ,t, γt) denotes the 
unit O&M cost per vehicle per mile, and yτ,t a cohort-t vehicle’s cumulative mileage at τ; and the last term is the total discounted 
salvage value, where F(ySt ,t , γt) indicates the salvage value of a cohort-t vehicle that retires at St. The following three assumptions are 
made for functions M(∙) and F(∙):  

(i) M
(

yτ,t , γt

)〉
0 and ∂M

∂yτ,t
> 0, meaning that the unit O&M cost increases with yτ,t (CARB, 2008);  

(ii) F
(

ySt ,t , γt

)
≥ 0 and ∂F

∂ySt ,t
< 0, meaning that the salvage value decreases with ySt ,t ; and  

(iii) ∂
∂ySt ,t

(

M − ∂F
∂ySt ,t

)〉

0, meaning that the utilization cost per mile at a vehicle’s retirement time, M − ∂F
∂ySt ,t

, increases with its final 

mileage ySt ,t .
1 

Constraint (1b) specifies that a given demand at each time τ, denoted by Dτ (measured by miles), has to be satisfied. For simplicity, 
the demand is assumed to be infinitely divisible between vehicles. Constraint (1c) defines yτ,t (1 ≤ t ≤ τ ≤ St) as the cumulative 
mileage of a cohort-t vehicle at τ. Constraint (1d) specifies the set of vehicle types, denoted by H. Constraints (1e-h) are the boundary 
and integer constraints for St , Pt, uτ,t and yτ,t , respectively, where U is the maximum mileage a vehicle can serve per unit time, and y the 
maximum allowable cumulative mileage. 

Program [P1] is a mixed-integer nonlinear program with T(T+7)
2 decision variables. The nonlinearity is due to the demand constraint 

(1b) and the O&M cost term in the objective function. It is also nonconvex in general. Thus, its exact solution is very difficult to obtain 
when T is large. We next reformulate it as a two-stage problem, for which a heuristic approach will be developed in Section 3. 

2.2. The equivalent two-stage formulation 

We propose the following two-stage formulation. The Stage-1 problem [P2] optimizes the vehicle utilization plan, i.e., uτ,t 
(1 ≤ t ≤ τ ≤ St), for a given set of Pt, γt, and St (1 ≤ t ≤ T). The Stage-2 problem [P3] optimizes Pt , γt, and St (1 ≤ t ≤ T) given that the 
optimal uτ,t (1 ≤ t ≤ τ ≤ St) is expressed as a function of Pt, γt , and St (1 ≤ t ≤ T). 

[P2] 

min
uτ,t

J’ =
∑T

t=1

∑St

τ=t
Ptuτ,tM

(
yτ,t, γt

)
e− rτ −

∑T

t=1
PtF
(
ySt ,t, γt

)
e− rSt (2) 

subject to: (1b), (1c), (1g), and (1h) 
[P3] 

min
Pt ,γt ,St

J =
∑T

t=1
A(γt)Pte− rt +

∑T

t=1

∑St

τ=t
Ptuτ,tM

(
yτ,t, γt

)
e− rτ −

∑T

t=1
PtF
(
ySt ,t, γt

)
e− rSt (3a) 

subject to: (1c)–(1f), and 

uτ,t = gu
τ,t({Pt, γt, St, 1 ≤ t ≤ T}), 1 ≤ t ≤ τ ≤ St ≤ T (3b) 

1 Assumption (iii) simplifies our solution approach. However, a similar but moderately more complicated solution approach can still be developed 
if this assumption is relaxed. See Section 3.1.3 for more details. 
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where gu
τ,t(∙) denotes the optimal solution of uτ,t expressed as a function of given Pt , γt, and St (1 ≤ t ≤ T), which is found by solving 

[P2]. An optimal solution to [P3] must also be optimal to the original program [P1] and vice versa. In other words, [P1] an [P3] are 
equivalent. 

We next present the heuristic approach for solving the two-stage formulation. 

3. The solution approach 

The key element of our approach is a near-optimal solution to the Stage-1 problem [P2], as described in Section 3.1. Section 3.2 
presents the tabu search algorithm for solving the Stage-2 problem [P3]. 

3.1. A heuristic solution to [P2] 

We first convert the discrete-time formulation [P2] to a continuous-time approximation model [P4], as presented in Section 3.1.1. 
An optimality property is developed analytically for [P4] in Section 3.1.2. Built upon this property, a heuristic solution to [P2] is 
presented in Section 3.1.3. 

3.1.1. The continuous-time approximation model 
Continuous-time approximation, or more generally, the continuous approximation technique, was often used in the literature of 

pavement management optimizations (Rashid and Tsunokawa, 2012), supply chain and logistics system optimizations (Tsao and Lu, 
2012), and public transportation network optimizations (Chen et al., 2015; Chen and Nie, 2018; Mei et al., 2020). The technique 
approximates numerous discrete variables and parameters by a few continuous functions. The resulting program becomes parsimo-
nious and can often be tackled using calculus of variations. 

Specifically, we approximate [P2] by the following program [P4], where the discrete-time parameters Pt, γt , St , and Dτ (0 < t,τ ≤ T) 
are replaced by the continuous-time functions P(t), γ(t), S(t), and D(τ) (0 < t,τ ≤ T), and the variables uτ,t and yτ,t (0 < t ≤ τ ≤ St) by 
u(τ, t) and y(τ, t) (0 < t ≤ τ ≤ S(t)), respectively. Note that P(t) and u(τ, t) denote the vehicle purchase rate at t and the utilization rate 
at τ per vehicle of cohort t, respectively. For simplicity, other notations are kept unchanged. The relation between yτ,t and uτ,t , (1c), is 
now written as a partial differential equation (4c). The summations in [P2] are replaced by the integrals in [P4]. 

[P4] 

minJ’ =

∫ T

t=0

∫ S(t)

τ=t
P(t)u(τ, t)M(y(τ, t), γ(t) )e− rτdτdt −

∫ T

t=0
P(t)F(y(S(t), t ), γ(t) )e− rS(t)dt (4a) 

subject to: 
∫

t:0≤t≤τ≤S(t)
P(t)u(τ, t)dt = D(τ), for τ ∈ (0,T] (4b)  

∂y(τ, t)
∂τ = u(τ, t), for t ∈ (0, T], τ ∈ [t, S(t) ] (4c)  

0 ≤ u(τ, t) ≤ U, for t ∈ (0, T], τ ∈ [t, S(t) ] (4d)  

y(S(t), t ) ≤ y, for t ∈ (0,T] (4e) 

[P2] asymptotically converges to [P4] when the time interval for decisions approaches zero (i.e., when the decisions can be made 
with infinitesimal intervals). Hence, the optimal solution to [P4] should be close to the optimal solution to [P2], especially when the 
time interval is small. 

3.1.2. An optimality property of the continuous-time model 
First, define the z-score of cohort t at time τ, z(y(τ, t), τ, t ) (0 < t ≤ τ ≤ S(t)), as follows: 

z(y(τ, t), τ, t ) ≡ M(y(τ, t), γ(t) ), for τ ∈ [t, S(t) ), t ∈ (0, T] (5a)  

z(y(S(t), t ), S(t), t ) ≡ M(y(S(t), t ), γ(t) ) −
∂F

∂y(S(t), t )
, for t ∈ (0, T]. (5b) 

The z-score can be interpreted as the cost for a cohort-t vehicle to cover an additional mile at τ: for a non-retiring vehicle at τ (i.e. a 
vehicle with S(t) > τ), the z-score is equal to the unit O&M cost; while for a retiring vehicle (i.e. one with S(t) = τ), it is the unit O&M 
cost minus the marginal salvage value. In other words, the z-score essentially represents a vehicle’s marginal utilization cost, ac-
counting for the differences between vehicle types and between non-retiring and retiring vehicles. 

We now present the following proposition: 

Proposition 1.. At the optimality of [P4], if P(t) ∕= 0 for a t ∈ (0,T], then for any τ ∈ [t, S(t) ), one of the following three conditions holds: 
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u(τ, t) = 0 (6a)  

u(τ, t) = U, or (6b)  

z(y(τ, t), τ, t ) = λ(τ) − 1
r

dλ(τ)
dτ (6c)  

and for τ = S(t), one of the following four conditions holds: 

u(S(t), t ) = 0 (7a)  

u(S(t), t ) = U (7b)  

y(S(t), t ) = y, or (7c)  

z(y(S(t), t ), S(t), t ) = λ(τ) (7d)  

where λ(τ) (τ ∈ (0,T]) is the Lagrange multiplier for relaxing constraint (4b). Proof of Proposition 1 employs the first-order necessary 
conditions of [P4]. The details are relegated to Appendix B. 

The first half of Proposition 1 means that, at a given τ, the z-scores of all the non-retiring vehicles, regardless of their cohorts, should 
be equal (note that the RHS of (6c) is only a function of τ but not of the cohort index t), if their utilization is neither zero nor U. This is 
intuitive from the economic point of view. Recall that the z-score is the marginal utilization cost. If two non-retiring vehicles with 
different z-scores are used at the same time, shifting some demand from the vehicle with a higher z-score to the other vehicle will 
reduce the total cost. This kind of demand shift can be carried on within the fleet until some vehicles have no demand to shift out (i.e., 
u(τ, t) = 0), others have reached the maximum utilization (u(τ, t) = U), and the remaining vehicles all have the same z-score. A similar 
note can be made for retiring vehicles, except that a retiring vehicle’s cumulative mileage is capped by y. Note that a non-retiring 
vehicle and a retiring vehicle at the same τ may not have equal z-scores. 

Proposition 1 implies that the optimal solution to [P4] can be derived if λ(τ) (τ ∈ (0,T]) is known. Inspired by this, the discrete-time 
program [P2] can be solved using a discrete-time analog of Proposition 1, which is presented next. 

3.1.3. A heuristic approach for solving [P2] 
The approach is built upon a discrete-time analog of Proposition 1, which is presented below: 

Proposition 2.. A near-optimal solution to [P2] can be developed to satisfy the following conditions: if Pt ∕= 0 for a t ∈ {1,2,⋯,T}, then for 
any τ ∈ {t, t+1,⋯, St − 1}, one of the following three conditions holds: 

uτ,t = 0 (8a)  

uτ,t = U (8b)  

zτ,t
(
yτ,t
)
≡ M

(
yτ,t, γt

)
= λτ −

1
r
(λτ+1 − λτ) (8c)  

and for τ = St, one of the following three conditions holds: 

uSt ,t = U (9a)  

ySt ,t = y (9b)  

zSt ,t
(
ySt ,t
)
≡ M

(
ySt ,t, γt

)
−

∂F
∂ySt ,t

= λτ (9c)  

where zτ,t

(
yτ,t

)
is the z-score at τ for a cohort-t vehicle, 1 ≤ t ≤ τ ≤ St; and λτ (τ ∈ {1,2,⋯,T}) the Lagrange multiplier for relaxing 

(1b). Note that (7a) in Proposition 1 is dropped in the discrete-time case because, if uSt ,t = 0, then cohort t should retire at St − 1 instead 
of St. 

Proposition 2 does not guarantee global optimality2. However, since Proposition 2 and [P2] are discrete-time analogs of Propo-
sition 1 and [P4], respectively, and Proposition 1 states the optimality conditions of [P4], we believe a solution developed using 
Proposition 2 would be near-optimal. We next show how such a solution can be developed. 

2 The optimality property of [P2] that are similar to Proposition 1 cannot be developed because the first-order conditions of [P2] are more 
complicated and cannot be simplified in a way similar to Appendix B. In other words, equal z-score (i.e., (8c) and (9c)) is not an optimality property 
for the discrete-time model. 
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The solution will be derived in an iterative fashion. First, when τ = 1, we have u1,1 = D1
P1 

(without loss of generality, we assume D1 >

0 and thus P1 > 0). Now suppose cohort 1 does not retire at τ = 1. Then (8c) holds at τ = 1, i.e., z1,1

(
y1,1

)
= M

(
y1,1, γ1

)
=

λ1 −
1
r (λ2 − λ1). If λ1 is given exogenously, then λ2 can be derived from the above equation. 

Now suppose λτ is already known, allocate the demand Dτ among the existing fleet as follows:  

(i) For a retiring cohort t (i.e., τ = St), calculate ŷSt ,t = z− 1
St ,t(λτ) from (9c), where z− 1

St ,t(∙) is the inverse function of zSt ,t(∙). Note that 

assumption (iii) in Section 2.1 means dzSt ,t
dySt ,t

> 0, and this results in a single-valued ŷSt ,t . The ySt ,t is then calculated as ySt ,t =

min

{

ŷSt ,t , ySt − 1,t +U, y

}

. This means that, if a retiring cohort’s cumulative mileage cannot reach ŷSt ,t , it must be equal to 

ySt − 1,t +U or y, whichever is lower. One can easily verify that the above ySt ,t satisfies (9a-c). The uSt ,t can be calculated as 
ySt ,t − ySt − 1,t .  

(ii) After allocating the demand to all the retiring cohorts, calculate the remaining demand. The remaining demand will be first 
allocated to the non-retiring cohort(s) with the lowest z-score. When that lowest z-score increases and catches up with a pre-
viously higher z-score, the demand will also be allocated to the cohorts that have that previously higher z-score (this is like 
flooding a staircase step by step with water). If a cohort’s mileage per vehicle reaches U, no more demand will be fed to this 
cohort. The process ends when no more demand is left. Then calculate uτ,t for all the non-retiring cohorts.  

(iii) Calculate the highest z-score of all the non-retiring cohorts that have received demand in step (ii). Use that z-score and (8c) to 
calculate λτ+1. (The highest z-score is associated with the last non-retiring cohort(s) that receives demand before the process in 
step (ii) ends.) 

Pseudo code of the above approach is summarized in Appendix C.1. Note, however, that the above process can be iterated only if 
there exists at least one non-retiring cohort that receives some demand at each time τ. If at a certain τ there is no non-retiring cohort, 
steps (ii-iii) cannot be executed and λτ+1 cannot be derived. In this case, λτ+1 needs to be given exogenously so that the iteration process 
can resume. We term the time i (1 ≤ i ≤ T) when a new λi needs to be specified exogenously as a “breakpoint”. (The first breakpoint is 
the start time, i = 1.) The λi’s associated with breakpoints can be optimized using some derivative-free gradient or subgradient search 
methods (see, e.g., Rios and Sahinidis, 2013).3 Appendix C.2 furnishes a derivative-free approximate gradient algorithm for optimizing 
these λi’s. 

Of a related note, if assumption (iii) in Section 2.1 is relaxed, then ̂ySt ,t = z− 1
St ,t(λτ)may be multi-valued in the above step (i). If z− 1

St ,t(λτ)

returns a small finite set of values (which is usually the case), then the Stage-1 problem can still be solved by a modified approach in 
which all possible values of ŷSt ,t are enumerated. However, this modified approach would exhibit a greater computational complexity. 

3.2. A tabu-search method for solving [P3] 

The first step of the tabu search method is to obtain a feasible initial solution to [P3]. This solution, denoted by x0 ≡
{
P0

t , γ0
t , S0

t : t 
= 1, 2,⋯,T

}
, is generated by a greedy heuristic algorithm. Pseudo code of this greedy heuristic algorithm is provided in Appendix C.3. 

We now describe the tabu search algorithm. The description is kept short in the interest of brevity because the algorithm is only a 
standard practice of the tabu search method. For more details on the theory of tabu search, please refer to Glover and Laguna (1998). 

Define a move as a change from a feasible solution x to a new feasible solution, where the change can be one of the following: (i) 
Pt → Pt +1 or Pt − 1 (if Pt> 0) for a certain t; (ii) γt switches to another value in H for a certain t; and (iii) St → St +1 (if St < T) or St − 1 
(if St> t) for a certain t. At each move, the heuristic approach presented in Section 3.1.3 is executed to find the vehicle utilization 
schedule, and the discounted total cost J is calculated. If no feasible utilization schedule is obtained, J is set to infinity. Define the 
neighborhood of x, N (x), as the set of feasible solutions that can be obtained by making one move from x. Further define the tabu list, TL, 
as the list of inverse moves of those most recent moves performed. The maximum length of tabu list is denoted as tabu size. In each 
iteration, a move is made according to one of the following two rules:  

(i) If no move in N (x) can produce a lower total cost as compared to the best solution so far, set the current move to the one in 
N (x)TL that produces the lowest total cost. Following this rule, a move is made even if it produces a higher cost than the best 
solution so far.  

(ii) If a move in N (x) ∩ TL produces a lower total cost than the best solution so far, set the current move to the lowest-cost move in 
N (x). 

The tabu list TL is updated after each iteration. It is used to prevent the algorithm from returning to a solution attained in a previous 
iteration. Rule (i) finds the best neighboring solution that is generated not from any move in the tabu list. However, if a move in the 
tabu list can yield a better solution than the best one so far, that move is still selected according to rule (ii). The algorithm ends when no 

3 The number of breakpoints is generally small. For most numerical instances in this paper, λ1 is the only Lagrange multiplier that needs to be 
optimized via search methods. 
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better solution is found after max num tb consecutive iterations. The pseudo code of this algorithm is provided in Appendix C.4. 

4. Performance of the two-stage approach 

Section 4.1 presents the cost functions and parameter values used in numerical experiments. Section 4.2 evaluates the solution 
quality and computational efficiency of our approach. All the numerical instances were carried out via Matlab R2016b on an HP 3.20 
GHz personal computer with 4 GB RAM. 

4.1. Cost functions and parameter values 

We first consider a special case with cost functions borrowed from Guerrero et al. (2013) for a truck fleet management problem. 
They are presented as follows: 

A(γt) = Ap +
k1γ2

t

k2 − γt
(10a)  

M
(
yτ,t, γt

)
= θM + k0 +(θF + pF)(1 − γt)f +(km0 + βγt)yτ,t (10b)  

F
(
ySt ,t, γt

)
= A(γt)kd

(
1 − kxySt ,t

)
(10c)  

y = 1/kx (10d)  

where Ap, k1, k2, θM, k0, θF , pF , f , km0, β, kd and kx are constant parameters, whose definitions and values are summarized in Table 1. 
Those values were also borrowed from Guerrero et al. (2013)4. Here γt represents the fuel-saving efficiency of cohort-t trucks. A larger 
γt renders a lower unit O&M cost, but a higher purchase cost. Note that assumptions (i-iii) specified in Section 2.1 are all satisfied here. 
Values of Dτ (1 ≤ τ ≤ T) are specified for each numerical instance separately, as described in the following sections. 

Note under this special case that the Stage-1 problem [P2] happens to be convex. Hence, its optimal solution can be obtained via 
gradient search methods or commercial solvers such as the CVX solver (Boyd and Vandenberghe, 2004), which will be used as a 
benchmark method for comparison against our approach. 

To examine the performance of our approach for the more general non-convex Stage-1 problems, we also conduct numerical tests 
using a second set of cost models, where (10b) is replaced by: 

M
(
yτ,t, γt

)
= θM + k0 +(θF + pF)(1 − γt)f +(km0 + βγt)y2

τ,t (11) 

This renders a non-convex Stage-1 problem. All the other cost models and parameter values are the same as in the convex cost 
models. 

Table 1 
Parameter definitions and values.  

Parameter Notation Value Unit 

Fixed truck purchase cost Ap  1.3E5 $/truck 
Coefficient for the variable truck purchase cost k1  3.8E5 $/truck 
Coefficient for the variable truck purchase cost k2  0.6 – 

Baseline toll θM  0 $/mile 
Fixed operating cost k0  0.647 $/mile 
Baseline fuel tax θF  0 $/gallon 
Fuel price pF  4 $/gallon 
Baseline fuel efficiency f  0.169 gallons/mile 
Fixed maintenance cost coefficient km0  1.85E-7 $/mile 
Variable maintenance cost coefficient β  2.57E-7 $/mile 
Instantaneous depreciation for the salvage value kd  0.75 – 

Mileage depreciation for the salvage value kx  9.77E-7 mile-1 

Maximum mileage served per truck per unit time U  1E5 mile 
Discount rate (when the time unit is one year) r  0.07 if the time unit is a year; 0.07/12 if that is a month – 

Set of truck types H  {0, 0.3} – 
Planning horizon T  5–50 year  

4 The only exception is that the value of k1 is different. If the original value was used, type-II trucks would be too advantageous over type-I trucks, 
and would be the only truck type selected in a solution. 
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4.2. Performance of our heuristic approach 

We tested totally 9 batches of numerical instances. For the first 7 batches, we set T = 5, 6,10, 20,30,40,50 years, respectively; and 
for the last 2 batches, T = 60, 120 months, respectively, to reflect finer planning time intervals. Each batch includes 10 instances with 
Dτ (τ ∈ {1,2,⋯,T}) randomly generated from a uniform distribution: over the support [2.0E6,2.8E6] miles for the first 7 batches, and 
[

2.0E6
12 , 2.8E6

12

]

miles for the last 2 batches. 

We first use the convex cost functions given by (10a-d). For the tabu search algorithm for [P3], different values of tabu size were 
used for problems of different sizes. This is because a too small tabu size will render the search process easily trapped around a local 
minimum, while a too large tabu size may prevent the algorithm from finding a better solution (Glover and Laguna, 1998). The 2nd 
column of Table 2 shows the tabu size found by trial and error for the 9 batches of numerical instances (the same tabu size can often be 
used for problems of similar sizes). The parameter max num tb was set to 15. 

Solutions and computation times of our approach are compared against three benchmark approaches. The first one is the heuristic 
approach proposed in Guerrero et al. (2013), where the trucks’ utilization plan and retirement schedules were optimized separately 
using a simplified time-invariant model. The second benchmark approach is borrowed from Hartman (1999), where the original non- 
linear model [P1] is linearized by discretizing the vehicle mileage using an interval u. The resulting mixed integer linear program 
(MILP) is then solved by CPLEX. The details of this approach and the MILP model are furnished in Appendix D. In the third benchmark 
approach, CVX is employed to solve [P2] to global optimality; exhaustive search (for smaller instances with T = 5 and 6) and the tabu 
search method described in Section 3.2 (for larger-scale instances with T ≥ 10) are used to solve [P3]. Note that exhaustive search 
would fail for larger-scale instances due to the curse of dimensionality. Global optima are thus obtained only for smaller instances. 

We calculate the following three relative errors between the solutions produced by our approach and the three benchmark ap-
proaches: 

εGuerrero =
[minimum cost of Guerrero’s approach] − [minimum cost of our approach]

[minimum cost of our approach]

εHartman =
[minimum cost of Hartman’s approach] − [minimum cost of our approach]

[minimum cost of our approach]

εCVX =
[minimum cost of CVX-based approach] − [minimum cost of our approach]

[minimum cost of our approach]

The means of εGuerrero, εHartman, and εCVX for each of the 9 batches of instances are presented in columns 3–6 of Table 2. The mean of 
εHartman is presented for two different values of u: 5 × 104 and 5 × 103 miles. A positive error indicates that our solution is better than the 
corresponding benchmark. We also present the minima of εCVX errors in the 7th column of the table, which indicates the maximum gaps 
between our solutions and the CVX-based ones (which are better). We further show the mean runtimes for the four solution approaches 
in the last five columns of the table. 

Comparison against each benchmark approach unveils distinct results. First, column 3 of the table shows that our approach pro-
duced costs that are on average 12–17% lower than Guerrero’s approach, showing the advantage of our approach over Guerrero’s 
despite the lower runtimes of the latter approach (see columns 8 and 9). This is because the overly-simplified utilization optimization 
model in Guerrero’s approach significantly undermined the solution quality. 

Columns 4 and 5 show that our approach also outperformed Hartman’s linear modeling approach by a large margin in terms of 
solution quality, especially when T ≥ 20. Although Harman’s approach can attain the global optimum when the discretization interval 
u approaches zero, a large u such as those used in the above tests can render considerable errors. This is why it loses to our heuristic 
approach even in terms of solution quality. On the other hand, further decreasing u does not improve the solution quality of Harman’s 

Table 2 
Relative cost errors and runtimes for the four solution approaches when [P2] is convex.  

T  Tabusize Mean 
εGuerrero  

Mean εHartman  εCVX  Mean runtime (sec) 

u =

5E4  
u =

5E3  
Mean Min Our 

approach 
Guerrero’s 
approach 

Hartman’s approach CVX-based 
approach 

u = 5E4  u = 5E3  

5 8 12.13% 11.48% 0.79% − 0.32% − 0.60% 3.68 4.31 29.51 17879.01 357.13 
6 10 17.00% 12.30% 0.75% − 0.43% − 0.54% 8.03 5.15 40.52 24018.04 2590.79 
10 20 16.33% 12.45% 0.78% − 0.35% − 0.55% 20.36 22.35 126.21 81754.78 179.23 
20 25 15.36% 12.63% 4.97% − 0.37% − 0.62% 46.20 88.23 582.79 86400* 405.12 
30 60 16.48% 11.48% 6.12% − 0.31% − 0.43% 167.12 98.93 2150.77 86400* 1335.15 
40 125 14.63% 13.09% 7.09% − 0.27% − 0.36% 274.78 104.08 7981.26 86400* 2229.23 
50 210 15.65% 11.67% 7.37% − 0.31% − 0.45% 503.25 149.51 48931.07 86400* 4827.69 
60 300 13.77% 13.98% 8.45% − 0.47% − 0.58% 1365.79 237.81 86400* 86400* 10729.87 
120 500 15.52% 14.22% 8.90% − 1.13% − 1.57% 3198.34 634.09 86400* 86400* 27802.14  

* For these instances, Hartman’s approach did not converge after 24 h (86400 s). Thus, only the best solutions recorded in 24 h were used here. 
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approach, since the runtime increases exponentially with T and soon becomes prohibitively high (e.g., over 24 h); see columns 10–11 
of the table. 

Finally, comparison against the CVX-based approach unveils that our approach produced costs that are very close to the latter 
approach, with a gap less than 1% for most cases; see columns 6 and 7. On the other hand, our average runtime is only 0.3–13% of the 
CVX-based approach; see the last column. (Closer investigation unveils that for each instance of T ≥ 10, the numbers of tabu search 
iterations executed in Stage 2 are similar between our approach and the CVX-based one, meaning that the runtime saving is mainly 
attributed to our heuristic method for solving the Stage-1 problem [P2].) In short, results in Table 2 indicate that our approach 
performed very good in both solution quality and computational efficiency. 

Note that the benefits of our approach are limited when [P2] is convex, because a convex [P2] can be efficiently solved to global 
optimality. However, such a convexity is not guaranteed for the general case. We next show that our approach would perform even 
better when a non-convex [P2] is used (i.e., when (10b) is replaced by (11)). For the non-convex case, we employ two commonly used 
solvers as benchmark approaches for solving [P2]: the “fmincon” solver in Matlab using the sequential quadratic programming al-
gorithm (Osorio and Bierlaire, 2013), and the SCIP solver (Wei et al., 2014). Tabu search is still used in both benchmark approaches to 
solve [P3]. Hartman’s linear modeling approach is still used as the third benchmark. In addition to εHartman, the following error terms 
are calculated: 

εfmincon =
[minimum cost of fmincon-based approach] − [minimum cost of our approach]

[minimum cost of our approach]

εSCIP =
[minimum cost of scip-based approach] − [minimum cost of our approach]

[minimum cost of our approach]

Means of these error terms are presented in columns 3–6 of Table 3, and the runtimes of the four approaches are presented in 
columns 7–11 of that table. These values show that, for every value of T examined, our approach always outperformed all the three 
benchmark methods in terms of both solution quality and computational cost. The advantage increased with the problem size. When 
T = 120, the cost reductions as compared to the benchmark approaches are 6–14%. Also note for T ≥ 30 that the benchmark ap-
proaches often failed to attain convergence within 24 h, while our approach still found solutions within 1 h. We believe these results 
have compellingly demonstrated the benefits of our solution approach. 

5. Numerical case studies 

To examine the optimal fleet management plans, in this section we present solutions of numerical instances with T = 20 years 
under three demand patterns: a constant demand (Section 5.1), a linearly increasing demand (Section 5.2) and a demand pattern with a 
demand drop in middle years (Section 5.3). The convex cost models and parameter values in Section 4.1 are used. 

5.1. Constant demand pattern 

First assume Dτ = 2.45E6 miles, ∀τ ∈ {1,⋯,T}. The optimal truck purchase plan and fleet size over the planning horizon are plotted 
as the solid and dashed curves, respectively, in Fig. 1a. The figure shows that two equal-sized cohorts are purchased in years 1 and 11, 
and each cohort contains 25 type-II trucks (i.e., γt = 0.3) with 10-year service lives. Fig. 1b plots the cumulative mileage trajectories 
for the two cohorts as solid curves. These linear trajectories reveal that each truck in the two cohorts serves a fixed annual mileage 
(0.98E5 miles), which is only slightly below U = 1E5 miles. This indicates that only the minimum number of trucks required (i.e., 
⌈

Dτ
U

⌉

= 25) are purchased for each cohort, and that each truck is almost fully utilized every year until its cumulative mileage is close to 

the limit y (as marked by the dashed horizontal line in Fig. 1b). This periodic truck purchase and utilization plan is a natural result of 
the constant demand. Only type-II trucks are used in this plan because, when a truck is nearly fully utilized, a type-II truck’s cost per 

Table 3 
Relative cost errors and runtimes for the four solution approaches when [P2] is non-convex.  

T  Tabu 
size 

Mean 
εfmincon  

Mean 
εSCIP  

Mean εHartman  Mean runtime (sec) 

u = 5E4  u =

5E3  
Our 

approach 
fmincon-based 

approach 
SCIP-based 
approach 

Hartman’s approach 

u = 5E4  u = 5E3  

10 20 1.81% 0.87% 11.30% 0.91% 25.03 402.09 1944.09 157.21 8027.78 
20 25 2.26% 0.65% 11.69% 5.13% 50.87 2960.32 14691.22 607.91 86,400* 
30 60 1.70% 1.06% 12.57% 5.92% 145.87 20604.11 86,400* 1848.60 86,400* 
40 125 4.04% 2.39% 12.70% 7.38% 259.04 86,400* 86,400* 8110.33 86,400* 
50 210 4.84% 3.44% 13.31% 7.95% 483.91 86,400* 86,400* 49902.08 86,400* 
60 300 5.67% 3.56% 13.88% 8.61% 1507.05 86,400* 86,400* 86,400* 86,400* 
120 500 6.30% 6.17% 13.94% 9.27% 3409.61 86,400* 86,400* 86,400* 86,400*  

* For these instances, the corresponding approaches did not converge after 24 h. Thus, only the best solutions recorded in 24 h were used for each 
instance 
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mile served is lower despite its higher purchase cost. This periodic solution pattern was consistently observed when the constant 
demand Dτ took other values, and when T was an integer multiple of 10 years. Note that 10 years are the maximum service life of a 
fully-utilized truck before its cumulative mileage reaches y. 

Results are a little different when T is not an integer multiple of 10 years. Fig. 2a and b show the optimal truck purchase plan and 
cumulative mileage trajectories, respectively, for an instance with T = 45 years and the same constant demand Dτ = 2.45E6 miles, ∀
τ ∈ {1,⋯,T}. Five equal-sized cohorts, each containing 25 type-II trucks, are purchased at year 1, 9, 17, 26, and 36. Note that the 
service lives of the three early cohorts are less than 10 years. It is more economical to shorten the lives of earlier cohorts since their 
salvage values are less discounted. 

5.2. Linearly increasing demand pattern 

Now assume a linearly increasing demand as described by Dτ = (1.4+0.1τ)E6 miles (1 ≤ τ ≤ T). The optimal truck purchase plan 
and cumulative mileage trajectories are plotted in Fig. 3a and b, respectively. The figures unveil a number of findings regarding the 
optimal fleet management plan. 

Note first that the truck purchase plan is no longer periodic under this time-varying demand. In fact, cohorts of different sizes and 
types are purchased in 15 of the 20 years. The largest two cohorts still appear in years 1 and 11, each consists of 15 type-II trucks. The 
other 13 cohorts are much smaller: they collectively consist of 28 trucks. This is intuitive: 15 trucks are needed to meet D1, and they 

Fig. 1. Optimal truck management plan for Dτ = 2.45E6 miles, τ ∈ {1,⋯,20}.  

Fig. 2. Optimal truck management plan for Dτ = 2.45E6 miles, τ ∈ {1,⋯,45}.  
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also serve the majority of demand in years 2–10; small cohorts of 1–2 trucks are purchased over those years to serve the demand 
increments. In year 11, cohort 1 is near y and thus replaced by cohort 11. Smaller cohorts are again added over the following years to 
serve the incremental demand. The fleet size curve in Fig. 3a shows that although demand increases over time, the optimal fleet size is 
not always increasing. In addition, type-I trucks are purchased in the last 5 years, rendering a mixed fleet. This is because trucks 
purchased near the end of planning horizon will serve less mileage in their short service lives, and thus cheaper type-I trucks are 
preferred. Furthermore, some cohorts (i.e., cohorts 2, 9, 13, 16–20) are retired far before reaching their mileage limit to save the cost. 
This is again due to the time-varying demand. Finally, this solution violates the “older cluster replacement” property of Jones et al. 
(1991); see that cohort 1 is retired in year 13 while cohorts 2 and 3 are retired in years 10 and 12, respectively. This occurs mainly 
because cohorts are not equal-sized due to the time-varying demand, and thus the retirement decision is also affected by cohort sizes, in 
addition to each cohort’s cumulative mileage (and age). 

We further examined more instances under linear demands with different annual increments. The demands are denoted by Dτ =

(1.4+βτ)E6 miles (1 ≤ τ ≤ T) for β ∈ [0.05,0.3]. Fig. 4 shows how the optimal cost J (the solid line with circular markers) and the total 
number of trucks (the dashed line with diamond markers) vary with β. It unveils that the total cost increases linearly with β, and the 
total number of trucks increases faster than the cost. The latter is also expected: when the demand becomes more uneven, more trucks 
will retire before being fully utilized, and thus more trucks are needed to serve the demand. 

5.3. A demand pattern with a drop in middle years 

For the last numerical instance, a demand pattern as shown in Fig. 5 is used. This demand pattern contains a sharp drop in year 5 (e. 
g., due to an economic recession or the appearance of a business competitor); the demand then stays low for years 5–9 and recovers 
gradually from year 10 on. We examine this instance to learn how the optimal fleet management plan, especially the purchase and 

Fig. 3. Optimal truck management plan for Dτ = (1.4+0.1τ)E6 miles, τ ∈ {1,⋯,20}.  

Fig. 4. Optimal cost and total number of trucks versus β for Dτ = (1.4+βτ)E6 miles,τ ∈ {1,⋯,20}.

L. Zhang et al.                                                                                                                                                                                                          



Transportation Research Part E 147 (2021) 102268

12

retirement plan, varies in response to an expected demand drop. The optimal truck purchase plan, fleet size, and the cumulative 
mileage trajectories are plotted against time in Fig. 6a and b, respectively. The figures show that totally 12 cohorts of trucks are used, 
with the largest cohorts being purchased in years 1 and 12. Compared to the previous instances, the solution of this instance features a 
“more mixed” fleet of different truck types. In particular, the earlier cohorts are of type-I, probably because they are expected to retire 
earlier due to the forecasted demand drop. The optimal fleet size stays roughly invariant over the demand “valley”, since a later 
demand recovery is also expected. Cohorts 2 and 4 retire earlier than cohort 1, indicating again a violation of the “older cluster 
replacement” property. This is because cohort 1 is much larger and is better retained for serving the recovered demand after year 9. 

6. Robustness of the optimal solutions 

In real practice, many operating parameter values are subject to estimation errors and uncertainties. In addition, actual vehicle 
utilizations can also deviate from the optimal plan. This section shows that the optimal fleet management plan is robust to these errors 
and deviations. 

In our first batch of robustness tests, we study how an “optimal” plan developed using inaccurate parameter estimates performs in 
the true environment. To this end, we first examine a scenario where the discount rate estimate contains an error. We assume the 
estimated discount rate is r(1+ε), where r is the true value and ε is the relative estimation error. We use randomly generated demand 
patterns for T = 20 years, the convex Stage-1 formulation, and the parameter values given in Table 1. We evaluate: (i) the true total 
cost, Ĵ, if the “optimal” plan developed by using the inaccurate estimate r(1+ε) is implemented in the true environment; and (ii) the 

Fig. 5. A demand pattern with a demand drop in middle years.  

Fig. 6. Optimal truck management plan for the demand with a drop in middle years.  
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optimal total cost, J*, for the optimal plan developed by using the true parameter r. We find that the difference between Ĵ and J* 

(averaged across 10 numerical instances) is consistently below 0.2% for any given ε satisfying |ε| ≤ 15%. This indicates that the 
estimation error in discount rate would not significantly undermine the performance of our solution. Similar results were also found for 
other model parameters, including the O&M cost parameters and the salvage value function parameters. 

In addition, we consider a scenario where future demand estimates are inaccurate, and the accurate demands are known when they 
are realized. (A similar scenario is where some vehicles’ utilization trajectories unexpectedly deviate from an optimal plan, and the 
deviations are known when they occur.) Thus, we can re-optimize the fleet management plan when the accurate information is known. 
To see how this re-optimization approach performs, we examine a 20-year instance where the estimated demand in year 5 contains an 
error. This demand is represented by D5(1+ε), where D5 is the true value and ε is the estimation error. In year 1, the fleet management 
plan is optimized using the estimated demand for years 1–20 (the same parameter values as the last batch of tests are used). Then in 
year 5, after knowing the true demand D5, we re-optimize the plan for years 5–20.5 Thus, the original plan was implemented in years 
1–4 and the updated one in the remaining years. The total cost is calculated and compared against the optimal cost developed by 
assuming that the accurate demand D5 was known in the beginning of planning horizon. We find for |ε| ≤ 30% that the error between 
the two cost values never exceeded 1.5%. 

The above results revealed that moderately inaccurate parameter values would not undermine the quality of our solution. They 
verified the practicality of our model and solution approach. 

7. Conclusions 

A two-stage approach is proposed for solving the discrete-time fleet management problem under time-varying demand. By 
exploiting a set of near-optimal conditions developed from a continuous-time approximation of the original formulation, the number of 
decision variables is reduced from T(T+7)

2 to 3T + n, where n is the number of breakpoints and is small in most cases (see Section 3.1.3). 
Numerical experiments showed that our approach outperformed existing solution approaches in terms of solution quality or 
computational efficiency, and oftentimes both, by significant margins. The advantage is greater for problems with a non-convex Stage- 
1 formulation, and for problems of larger sizes. The results manifested that our approach is an important improvement over the 
existing ones despite its heuristic nature, since exact solutions to the fleet management problem are unavailable for large-scale 
instances. 

Table A1 
List of notations.  

Notation Description Notation Description 

Decision variables 
Pt  Number of vehicles purchased at timet  P(t) Continuous-time form ofPt  

γt  Type of vehicles in cohortt  γ(t) Continuous-time form ofγt  

uτ,t  Mileage served at τ by a cohort-t vehicle  u(τ, t) Continuous-time form ofuτ,t  

yτ,t  Cumulative mileage at τ of a cohort-t vehicle  y(τ, t) Continuous-time form ofyτ,t  

St  Time when cohort-t vehicles are retired  S(t) Continuous-time form ofSt  

Pt,γ  Number of type-γ vehicles purchased att  Qt,γ  Equals 1 if type-γ vehicles are purchased at time t, and 0 otherwise  
X(ul)y,w,t,γ  Number of type-γ vehicles in use at time t with utilization ul, age 

w, and cumulative utilizationy  
Z(ul)y,w,t,γ  Equals 1 if type-γ vehicles with age w and cumulative utilization y 

are used at level ul at time t, and 0 otherwise  
Sy,w,t,γ  Number of type-γ vehicles retired at time t, with age w and 

cumulative utilizationy  
Wy,w,t,γ  Equals 1 if type-γ vehicles with age w and cumulative utilization y 

are retired at time t, and 0 otherwise   

Parameters and other variables 
Dτ  Demand atτ  D(τ) Continuous-time form ofDτ  

U  Maximum mileage per vehicle in a unit time H  Set of vehicle types 
y  Maximum allowable cumulative mileage A(∙) Unit purchase cost per vehicle 
M(∙) Unit operating and maintenance cost per mile F(∙) Salvage value of a vehicle 
T  Planning horizon r  Discount rate 
λ(τ) Lagrange multiplier for relaxing constraint (4b) z(∙) z-score 
λτ  Lagrange multiplier for relaxing constraint (1b) zτ,t(∙) Discrete-time form ofz(∙)
Fy,w,t,γ  Salvage value of a cohort-t vehicle of type γ, age w with 

cumulative mileagey  
gu

τ,t(∙) Optimal solution for uτ,t under a given vehicle purchase and 
retirement plan  

M(ul)y,w,t,γ  O&M cost of a cohort-t vehicle of type γ, age w with cumulative 
utilization y and current utilization levelul  

M  A sufficiently large number  

5 The re-optimization problem involves an initial fleet consisting of cohorts that were purchased (and not retired) by year 4. Although [P1] did not 
consider any initial fleet, it can be easily modified to model one. Our solution approach, including the demand allocation rule and the tabu search 
algorithm can be readily applied. 
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Thanks to the above advantages, the proposed approach can be used to solve larger-scale problems with longer planning horizons 
or more vehicle types, and problems with a finer decision-making time scale (e.g., a month or a week instead of a year). The generality 
of our problem formulation also allows it to be applied to the management of various fleet types, including coach buses and aircrafts. 

Our work also demonstrated the potential of using continuous-time approximation for efficiently solving asset management 
problems with large numbers of variables. The key insight unveiled by this method, i.e., that the marginal utilization costs of distinct 
assets at a given time tend to be equal, is consistent with economic intuition. This insight and the resulting demand allocation rule (see 
again Section 3.1.3) can be potentially extended to solve more realistic problems such as: (i) problems with indivisible demands, e.g., 
containerized cargo with multiple origins and destinations; and (ii) problems with stochastic demand and operating conditions6. 
Works in the above directions are under investigation now. 

Our numerical results also show that the widely-cited “older cluster replacement” does not hold in an optimal fleet management 
plan. This, however, could possibly be a consequence of our assumption of the “no-splitting” property, meaning that the two seemingly 
intuitive properties cannot both hold at the optimality. In the future work we also plan to explore more realistic scenarios where the 
“no-splitting” assumption is relaxed, i.e., where vehicles in the same cohort can have different utilizations and retirement times. 
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Appendix A. List of notations  

Appendix B. Proof of Proposition 1 

Introduce Lagrange multipliers λ(τ) (τ ∈ (0,T]), μ(τ,t), φ1(τ,t), φ2(τ, t) and ω(t) (t ∈ (0,T],τ ∈ (t, S(t) ]) to relax the constraints (4b)- 
(4e) of [P4], respectively (where φ1(τ, t) and φ2(τ, t) are used to relax the right and left inequalities of (4d), respectively). The Lagrange 
function is presented as: 

L=
∫ T

t=0

∫ S(t)

τ=t
P(t)u(τ,t)M(y(τ,t),γ(t))e− rτdτdt−

∫ T

t=0
P(t)F(y(S(t),t),γ(t))e− rS(t)dt+

∫ T

τ=0
λ(τ)

(

D(τ)−
∫

t:0≤t≤τ≤S(t)
P(t)u(τ,t)

)

e− rτdτ+
∫ T

t=0

×

∫ S(t)

τ=t
μ(τ,t)

(

u(τ,t)− ∂y(τ,t)
∂τ

)

e− rτdτdt+
∫ T

t=0

∫ S(t)

τ=t
φ1(τ,t)(u(τ,t)− U)e− rτdτdt−

∫ T

t=0

×

∫ S(t)

τ=t
φ2(τ,t)u(τ,t)e− rτdτdt+

∫ T

t=0
ω(t)(y(S(t),t)− y)e− rS(t)dt  

=

∫ T

t=0

∫ S(t)

τ=t
P(t)u(τ, t)M(y(τ, t), γ(t))e− rτdτdt −

∫ T

t=0
P(t)F(y(S(t), t ), γ(t) )e− rS(t)dt+

∫ T

τ=0
λ(τ)D(τ)e− rτdτ −

∫ T

t=0

×

∫ S(t)

τ=t
λ(τ)P(t)u(τ, t)e− rτdτdt +

∫ T

t=0

∫ S(t)

τ=t

(

μ(τ, t)u(τ, t) + y(τ, t)
(

∂μ(τ, t)
∂τ

− rμ(τ, t)
))

e− rτdτdt −
∫ T

t=0
μ(S(t), t )y(S(t), t )e− rS(t)dt +

∫ T

t=0

∫ S(t)

τ=t
φ1(τ, t)(u(τ, t) − U )e− rτdτdt −

∫ T

t=0

×

∫ S(t)

τ=t
φ2(τ, t)u(τ, t)e− rτdτdt +

∫ T

t=0
ω(t)(y(S(t), t ) − y )e− rS(t)dt (B1) 

For the second equality above, 

6 See, e.g., List et al. (2003), Hartman (2004), Childress and Durango-Cohen (2005), Stasko and Gao (2012), and Zheng and Chen (2016) for 
studies that assumed stochastic demand or operating conditions. 
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∫ T

t=0

∫ S(t)

τ=t
μ(τ, t)

(

u(τ, t) − ∂y(τ, t)
∂τ

)

e− rτdτdt =
∫ T

t=0

∫ S(t)

τ=t

(

μ(τ, t)u(τ, t)+ y(τ, t)
(

∂μ(τ, t)
∂τ

− rμ(τ, t)
))

e− rτdτdt −
∫ T

t=0
μ(S(t), t )y(S(t), t )e− rS(t)dt 

results from integration by parts. 
Take the partial derivatives of (B1) with respect to u(τ, t) and y(τ, t), part of the first-order conditions for optimality are:  

(i) Stationarity: 

∂L
∂u(τ, t) = 0,

∂L
∂y(τ, t)

= 0 (B2)    

(ii) Complementary slackness: 

φ1(τ, t)(u(τ, t) − U ) = 0, for t ∈ (0, T], τ ∈ [t, S(t) ] (B3a)  

φ2(τ, t)u(τ, t) = 0, for t ∈ (0,T], τ ∈ [t, S(t) ] (B3b)  

ω(t)(y(S(t), t ) − y ) = 0, for t ∈ (0, T] (B3c) 

and (iii) Dual feasibility: 

φ1(τ, t),φ2(τ, t),ω(t) ≥ 0, for t ∈ (0, T], τ ∈ [t, S(t) ] (B4) 

Note that not all the first-order conditions are presented here because some of them will not be used in the following derivation. 
Nevertheless, (B2)-(B4) are still necessary conditions of the optimality. 

Equations (B2) lead to the following (B5a-c): 

P(t)M(y(τ, t), γ(t) ) − P(t)λ(τ)+ μ(τ, t)+φ1(τ, t) − φ2(τ, t) = 0 (B5a)  

P(t)u(τ, t)
∂M

∂y(τ, t)
+

∂μ(τ, t)
∂τ − rμ(τ, t) = 0, for τ < S(t) (B5b)  

P(t)
∂F

∂y(S(t), t)
+ μ(S(t), t ) − ω(t) = 0 (B5c) 

Take the partial derivative of both sides of (B5a) with respect to τ: 

P(t)
∂M

∂y(τ, t)
∂y(τ, t)

∂τ − P(t)
dλ(τ)

dτ +
∂μ(τ, t)

∂τ +
∂φ1(τ, t)

∂τ −
∂φ2(τ, t)

∂τ  

= P(t)u(τ, t)
∂M

∂y(τ, t)
− P(t)

dλ(τ)
dτ +

∂μ(τ, t)
∂τ +

∂φ1(τ, t)
∂τ −

∂φ2(τ, t)
∂τ = 0 (B6) 

Subtract (B5b) from (B6): 

μ(τ, t) =
1
r

(

P(t)
dλ(τ)

dτ −
∂φ1(τ, t)

∂τ +
∂φ2(τ, t)

∂τ

)

(B7) 

Then plug (B7) into (B5a): 

P(t)M(y(τ, t), γ(t) ) = λ(τ)P(t) − 1
r

(

P(t)
dλ(τ)

dτ −
∂φ1(τ, t)

∂τ +
∂φ2(τ, t)

∂τ

)

− φ1(τ, t) +φ2(τ, t) (B8a) 

On the other hand, subtract (B5c) from (B5a) for τ = S(t): 

P(t)M(y(S(t), t), γ(t) ) − P(t)
∂F

∂y(S(t), t )
= P(t)λ(S(t) ) − φ1(S(t), t )+φ2(S(t), t ) − ω(t) (B8b) 

Equations (B8a) and (B8b) apply to the cases of τ < S(t) and τ = S(t), respectively. In the former case, by examining (B8a) and the 
values of φ1(τ, t) and φ2(τ, t) for any given τ and t, we find that one of the following three cases will arise:  

(i) When φ1(τ, t) = φ2(τ, t) = 0, constraint (4d) is unbinding; i.e., 0 < u(τ, t) < U. Since φ1(τ, t),φ2(τ, t) ≥ 0 (see (B4)), we have 
∂φ1(τ,t)

∂τ =
∂φ2(τ,t)

∂τ = 0. (Note that this relies on an implicit assumption that φ1(τ, t) and φ2(τ, t) are continuous and differentiable 
with respect to τ, which has been used in other similar studies, e.g., Jin and Kite-Powell, 2000). Hence, (B8a) can be re-arranged 
as: 

L. Zhang et al.                                                                                                                                                                                                          



Transportation Research Part E 147 (2021) 102268

16

P(t)∙
[

M(y(τ, t), γ(t) ) −
(

λ(τ) − 1
r

dλ(τ)
dτ

)]

= 0 (B9) 

(ii) When φ1(τ, t) = 0 but φ2(τ, t) ∕= 0, we have u(τ, t) = 0. 
(iii) Lastly, when φ1(τ, t) ∕= 0 but φ2(τ, t) = 0, we have u(τ, t) = U. 
Note that at least one of φ1(τ, t) and φ2(τ, t) must be zero, because the left and right inequalities of (4d) cannot be binding 

simultaneously. 
A similar reasoning applies to (B8b). Specifically, one of the following four cases will arise: 
(i) When φ1(S(t), t) = φ2(S(t), t) = ω(t) = 0, both constraints (4d) and (4e) are unbinding; i.e., 0 < u(τ, t) < U and y(S(t), t ) < y. 

Then we have: 

P(t)∙
[

M(y(S(t), t ), γ(t) ) −
∂F

∂y(S(t), t )
− λ(S(t) )

]

= 0 (B10) 

(ii) When ω(t) ∕= 0, we have y(S(t), t ) = y. 
(iii) When ω(t) = φ1(S(t), t) = 0 but φ2(S(t), t) ∕= 0, we have u(S(t), t) = 0. 
(iv) Lastly, when ω(t) = φ2(S(t), t) = 0 but φ1(S(t), t) ∕= 0, u(S(t), t) = U. 
By rearranging the above results, we have Proposition 1. 

Appendix C. Solution algorithms 

C.1 The solution algorithm for solving [P2]  

Algorithm 1: Finding optimal uτ,t for 1 ≤ t ≤ τ ≤ St, given Pt, γt,St (1 ≤ t ≤ T) , and λi’s at all 
breakpointsi ∈ {1,2,⋯,T}

Initialize uτ,t = yτ,t = 0 for 1 ≤ t ≤ τ ≤ St .  

Find the first cohort, ̃t, whose service life is longer than one time unit. Since ̃t is a breakpoint, λ̃
t 
is given 

by the condition of the algorithm.  

For all τ ∈
{

1,⋯, t̃
}

: if Pτ > 0, set uτ,τ =
Dτ
Pτ

, yτ,τ = uτ,τ .  

Set λ̃
t+1

= (1 + r)λ̃
t
− rz̃

t,̃t(y
t̃,̃t)

, where z̃
t ,̃t(y

t̃,̃t)

is calculated by (8c).  

For τ = t̃+ 1, …, T:  
For each retiring cohort t at τ:  

Set yτ,t = min
{

z− 1
τ,t (λτ), yτ− 1,t +U, y

}
, where z− 1

τ,t (λτ) is the inverse function of (9c);  

and uτ,t = yτ,t − yτ− 1,t .  
End For 
If there exists at least one non-retiring cohort at τ and Dτ −

∑
t:t≤τ≤St

Ptuτ,t > 0:  
Do: 

Allocate the remaining demand to the non-retiring cohort t with the lowest z-score unless uτ,t 

reaches U; keep zτ,t and uτ,t updated.  
Until Dτ −

∑
t:t≤τ≤St

Ptuτ,t = 0 (i.e., all the demand has been allocated)  

Set λτ+1 = (1+r)λτ − r∙
[

maximum z-score among all the non-
retiring cohorts receiving demand at τ

]

.  

Else: 
τ+1 is a breakpoint, and thus λτ+1 is given by the condition of the algorithm.  
End If 

End For 
Output uτ,t for 1 ≤ t ≤ τ ≤ St and J’ calculated using (2).   

C.2 The derivative-free approximate gradient algorithm for optimizing λi’s at breakpoints 

The following pseudo code optimizes λ1 only, assuming that it is the only breakpoint. If there are more breakpoints, they will be 
optimized with embedded iteration loops.   

Algorithm 2: Finding optimal λ1, given Pt , γt, and St (1 ≤ t ≤ T)  

Randomly initialize λ(0)1 and λ(1)1 using a predefined range Ω; calculate the optimal total cost of [P2] 

using Algorithm 1, i.e., J’(λ(0)1 ) and J’(λ(1)1 ).  
Define λ*

1 as the value of λ1 that attains the lowest J’ so far.  

(continued on next page) 
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(continued ) 

Algorithm 2: Finding optimal λ1, given Pt , γt, and St (1 ≤ t ≤ T)  

Do: 

Let λ(k)1 = λ(k− 1)
1 − αk− 1

J’ ( λ(k− 1)
1

)
− J’

(
λ(k− 2)

1

)

λ(k− 1)
1 − λ(k− 2)

1

, where αk− 1 is a positive step size.  

Calculate J’
(

λ(k)1

)
and update λ*

1.  

Set k ← k + 1.  
Until λ*

1 has not been changed for max num1 steps  
Output λ*

1 and J’ ( λ*
1
)
.   

In our numerical case studies presented in Sections 4 and 5, we set Ω = [5, 10], max num1 = 10, and αk = 2× 10− 6,∀k. 

C.3. The greedy heuristic algorithm for developing an initial solution to [P3] 

At each present time i (i progresses from 1 to T), the greedy heuristic determines Pi and γi as follows:  

(i) For the present time i and all the future times, purchase the minimum number of vehicles required to meet the demand, 
assuming that all these vehicles retire at T and have the same type γ ∈ H; and find the γ that minimizes the cost.  

(ii) Examine if retiring an existing cohort at the present time i will reduce the cost. 

The algorithm is detailed as follows.   

Algorithm 3: Finding an initial [P3] solutionx0  

For i = 1,⋯,T: //i represents the present time  
For j = 0,⋯, i − 1://j is used to examine if retiring an existing cohort before the present time i can 

reduce cost  
//Examine the case where cohort j retires right before the present time.  
If j ≥ 1, Pj > 0 and Sj > i − 1: set S̃j = Sj, Sj = i − 1.  
For each γ ∈ H:  

For all the future times τ = i,⋯,T:  
Set Pτ to the minimum number of vehicles required to satisfy the demand constraint; set Sτ = T, 

γτ = γ.  
Continuously allocate Dτ to the vehicles with the lowest z-score, while satisfying boundary 

constraints (1g-h).  
End For 

Calculate cost J using (3a); record the lowest-cost solution so far as {Pt , γt , St : t = 1, 2,⋯,T}.  
End For 
If Sj = i − 1: set Sj = S̃j.//Revert Sj.  

End For 
End For 
Output x0 = {Pt, γt ,St : t = 1,2,⋯,T}.   

C.4 The tabu search algorithm for solving [P3]  

Algorithm 4: Finding a heuristic solutionx* ≡
{

P*
t , γ*

t ,S
*
t : t = 1, 2,⋯,T

}

Initialize x = x0 using Algorithm 3, TL = ∅, and x* = x;  
Do: 

Find the best move in N (x) ∩ TL that yields the lowest cost J; denote the solution as x̃.  
If J(x̃ < J(x*):  

Set x* = x = x̃;  
Update TL.  

Else: 
Find the best move in N (x)\TL that yields the lowest J; denote the solution as x̃.  

Set x = x̃;  
Update TL.  
End If 

Until x* has not been changed for max num tb steps  
Output x*.   
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Appendix D. Formulation using Hartman’s linear modeling approach 

To convert [P1] to a linear program following Hartman’s approach (1999), we discretize the demand and utilization values using 
an interval u > 0. Thus, vehicle utilization levels in a period can only take values from a finite set, i.e., ul ∈ {0,u,2u,⋯, umax}. Decision 
variables of the linearized problem are defined as follows: 

Pt,γ: number of type-γ vehicles purchased at time t,1 ≤ t ≤ T, γ ∈ H; 
Qt,γ : binary variable that equals 1 if type-γ vehicles are purchased at time t, and 0 otherwise, 1 ≤ t ≤ T, γ ∈ H; 
X(ul)y,w,t,γ: number of type-γ vehicles in use at time t with utilization ul, age w, and cumulative utilization y, 0 ≤ ul ≤ umax,0 ≤ y ≤ y,

1 ≤ w, t ≤ T, γ ∈ H; 
Z(ul)y,w,t,γ : binary variable that equals 1 if type-γ vehicles with age w and cumulative utilization y are used at level ul at time t, and 

0 otherwise, 0 ≤ ul ≤ umax,0 ≤ y ≤ y,1 ≤ w, t ≤ T; 
Sy,w,t,γ: number of type-γ vehicles retired at time t, with age w and cumulative utilization y, 0 ≤ y ≤ y,1 ≤ w, t ≤ T; 
Wy,w,t,γ: binary variable that equals 1 if type-γ vehicles with age w and cumulative utilization y are retired at time t, and 0 otherwise, 

0 < y ≤ y,1 ≤ w, t ≤ T. 
[P1] is then reformulated as: 

min
∑T

t=1

∑

γ
A(γ)Pt,γe− rt +

∑T

t=1

∑T

w=1

∑

y=0
y
∑umax

ul=0

∑

γ
M(ul)y,w,t,γX(ul)y,w,t,γe− rt −

∑T

t=1

∑T

w=1

∑

y=0
y
∑

γ
Fy,w,t,γSy,w,t,γe− rt (D1) 

subject to: 
∑T

w=1

∑y

y=0

∑umax

ul=0

∑

γ
X(ul)y,w,t,γul ≥ Dt,∀1 ≤ t ≤ T (D2)  

Pt,γ −
∑umax

ul=0
X(ul)0,1,t,γ = 0, ∀1 ≤ t ≤ T, γ ∈ H (D3)  

Pt,γ ≥ Qt,γ ,∀1 ≤ t ≤ T, γ ∈ H (D4)  

Pt,γ ≤ MQt,γ , ∀1 ≤ t ≤ T, γ ∈ H (D5)  

∑

γ
Qt,γ ≤ 1,∀1 ≤ t ≤ T (D6)  

∑umax

ul=0
X(ul)y,w,1,γ = 0, ∀0 ≤ y ≤ y, 2 ≤ w ≤ T, γ ∈ H and ∀0 < y ≤ y, 1 ≤ w ≤ T, γ ∈ H (D7)  

∑umax

ul=0
X(ul)y− ul ,w− 1,t− 1,γ − Sy,w− 1,t− 1,γ −

∑umax

ul=0
X(ul)y,w,t,γ = 0, ∀0 < y ≤ y, 2 ≤ w ≤ t ≤ T, γ ∈ H (D8)  

∑umax

ul=0
X(ul)y− ul ,w,T,γ − Sy,w,T,γ = 0, ∀0 < y ≤ y, 1 ≤ w ≤ T, γ ∈ H (D9)  

∑umax

ul=0
Z(ul)y,w,t,γ +Wy,w− 1,t− 1,γ ≤ 1, ∀0 < y ≤ y, 2 ≤ w ≤ t ≤ T, γ ∈ H (D10)  

∑umax

ul=0

∑

γ
Z(ul)0,1,1,γ = 1 (D11)  

X(ul)y,w,t,γ ≥ Z(ul)y,w,t,γ , ∀0 ≤ ul ≤ umax, 0 ≤ y ≤ y, 1 ≤ w ≤ t ≤ T, γ ∈ H (D12)  

X(ul)y,w,t,γ ≤ MZ(ul)y,w,t,γ ,∀0 ≤ ul ≤ umax, 0 ≤ y ≤ y, 1 ≤ w ≤ t ≤ T, γ ∈ H (D13)  

Sy,w,t,γ ≥ Wy,w,t,γ ,∀0 < y ≤ y, 1 ≤ w ≤ t < T, γ ∈ H (D14)  

Sy,w,t,γ ≤ MWy,w,t,γ ,∀0 < y ≤ y, 1 ≤ w ≤ t < T, γ ∈ H (D15)  

Qt,γ ∈ {0, 1}, ∀1 ≤ t ≤ T, γ ∈ H (D16)  

Wy,w,t,γ ∈ {0, 1}, ∀0 < y ≤ y, 1 ≤ w ≤ t < T, γ ∈ H (D17)  

Z(ul)y,w,t,γ ∈ {0, 1}, ∀0 ≤ ul ≤ umax, 0 ≤ y ≤ y, 1 ≤ w ≤ t ≤ T, γ ∈ H (D18)  

Pt,γ ∈ Z, ∀1 ≤ t ≤ T, γ ∈ H (D19) 

The objective function (D1) consists of the vehicle purchase cost, O&M cost, and salvage value, where A(γ) is the purchase cost of a 
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type-γ vehicle; M(ul)y,w,t,γ the O&M cost of a type-γ vehicle with age w, cumulative utilization y, and present utilization level ul; and 
Fy,w,t,γ the salvage value of a type-γ vehicle with age w and cumulative mileage y. Constraint (D2) specifies that all the demand must be 
met. (D3-15) are flow conservation constraints, where M is a sufficiently large number. Constraints (D16-18) define Qt,γ, Wy,w,t,γ and 
Z(ul)y,w,t,γ as binary variables. Constraint (D19) stipulates that Pt,γ is integer-valued. The definitions of all the other parameters, 
including H and r, are given in Table 1. Discrete values of M(ul)y,w,t,γ and Fy,w,t,γ can be calculated using cost models presented in Section 
4.1. 
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Büyüktahtakın, İ.E., Smith, J.C., Hartman, J.C., Luo, S., 2014. Parallel asset replacement problem under economies of scale with multiple challengers. Eng. Econ. 59 
(4), 237–258. 

Boyd, S., Vandenberghe, L., 2004. Convex optimization. Cambridge University Press. 
CARB, 2008. Technical Support Document: Proposed Regulation for In-use On-road Diesel Vehicles: Appendix J, Mobile Sources Control Division, Heavy-Duty Diesel 

In-Use Strategies Branch. California Air Resources Board. 
Chen, H., Gu, W., Cassidy, M.J., Daganzo, C.F., 2015. Optimal transit service atop ring-radial and grid street networks: a continuum approximation design method and 

comparisons. Transp. Res. B: Methodol. 81, 755–774. 
Chen, P.W., Nie, Y.M., 2018. Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure. Transp. Res. E: Logist. Transp. Rev. 110, 

71–89. 
Childress, S., Durango-Cohen, P., 2005. On parallel machine replacement problems with general replacement cost functions and stochastic deterioration. Nav. Res. 

Logist. 52 (5), 409–419. 
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