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Nonconvex and Nonsmooth Sparse Optimization via
Adaptively Iterative Reweighted Methods

Hao Wang Fan Zhang Qiong Wu Yaohua Hu Yuanming Shi

Abstract—We propose a general formulation of nonconvex
regularization problems with convex set constraint, which can
take into account most existing types of nonconvex regulariza-
tion terms, bringing strong applicability to a wide range of
applications. We design an algorithmic framework of iteratively
reweighted algorithms for solving the proposed nonconvex regu-
larization problems, which solves a sequence of weighted convex
regularization problems with iteratively updated weights. We also
provide global convergence under loose assumptions. This makes
our method a tool for a family of various reweighted algorithms.
The effectiveness and efficiency of our proposed formulation and
the algorithms are demonstrated in numerical experiments for
various regularization problems.

Index Terms—nonconvex regularization, nonsmooth regular-
ization, iteratively reweighted methods, nonconvex regularization

I. INTRODUCTION

The central focus of this paper is the solution of a wide class
of nonconvex regularized optimization problems, which have
been becoming a prevalent research topic in many disciplines
of applied mathematics and engineering. Indeed, there has
been a tremendous increase in the number of application
areas in which nonconvex regularization algorithms have been
employed, such as machine learning [1], [2], telecommuni-
cations [3], image reconstruction [4] and signal processing
[5]. This is mainly because of its superior ability to reduce
the complexity of a system, improve the generalization of
the prediction performance, or enhance the robustness of
the solution, compared with traditional convex regularization
techniques.

Despite their wide application, nonconvex regularization
problems are computationally difficult to solve in most cases
due to the nonconvex and nonsmooth nature of the reg-
ularization terms. Iteratively reweighted method (IRWA) is
one of the most popular methods for handling the con-
vex/nonconvex regularization problems, which approximates
the nonconvex regularization problem by a sequence of convex
subproblems. Another issue caused by the nonconvex and
nonsmooth regularization is the difficulty in characterizing
the optimality condition as well as the convergence analysis,
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since the traditional analysis for smooth problems cannot be
directly used. Therefore, many existing reweighted algorithms
focus on showing the convergence to the optimal solution
of the relaxed regularization problems. A critical aspect of
any implementation of such an approach is the selection of
the smoothing parameters. As been explained in [6], large
relaxation parameters will smooth out many local minimizers,
whereas small values can make the subproblems difficult to
solve and the algorithm too quickly get trapped into local
minimizers. Therefore, warm-start techniques are used to solve
a sequence of subproblems with relaxation parameters driven
from relatively large value to zero. Some other work focuses
on developing dynamic relaxation parameter updating strategy
[7] for convex regularization problems.

In this paper, we propose a general framework of Adaptively
Iterative Reweighted (AIR) algorithm for solving the noncon-
vex and nonsmooth sparse optimization problems, along with
an analysis of the convergence to the optimal solution of the
original problem. The most related paper to our work may be
the algorithm proposed in [7] for convex problems on convex
set and [8], [9] for unconstrained `p regularization problems.
This makes our work different from that in [7].

Overall, the contributions in this paper can be summarized
as the following.
• To propose a general problem formulation that can take

into account most existing types of nonconvex regulariza-
tion terms. This formulation allows for different common
regularization terms, group structure, as well as a general
convex set constraint, leading to strong applicability to a
wide range of applications.

• To develop a general algorithmic framework of iteratively
reweighted algorithms, so that the nonconvex regulariza-
tion problem can be attacked by solving a sequence of
simple subproblems.

• First-order optimality condition for the regularization
problem and convergence analysis of the proposed algo-
rithms are also provided under loose assumptions, making
our method a tool for a family of various reweighted
algorithms.

A. Organization

In the remainder of this section, we outline our notation and
introduce various concepts that will be employed throughout
the paper. In § II, we describe our problem of interests and ex-
plain its connection to various existing types of regularization
techniques. In § III, we describe the detail of our proposed
AIR and apply it to different types of nonconvex regularizers.
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The optimality condition and the global convergence of the
proposed algorithm in different situations are provided in § IV.
We discuss implementations of our methods and the results
of numerical experiments in in § V. Concluding remarks are
provided in § VI.

B. Notation and preliminaries
Much of the notation that we use is standard, and when it

is not, a definition is provided. For convenience, we review
some of this notation and preliminaries here.

Let Rn be the space of real n-vectors, Rn
+ be the non-

negative orthant of Rn, Rn
+ = {x ∈ Rn : x ≥ 0} and

the nonpositive orthant {x ∈ Rn : x ≤ 0}. Moreover, let
Rn

++ be its interior Rn
++ := {x ∈ Rn : x > 0}. The set of

m×n real matrices is denoted by Rm×n. For a pair of vectors
(u,v) ∈ Rn×Rn, their inner product is written as 〈u,v〉. The
set of nonnegative integers is denoted by N. Suppose Rn be the
product space of subspaces Rni , i = 1, . . . ,m with

∑m
i=1 ni =

n, i.e., it takes decomposition Rn = Rn1 × . . .×Rnm . Given
a closed convex set X ⊂ Rn, the normal cone to X at a point
x̄ ∈ X is given by

N(x̄|X) := {z|〈z,x− x̄〉 ≤ 0, ∀x ∈ X}.

The characteristic function of X is defined as

δ(x|X) =

{
0 if x ∈ X,
+∞ otherwise.

The indicator operator I(·) is an indicator function that takes
a value of 1 if the statement is true and 0 otherwise.

For a given α ∈ R, denote the level set of f as

L(α; f) := {x ∈ Rn|f(x) ≤ α}.

In particular, we are interested in level set with an upper bound
reachable for f :

L(f(x̂); f) := {x ∈ Rn|f(x) ≤ f(x̂)}.

The subdifferential of a convex function f at x is a set defined
by

∂f(x) = {z ∈ Rn|f(y)− f(x) ≥ 〈z,y − x〉,∀y ∈ Rn}.

Every element z ∈ ∂f(x) is referred to as a subgradient. To
characterize the optimality conditions for nonsmooth prob-
lems, we need to introduce the concepts of Fréchet subd-
ifferentiation. In fact, there are a variety of subdifferentials
known by now including limiting subdifferentials, approximate
subdifferentials and Clarke’s generalized gradient, many of
which can be used here for deriving the optimality conditions.
The major tool we choose in this paper is the Fréchet sub-
differentials, which were introduced in [10], [11], [12] and
discussed in [13].

Definition 1 (Fréchet subdifferential). Let f be a function from
a real Banach space into an extended real line R̄ = R∪{+∞},
finite at x. The Fréchet subdifferential of f at x, denoted as
∂F f(x), is the set

∂F f(x) ={
x∗ ∈ Rn : lim inf

u→x

f(u)− f(x)− 〈x∗,u− x〉
‖u− x‖

≥ 0

}
.

Its elements are referred to as Fréchet subgradients.

For a composite function r ◦ c(x), where c : Rn → R and
r : R → R, denote ∂F r ◦ c(x) as the Fréchet subdifferential
of r with respect to x, ∂F r(c(x)) (or simply ∂F r(c)) as the
Fréchet subdifferential of r with respect to c, and r′(c(x)) (or
simply r′(c)) as the derivative of r with respect to c(x) if r
is differentiable at c(x).

II. PROBLEM STATEMENT AND ITS APPLICATIONS

In this section, we propose a unified formulation of the
constrained nonconvex and nonsmooth sparse optimization
problem, and list the instances in some prominent applications.

A. Problem Statements

We consider the following nonconvex and nonsmooth sparse
optimization problem

min
x∈Rn

f(x) + Φ(x)

s.t. x ∈ X,
(1)

where f : Rn → R is smooth and convex and X ⊂ Rn

is a closed convex set. Here Φ = r ◦ c(x) = r(c(x))
is a nonconvex and nonsmooth composite function with c
convex and r nonconvex. This type of problem is a staple
for many applications in signal processing [14], [15], wireless
communications [16], [17] and machine learning [18], [19].
For example, in signal processing, f may be the mean-squared
error for signal recovery, X may be a nonnegative constraint
for signal [20]; in wireless communications, f may represent
the system performance such as transmit power consumption,
X may be the transmit power constraints and quality of service
constraints [21]; in machine learning, f can represent the
convex loss function, such as the cross-entropy loss for logistic
regression [22].

In a large amount of applications, the being recovered vector
x is expected to have some sparse property in a structured
manner. To handle this type of structured sparsity, various
types of group-based Φ has been studied in [23]. Consider
a collection of groups G = {G1,G2, · · · ,Gm} with |Gi| = ni.
The union over all groups covers the full index set and∑m

i=1 ni = n. The structured vector x can be written as

x = [x1, x2, · · · , xn1︸ ︷︷ ︸
xTG1

, · · · , xn−nm+1, · · · , xn︸ ︷︷ ︸
xTGm

]T .

With these ingredients, the associated group-based function Φ
takes the form

Φ(x) =

m∑
i=1

ri(ci(xGi)),

where ci : Rni → R is convex and ri : R → R is concave
for each i. Throughout this paper, we make the following
assumptions about f , ri, ci and X .

Assumption 1. The functions f , ri, ci, i = 1, . . . ,m, and set
X are such that

(i) X is closed and convex.
(ii) f is smooth and convex on X .
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(iii) ri is smooth on R \ {0}, concave and strictly increasing
on R+ with ri(−c) = ri(c) and ri(0) = 0, and is Fréchet
subdifferentiable at 0.

(iv) ci is convex with ci(xi) ≥ 0,∀x ∈ X where the equality
holds if and only if xi = 0.

Remark 1. The the symmetry of ri is not a requirement,
since ci(x) ≥ 0 is assumed always true; the purpose of this
assumption is to simplify the analysis.

Most existing sparse optimization problems can be reverted
to (1). In next subsection, we describe the important ap-
plications of problem (1) and explain the specific forms of
the functions f , ri, ci in the example. Based on different
formulations of the composite function Φ(x), there are a great
deal of nonconex sparsity-inducing techniques to promote
sparse solutions, such as the approximations of the `0 norm
of x.

B. Sparsity-inducing Functions

Many applications including signal processing, wireless
communications and machine learning involve the minimiza-
tion of the `0-norm of the variables ‖x‖0, i.e., the number
of nonzero components in x. However, this is regarded as
an NP-hard problem, thus various approximations of `0 norm
have been proposed. By different choice of the formulation ri
and ci, there exist many approximations to `0 norm, so that a
smooth approximate problem of (1) is derived with

‖x‖0 ≈ Φ(x) =

n∑
i=1

ri(ci(xi)).

In the following discussion, we only provide the expression
of ri on R+, since by Assumption 1, ri can be defined
accordingly on R−.

The first instance is the feature selection algorithm via
concave minimization proposed by Bradley and Mangasarian
[24] with approximation

‖x‖0 ≈
n∑

i=1

1− e−p|xi| with p > 0, (EXP)

where p is chosen to be sufficiently large to promote sparse
solutions. The concavity of this function leads to a finitely
terminating algorithm and a more accurate representation of
the feature selection algorithm. It is reported that the algo-
rithms with this formulation obtained a reduction in error with
selected features fewer in number and they are faster compared
to traditional convex feature selection algorithms. For example,
we can choose

ci(xi) = |xi|, ri = 1− e−pci or ci = x2
i , ri = 1− e−p

√
ci ,

so that this approximation can be viewed as a specific formu-
lation of Φ.

The second instance, which is widely used in many applica-
tions currently, is to approximate the `0 norm by `p quasi-norm
[25]

‖x‖0 ≈
n∑

i=1

|xi|p with p ∈ (0, 1) (LPN)

and p is chosen close to 0 to enforce sparsity in the solutions.
Based on this approximation, numerous applications and al-
gorithms have emerged. Here we can choose

ci(xi) = |xi|, ri(ci) = cpi or ci(xi) = x2
i , ri(ci) = c

p/2
i

in the formulation of Φ.
Another option for approximating `0 norm, proposed in

[26], is to use the log-sum approximation

‖x‖0 ≈
n∑

i=1

log (1 + p|xi|) with p > 0, (LOG)

and setting p sufficiently large leads to sparse solutions. We
can choose

ci(xi) = |xi|, ri(ci) = log (1 + cpi ),

or
ci(xi) = x2

i , ri(ci) = log(1 + c
p/2
i ).

The approximation technique proposed in [25] suggests

‖x‖0 ≈
n∑

i=1

|xi|
|xi|+ p

, with p > 0, (FRA)

and p is required to be sufficiently small to promote sparsity.
One can use

ci(xi) = |xi|, ri(ci) =
ci

ci + p
,

or

cixi = x2
i , ri(ci) =

√
ci√

ci + p
.

Candès et al. propose an approximation to the `0 norm in
[5]

‖x‖0 ≈
n∑

i=1

arctan(p|xi|), with p > 0, (TAN)

and sufficiently small p can cause sparsity in the solution. The
function arctan is bounded above and `0-like. It is reported
that this approximation tends to work well and often better
than the log-sum (LOG). In this case, we can choose

ci(xi) = |xi|, ri(ci) = arctan (pci),

or
ci(xi) = x2

i , ri(ci) = arctan (p
√
ci).

Another nonconvex regularization technique needs to be
mentioned is the SCAD penalty proposed in [27], which
require the derivative of φi to satisfy

ci(xi) = |xi|, φ′i(ci) = λ{I(ci ≤ λ) +
(aλ− ci)+

(a− 1)λ
I(ci > λ)},

(SCAD)
for some a > 2, where often a = 3.7 is used. Alternatively,
the MCP [28] penalty uses

ci(xi) = |xi|, φ′i(ci) = (aλ− ci)+/a for some a ≥ 1.
(MCP)
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Remark 2. These sparsity-inducing functions can also take
into account group structures. For example, `p,q-norm with
p ≥ 1 and 0 < q < 1 is defined as

‖x‖p,q =

(
m∑
i=1

‖xGi‖qp

)1/q

.

Therefore, we can choose

Φ(x) = ‖x‖qp,q, with ci(xGi) = ‖xGi‖p and ri(ci) = cqi .

C. Problem Analysis

There have been various literatures for solving the noncon-
vex and nonsmooth sparse optimization problems. In [29], [30]
Wotao Yin et al. have considered solve the sparse signal recov-
ery problem by using the unconstrained nonconvex `p norm
model, proposed the associated iterative reweighted uncon-
strained `p algorithm and provided the convergence analysis
for the reweighted `2 case. In [8] Zhaosong Lu have provied
the first-order optimality condition for the unconstrained non-
convex `p norm problem, and convergence analysis for both
`1 and `2 types reweighted algorithm. However, it is not
clear for analyzing the first-order optimalizty condition for
the constrained nonconvex and nonsmooth sparse optimization
problem (1). In order to address this issue, we propose the AIR
algorithm in § III, provide the first-order optimality condition
for (1) and the convergence analysis for the AIR algorithm in
§ IV.

III. ADAPTIVELY ITERATIVE REWEIGHTED ALGORITHM

In this section, we present the adaptively iterative
reweighted algorithm for minimizing the nonconvex and non-
smooth sparse optimization problem (1).

A. Smoothing Method

In this subsection, we show how we deal with the nons-
moothness. Before proceeding, we define the following func-
tions for x ∈ X . Problem (1) can be rewritten as

min
x

J0(x) := f(x) +
∑
i∈G

ri(ci(xi)) + δ(x|X). (2)

Adding relaxation parameter ε ∈ Rm
+ to smooth the (possibly)

nondifferentiable ri, we propose the relaxed problem as

min
x

J(x; ε) := f(x) +
∑
i∈G

ri(ci(xi) + εi) + δ(x|X), (3)

and in particular, J(x; 0) = J0(x). Here we extend the
notation of φi and use φi(xi; εi) to denote the relaxed reg-
ularization function, so that

φi(xi; εi) := ri(ci(xi) + εi),

Φ(x; ε) :=
∑
i∈G

φi(xi; εi) and φi(xi) = φi(xi; 0).

The following theorem shows that the pointwise convergence
of J(x; ε) to J0(x) on X as ε→ 0.

Theorem 1. For any x ∈ X and ε ∈ R++, it holds true that

J0(x) ≤ J(x; ε)

≤ J0(x) +
∑

ci(xi)=0

ri(εi) +
∑

ci(xi)>0

r′(ci(xi))εi.

This implies that J(x; ε) pointwise convergence to J0(x) on
X as ε→ 0.

Proof. The first inequality is trivial, so we only have to show
the second inequality. Since r( · ) is concave on R+, we have

ri(z) ≤ ri(z0) + r′i(z0)(z − z0) for any z, z0 ∈ R+, (4)

Therefore,

J(x; ε) =f(x) +
∑
i∈G

ri(ci(xi) + εi)

=f(x) +
∑

ci(xi)=0

ri(εi) +
∑

ci(xi)>0

ri(ci(xi) + εi)

≤f(x) +
∑

ci(xi)=0

ri(εi)

+
∑

ci(xi)>0

ri(ci(xi)) +
∑

ci(xi)>0

r′(ci(xi))εi

=J0(x) +
∑

ci(xi)=0

ri(εi) +
∑

ci(xi)>0

r′(ci(xi))εi,

where the inequality follows by (4). This completes the first
statement.

On the other hand, since

lim
ε→0

∑
ci(xi)=0

ri(εi) +
∑

ci(xi)>0

r′(ci(xi))εi = 0,

it holds
lim
ε→0

J(x; ε) = J0(x), x ∈ X.

B. Adaptively Iterative Reweighted Algorithm
A convex and smooth function G(x̃,ε̃)(x) can be derived as

an approximation of J(x̃, ε̃) at x̃ by linearizing ri at ci(x̃i)+ε̃i
to have the subproblem

G(x̃,ε̃)(x) := f(x) +
∑
i∈G

wi(x̃i, ε̃i)ci(xi) + δ(x|X), (5)

where the weights are given by

wi(x, εi) = r′i(ci(xi) + εi), i ∈ G.

Note that the relaxation parameter can be simply chosen as
ε = 0 if r is smooth at 0.

At iterate xk, the new iterate is obtained by

xk+1 ∈ arg min
x
G(xk,εk)(x).

Therefore, xk+1 satisfies optimality condition

0 ∈ ∂G(xk,εk)(x
k+1).

The relaxation parameter is selected such that εk+1 ≤ εk and
possibly driven to 0 as the algorithm proceeds.

Our proposed Adaptively Iterative Reweighted algorithm for
nonconvex and nonsmooth sparse optimization problems is
stated in Algorithm 1.
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Algorithm 1 AIR: Adaptively Iterative Reweighted

1: (Initialization) Choose x0 ∈ X and ε0 ∈ Rn
++. Set k = 0.

2: (Subproblem Solution) Compute new iterate

xk+1 ∈ arg min
x∈X

G(xk,εk)(x).

3: (Reweighting) Choose εk+1 ∈ (0, εk].
4: Set k ← k + 1. Go to Step 2.

C. Iterative Reweighter `1 Algorithm & `2 Algorithm

In this subsection, we describe the details of how to con-
struct G(x̃,ε̃)(x) for the nonconvex and nonsmooth sparse-
inducing functions (EXP)–(MCP) in § II. Notice that the
relaxation parameter εi could set as 0 if lim

ci→0+
r′i(ci) < +∞.

For simplicity, denote w̃i = wi(x̃i, ε̃i). In Table I, we provide
the explicit forms of the weights w̃i at (x̃i, ε̃i) when choosing
ci(xi) = |xi|1 and ci(xi) = x2

i for each case, so that
the corresponding subproblem is an `1-norm sparse-inducing
problem and an `2-norm sparse-inducing problem

G(x̃,ε̃)(x) = f(x) +
∑
i∈G

w̃i|xi|+ δ(x|X) and

G(x̃,ε̃)(x) = f(x) +
∑
i∈G

w̃ix
2
i + δ(x|X).

For each regularizer, we consider ci(xi) = |xi| in the first row
and ci(xi) = x2

i in the second row. We also list the properties
of the ri with ci → ∞ and its side-derivative of ri at 0 in
the fourth and fifth columns. This is because these properties
can lead to different behaviors of each AIR as shown in the
theoretical analysis.

TABLE I: Different AIR weights based on different choice of
ri and ci.

φi ri(ci) w̃i ri(∞) r′i(0+)

(EXP) 1− e−pci pe−p(|x̃i|+ε̃i) <∞ <∞

1− e−p
√
ci pe

−p
√
x̃2
i
+ε̃i

2
√
x̃2i+ε̃i

<∞ <∞

(LPN) cpi p(|x̃i|+ ε̃i)
p−1 +∞ +∞

c
p/2
i

p
2
(x̃2i + εi)

p
2
−1 +∞ +∞

(LOG) log(1 + pci)
p

1+p|x̃i|
+∞ <∞

log(1+p
√
ci)

p

2
√
x̃2i+ε̃i(1+p

√
x̃2i+ε̃i)

+∞ +∞

(FRA)
ci
ci+p

p
(|x̃i|+p)2

<∞ <∞
√
ci√
ci+p

p

2
√
x̃2i+εi(

√
x̃2i+εi+p)

2
<∞ +∞

(TAN)
ci
ci+p

p
1+p2(|x̃i|)2

<∞ <∞

c
p/2
i

p

2
√
x̃2i+εi(1+p

2(x̃2i+εi))
<∞ +∞

As for SCAD and MCP, the explicit forms of ri are not
necessary to be known, but it can be easily verified using
r′i that Assumption (1) still holds true. The reweighted `1
subproblem for SCAD has weights

w̃i = λ{I(|x̃i|+ ε̃i ≤ λ)+
(aλ− |x̃i| − ε̃i)+

(a− 1)λ
I(|x̃i|+ ε̃i > λ)}.

The weights of reweighted `2 subproblem for SCAD are

w̃i =
λ

2
√
x̃2
i + εi)

{I(
√
x̃2
i + εi) ≤ λ)

+
(aλ−

√
x̃2
i + εi))+

(a− 1)λ
I(
√
x̃2
i + εi) > λ)}.

As for MCP, the reweighted `1 subproblem has weights

w̃i = (aλ− |x̃i| − ε̃i)+/a,

and the weights for reweighted `2 subproblem are

w̃i = (aλ−
√
x̃2
i + εi)+/a.

IV. CONVERGENCE ANALYSIS

In this section, we analyze the global convergence of our
proposed AIR. First we provide a unified first-order optimality
condition for the constrained nonconvex and nonsmooth sparse
optimization problem (1). Then we establish the global con-
vergence anlaysis followed by the existence of cluster points.

For simplicity, denote wk
i = wi(x

k, εki ),wk
i = wk

i eni ,
wk = [wk

1 ;wk
2 ; . . . ;wk

m], and Wk = diag(wk), and so forth.

A. First-order Optimality Condition

In this subsection, we derive conditions to characterize the
optimal solution of (1). Due to the nonconvex and nonsmooth
nature of the regularizer, we use Fréchet subdifferentials as
the major tool in our analysis. Some important properties of
Fréchet subdifferentials derived in [13] that will be used in this
paper are summarized below. Part (i)-(iv) are Proposition 1.1,
1.2, 1.10, 1.13 and 1.18 in [13], respectively.

Proposition 1. The following statements about Fréchet subd-
ifferentials is true.

(i) If f is differentiable at x with gradient ∇f(x), then
∂F f(x) = {∇f(x)}.

(ii) If f is convex, then ∂F f(x) = ∂f(x).
(iii) If f is Fréchet subdifferential at x and attains local

minimum at x, then

0 ∈ ∂F f(x).

(iv) Let r(·) be Fréchet subdifferentiable at c∗ = c(x∗) with
c(x) being convex, then r ◦ c(x) is Fréchet subdifferen-
tiable at x∗ and that

y∗∂c(x∗) ⊂ ∂F r ◦ c(x∗)

for any y∗ ∈ ∂F r(c∗).
(v) N(x|X) = ∂F δ(x|X) if X is closed and convex.

The properties of Fréchet subdifferentials in Proposition 1
can be used to characterize the optimal solution of (1).
The following theorem is straightforward from Proposition 1,
which describes the necessary optimality condition of problem
(1).

Theorem 2. If (3) attains a local minimum at x, then it holds
true that

0 ∈ ∂FJ(x; ε) = ∇f(x) + ∂Fφ(x; ε) +N(x|X). (6)
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Next we shall further investigate the properties of
∂Fφ(x; ε).

Lemma 1. Suppose Assumption 1 is satisfied. Then it holds
that

∇f(x) +
∏
i∈G

yi∂ci(xi) +N(x|X) ⊂ ∂FJ0(x)

for any yi ∈ ∂F ri(ci(xi) + εi).

Proof. Note that φ(x; ε) takes structure

φ(x; ε) =
∑
i∈G

φi(xi; εi) with φi(xi; εi) = ri(ci(xi) + εi).

Thus we can write the Fréchet subdifferentials of φ

∂Fφ(x; ε) =
∏
i∈G

∂Fφi(xi; εi)

= ∂Fφ1(x1; ε1)× . . .× ∂Fφm(xm; εm),

meaning that

∂FJ(x; ε) = ∇f(x) +
∏
i∈G

∂Fφi(xi; εi) +N(x|X).

On the other hand, every ci is assumed to be convex. From
Proposition 1, we know that

yi∂ci(xi) ⊂ ∂Fφi(xi; εi), ∀yi ∈ ∂F ri(ci(xi) + εi),

completing the proof.

If ci(xi) > 0 or εi > 0, ri is differentiable at ci + εi so that
∂Fφi(xi; εi) = r′i(ci(x

∗
i ) + εi)∂ci(x

∗) by Proposition 1. Of
particular interests are the properties of ∂F ri(0). Notice that
r′i is decreasing on R++. We investigate ∂Fφi(xi; εi) bases
on the limits (possibly infinite) in the lemma below.

Lemma 2. Suppose Assumption 1 is satisfied. Let y∗i :=
lim

ci→0+
r′i(ci) ≥ 0. It holds true that

∂F ri(ci) = r′i(ci) if ci > 0

∂F ri(0) = [−y∗i , y∗i ], if y∗i < +∞,
∂F ri(0) = R, if y∗i = +∞,

so that
1) If ci(x∗) + εi > 0,

∂Fφi(xi; εi) = r′i(ci(x
∗
i ) + εi)∂ci(x

∗);

2) If ci(x∗) + εi = 0, y∗i < +∞,

yi∂ci(x
∗) ⊂ ∂Fφi(xi; εi), ∀yi ∈ [−y∗i , y∗i ];

3) If ci(x∗) + εi = 0, y∗i = +∞,

yi∂ci(x
∗) ⊂ ∂Fφi(xi; εi), ∀yi ∈ R.

Proof. The statement about the case that ci(x∗) > 0 is obvi-
ously true. We only need consider the case that ci(x∗) = 0.
Notice that

lim inf
ci→0+

ri(ci)− ri(0)

ci
= lim inf

0<c̃i<ci
ci→0+

r′i(c̃i) = r′i(0+) = y∗i ≥ 0

by Assumption 1(ii). It can be easily verified by [13, Propo-
sition 1.17] that

∂F ri(0) =

{
[−y∗i , y∗i ] if y∗i < +∞,
R if y∗i = +∞.

It then follows from Proposition 1(iv) that{
yi∂ci(x

∗) ⊂ ∂Fφi(xi; εi),∀yi ∈ [−y∗i , y∗i ], if y∗i < +∞,
yi∂ci(x

∗) ⊂ ∂Fφi(xi; εi),∀yi ∈ R, if y∗i = +∞.

Note that we only require ε ∈ R+. If ε = 0, all the results
we have derived for J( · ; ε) in this subsection also hold for
J0.

B. Global Convergence of The AIR Algorithm

In this subsection, we analyze the global convergence of
AIR under Assumption 1. First of all, we need to show that
the subproblem always has a solution. For ε̂ ∈ R++, the
subproblem is obviously well-defined on X since the weights
wk

i = r′i(x
k
i + εki ) < +∞. To guarantee the proposed AIR is

well defined, we must show the existence of the subproblem
solution. We have the following lemma about the solvability
of the subproblems.

Lemma 3. For εk ∈ R++, arg minxG(xk,εk)(x) is nonempty,
so that xk+1 is well-defined.

Proof. Pick x̃ ∈ X and let α := G(xk,εk)(x̃). The level set

{x ∈ X|G(xk,εk)(x) ≤ G(xk,εk)(x̃)}

must be nonempty since it contains x̃, and bounded due to the
coercivity of wk

i ci, i ∈ G and the lower boundedness of f on
X . This completes the proof by [31, Theorem 4.3.1].

We have the following key facts about solutions to (5),
which implies that the new iterate xk+1 causes a decrease
in the model J(x, εk).

Lemma 4. Let x̃ ∈ X , ε̂, ε̃ ∈ Rm
++ with ε̂ ≤ ε̃ and

w̃i = wi(x̃i, ε̃i) for i ∈ G, W̃ := diag(w̃). Suppose that
x̂ ∈ arg minx∈X Ĝ(x̃,ε̃)(x). Then, for any k, it holds true that

J(x̂, ε̂)− J(x̃, ε̃) ≤ G(x̃,ε̃)(x̂)−G(x̃,ε̃)(x̃) ≤ 0.

Proof. First of all, x̂ ∈ arg minxG(x̃,ε̃)(x), so that
G(x̃,ε̃)(x̂)−G(x̃,ε̃)(x̃) ≤ 0. Hence

J(x̂; ε̂) ≤J(x̂; ε̃) = f(x̂) +
∑
i∈G

ri(ci(x̂i) + ε̃i)

≤f(x̃) + f(x̂)− f(x̃) +
∑
i∈G

ri(ci(x̃) + ε̃i)

+
∑
i∈G

w̃i(ci(x̂)− ci(x̃))

=J(x̃; ε̃) + [G(x̃,ε̃)(x̂)−G(x̃,ε̃)(x̃)],

where the second inequality follows from (4).

Lemma 4 indicates J(x; ε) is monotonically decreasing for
any x0 ∈ X, ε0 ∈ Rm. Define the model reduction

∆G(xk,εk)(x
k+1) = G(xk,εk)(x

k)−G(xk,εk)(x
k+1).
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The next lemma indicates this model reduction converges to
zero, which naturally follows from Lemma 4.

Lemma 5. Suppose x0 ∈ X , ε0 ∈ Rm
++, and {xk} are

generated by AIR. The following statements hold true
(i) The sequence {xk} ⊂ L(J(x0; ε0); J0).

(ii) lim
k→∞

∆G(xk,εk)(x
k+1)→ 0.

Proof. Part (i) follows naturally from the fact that

J0(xk) ≤ J(xk, εk) ≤ J(x0, ε0),

for all k ∈ N by Lemma 4.
For part (ii), by Assumption 1, J̃ := inf

k
J(xk; εk) > −∞.

It follows from Lemma 4, that

J(xk+1, εk+1) ≤ J(xk, εk)−∆G(xk,εk)(x
k+1).

Summing up both sides of the above inequality from 0 to t,
we have

0 ≤
t∑

k=1

∆G(xk,εk)(x
k+1)

≤ J(x0, ε0)− J(xt+1, εt+1) ≤ J(x0, ε0)− J̃ .

Letting t→∞, we know part (ii) holds true.

1) Convergence Analysis for Bounded Weights: We first
analyze the convergence when εk → ε∗ ∈ R++ or
lim

ci→0+
r′i(ci) < +∞, i ∈ G. In this case, wk

i → w∗i < +∞ if

xk
i → 0. The “limit subproblem” takes form

min
x

G̃(x̃,ε̃)(x) := f(x) +
∑
i∈G

w̃ici(xi) + δ(x|X). (7)

The existence of the solution to (7) is shown in the next lemma.

Lemma 6. For ε̃ ∈ R++, the optimal solution set of (7) is
nonempty. Furthermore, if x̃ is an optimal solution of (7), then
x̃ also satisfies the first-order optimality condition of (3).

Proof. Notice that x̃ is feasible for (7) by the definition of G̃.
The level set

{x ∈ X | G̃(xk,εk)(x) ≤ G̃(xk,εk)(x̃)}

must be nonempty since it contains x̃ and bounded due to the
coercivity of w̃ici, i ∈ G and the lower boundedness of f on
X . This completes the proof by [31, Theorem 4.3.1].

Therefore, any optimal solution x must satisfies

0 = ∇f(x)i + zi + νi, i ∈ G

where ν ∈ N(x|X), zi = w̃iξi with

w̃i = ri(ci(x̃i) + ε̃i), ξi ∈ ∂ci(xi), i ∈ G.

The KKT conditions thus can be rewritten as following by
Lemma 2

0 = ∇f(x)i + w̃iξi + νi,

w̃i ∈ ∂F ri(ci(x̃i) + ε̃i), ξi ∈ ∂ci(xi),

where i ∈ G. If x̃ is an optimal solution, then we have

0 ∈ ∇f(x̃) + ∂Fφ(x̃; ε̃) +N(x̃|X),

implying x̃ is optimal for J( · ; ε̃).

Now we are ready to prove our main result in this section.

Theorem 3. Suppose {xk}∞k=0 is generated by AIR with initial
point x0 ∈ X and relaxation vector ε0 ∈ Rm

+ with εk → ε∗.
Assume either

ε∗i > 0 or r′(0+) < +∞, i ∈ G

is true. Then if {xk} has any cluster point, it satisfies the
optimality condition (6) for J(x; ε∗).

Proof. Let x∗ be a cluster point of {xk}. From Lemma 7, it
suffices to show that x∗ ∈ arg minx G̃(x∗,ε∗)(x). We prove
this by contradiction. Assume that there exists a point x̄ such
that ε := G(x∗,ε∗)(x

∗)−G(x∗,ε∗)(x̄) > 0. Suppose {xk}S →
x∗, S ⊂ N. Based on Lemma 5(ii), there exists k1 > 0, such
that for all k > k1

G(xk,εk)(x
k)−G(xk,εk)(x

k+1) ≤ ε/4. (8)

To derive a contradiction, notice that xk
i
S→ x∗i and wk

i
S→ w∗i .

There exists k2 such that for all k > k2, k ∈ S,∑
i∈G

(w∗i − wk
i )ci(x̄i) > −ε/12,∑

i∈G
(wk

i ci(x
k
i )− w∗i ci(x∗i )) > −ε/12,

f(xk)− f(x∗) > −ε/12.

Therefore, for all k > k2, k ∈ S,

G(x∗,ε∗)(x
∗)−G(xk,εk)(x̄)

= [f(x∗) +
∑
i∈G

w∗i ci(x
∗
i )]− [f(x̄)

+
∑
i∈G

[w∗i − (w∗i − wk
i )]ci(x̄i)

= [G(x∗,ε∗)(x
∗)−G(x∗,ε∗)(x̄)] +

∑
i∈G

(w∗i − wk
i )ci(x̄i),

≥ [G(x∗,ε∗)(x
∗)−G(x∗,ε∗)(x̄)]− ε/12

≥ ε− ε/12 = 11ε/12,

and that
G(xk,εk)(x

k)−G(x∗,ε∗)(x
∗)

= [f(xk) +
∑
i∈G

wk
i ci(x

k
i )]− [f(x∗) +

∑
i∈G

w∗i ci(x
∗
i )]

≥ − ε/6
Hence, for all k > max(k1, k2), k ∈ S, it holds that

G(xk,εk)(x
k)−G(xk,εk)(x̄)

=G(xk,εk)(x
k)−G(x∗,ε∗)(x

∗) +G(x∗,ε∗)(x
∗)−G(xk,εk)(x̄)

=11ε/12− ε/6 = 3ε/4,

contradicting with (8). Therefore, x∗ ∈ arg minx G̃(x∗,ε∗)(x).
By Lemma 6, x∗ satisfies the first-order optimality for (3).

Remark 3. The convexity of f is not necessary if xk+1

is found as the global minimizer of (3). In this case, the
global convergence we have derived so far can be modified
accordingly, and in the statement of Lemma 7, a global
minimizer x̃ of (9) implies its optimality of (3).
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2) Convergence Analysis for Degenerated Weights: We
have shown the convergence of AIR with fixed ε. By Theo-
rem 1, we can choose sufficiently small ε and minimize J(·; ε)
instead of J0 to obtain an approximate solution. However,
as also shown by Theorem 1, J(·; ε) converges to J0 only
pointwisely. It then may be difficult to assert that the minimizer
of J(·; ε) is sufficiently close to the minimizer of J0 for given
ε. Therefore, we consider to minimize a sequence of J(·; ε)
with ε driven to 0. We analyze the global convergence of AIR
in this case with ci(xi) = ‖xi‖1. Notice that

∂ci(0) = {ξi ∈ Rni | ‖ξi‖∞ ≤ 1}.

As the algorithm proceeds, of particular interest is the
properties of the “limit subproblem” as the (sub)sequence
of iterates converges. Notice that it may happen wk

i → ∞
if xk

i → 0 and εki → 0, so that G may be not well-
defined. Therefore we consider an alternative form of the
“limit subproblem” for ε̃ ∈ Rm

+

min
x

G̃(x̃,ε̃)(x) := f(x) +
∑

i∈N (x̃,ε̃)

w̃ici(xi) + δ(x|X),

s.t. xi = 0, i ∈ A(x̃, ε̃),
(9)

where A(x̃, ε̃) := {i | x̃i = 0, ε̃i = 0} and N (x̃, ε̃) :=
G \ A(x̃, ε̃). The existence of the solution to (9) is shown
in the next lemma.

Lemma 7. For ε̃ ∈ R+, the optimal solution set of (9) is
nonempty. Furthermore, if x̃ is an optimal solution of (9), then
x̃ also satisfies the first-order optimality condition of (3).

Proof. Notice that x̃ is feasible for (9) by the definition of G̃.
The level set

{x ∈ X | G̃(xk,εk)(x) ≤ G̃(xk,εk)(x̃); xi = 0, i ∈ A(x̃, ε̃)}

must be nonempty since it contains x̃ and bounded due to the
coercivity of w̃ici, i ∈ G and the lower boundedness of f on
X . This completes the proof by [31, Theorem 4.3.1].

Obviously Slater’s condition holds at any feasible point of
(9). Therefore, any optimal solution x must satisfies the KKT
conditions

0 = ∇f(x)i + zi + νi, i ∈ G

with ν ∈ N(x|X), zi = ỹiξi with ỹi := w̃i = r′i(ci(x̃i) +
ε̃i), ξi ∈ ∂ci(xi), i ∈ N (x̃, ε̃). Now for i ∈ A(x̃, ε̃), let ỹi =
‖zi‖∞ and ξi = zi/‖zi‖∞ so that ξi ∈ ∂ci(0) = ∂ci(x̃i+ ε̃i).
The KKT conditions can be rewritten as

0 = ∇f(x)i + ỹiξi + νi,

yi ∈ ∂F ri(ci(x̃i) + ε̃i),

ξi ∈ ∂ci(xi), i ∈ G

by Lemma 2. If x̃ is an optimal solution, then we have

0 ∈ f(x̃) + ∂Fφ(x̃; ε̃) +N(x̃|X),

implying x̃ is optimal for J( · ; ε̃).

Now we are ready to prove our main result in this section.

Theorem 4. Suppose sequence {xk}∞k=0 is generated by AIR
with initial point x0 ∈ X and relaxation vector ε0 ∈ Rm

++. If
{xk} has any cluster point x∗, then it satisfies the optimality
condition.

Proof. Let x∗ be a cluster point of {xk} and ε∗ =
lim
k→∞

εk. From Lemma 7, it suffices to show that x∗ ∈

arg minx G̃(x∗,ε∗)(x). We prove this by contradiction. Assume
that there exists a point x̄ such that ci(x̄i) = 0 for all
i ∈ A(x∗, ε∗) and G(x∗,ε∗)(x

∗) − G(x∗,ε∗)(x̄) > ε > 0.
Suppose {xk}S , S ⊂ N. Based on Lemma 5(ii), there exists
k1 > 0, such that for all k > k1

G(xk,εk)(x
k)−G(xk,εk)(x

k+1) ≤ ε/4. (10)

To derive a contradiction, notice that xk
i
S→ x∗i and wk

i
S→ w∗i .

There exists k2 such that for all k > k2, k ∈ S,∑
i∈N (x∗,ε∗)

(w∗i − wk
i )ci(x̄i) > −ε/12,

∑
i∈N (x∗,ε∗)

(wk
i ci(x

k
i )− w∗i ci(x∗i )) > −ε/12,

f(xk)− f(x∗) > −ε/12.

Therefore, for all k > k2, k ∈ S,

G(x∗,ε∗)(x
∗)−G(xk,εk)(x̄)

= [f(x∗) +
∑

i∈N (x∗,ε∗)

w∗i ci(x
∗
i )]

− [f(x̄) +
∑

i∈N (x∗,ε∗)

[w∗i − (w∗i − wk
i )]ci(x̄i)]

= [G(x∗,ε∗)(x
∗)−G(x∗,ε∗)(x̄)] +

∑
i∈N (x∗,ε∗)

(w∗i − wk
i )ci(x̄i),

≥ [G(x∗,ε∗)(x
∗)−G(x∗,ε∗)(x̄)]− ε/12

≥ ε− ε/12 = 11ε/12,

and that

G(xk,εk)(x
k)−G(x∗,ε∗)(x

∗)

= [f(xk) +
∑

i∈A(x∗,ε∗)

wk
i ci(x

k
i ) +

∑
i∈N (x∗,ε∗)

wk
i ci(x

k
i )]

− [f(x∗) +
∑

i∈N (x∗,ε∗)

w∗i ci(x
∗
i )]

≥ [f(xk) +
∑

i∈N (x∗,ε∗)

wk
i ci(x

k
i )]

− [f(x∗) +
∑

i∈N (x∗,ε∗)

w∗i ci(x
∗
i )]

≥ − ε/6

Hence, for all k > max(k1, k2), k ∈ S, it holds that

G(xk,εk)(x
k)−G(xk,εk)(x

k+1)

= G(xk,εk)(x
k)−G(x∗,ε∗)(x

∗) +G(x∗,ε∗)(x
∗)−G(xk,εk)(x̄)

=11ε/12− ε/6 = 3ε/4,

contradicting with (10). Therefore, x∗ ∈
arg minx G̃(x∗,ε∗)(x). By Lemma 7, x∗ satisfies the
first-order optimality for (3).
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Remark 4. The convexity of f is not necessary if xk+1

is found as the global minimizer of (3). In this case, the
global convergence we have derived so far can be modified
accordingly, and in the statement of Lemma 7, a global
minimizer x̃ of (9) implies its optimality of (3).

C. Existence of Cluster Points

We will show that our proposed algorithm AIR is a descent
method for the function J(x, ε). Consequently, both the exis-
tence of solutions to (1) as well as the existence of the cluster
point to AIR can be guaranteed by understanding conditions
under which the iterates generated by AIR is bounded. For
this purpose, we need to investigate the asymptotic geometry
of J and X . In the following a series of results, we discuss the
conditions guaranteeing the boundedness of L(J(x0; ε0); J0).
The concept of horizon cone is a useful tool to characterize
the boundedness of a set, which is defined as follows.

Definition 2. [32, Definition 3.3] Given Y ⊂ Rn, the horizon
cone of Y is

Y∞ := {z | ∃tk ↓ 0, {yk} ⊂ Y such that tkyk → z}.

We have the basic properties about horizon cones given in
the following proposition, where the first case is trivial to show
and others are from [32].

Proposition 2. The following hold:
(i) If X ⊂ Y ⊂ Rn, then X∞ ⊂ Y∞.

(ii) [32, Theorem 3.5] The set Y ⊂ Rn is bounded if and
only if Y∞ = {0}.

(iii) [32, Exercise 3.11] Given Yi ⊂ Rni for i ∈ G, we have
(Y1 × . . .× Ym)∞ = Y∞1 × . . .× Y∞m .

(iv) [32, Theorem 3.6] If C ⊂ Rn is non-empty, closed, and
convex, then

C∞ = {z | C + z ⊂ C}.

Next we investigate the boundedness of L(J(x0; ε0), J0),
and provide upper and lower estimates of L(J(x0; ε0), J0).
For this purpose, define

H(x0, ε0) := {x̄ | x̄ ∈ X∞, x̄ ∈ L(f(x0); f)∞,

x̄i ∈ L(ci(x
0
i ) + ε0i ; ci)

∞, i ∈ G}, and

H̃(x0, ε0) := X∞ ∩ L(J(x0; ε0); f)∞

∩ (
∏
i∈G

L(J(x0; ε0)− f ; ri ◦ ci)
∞).

We now prove the following result about the lower level sets
of L(J(x0; ε0), J0).

Theorem 5. Let x0 ∈ X and ε0 ∈ Rm
++. Then

L(ri(ci(x
0
i ) + ε0i ); ri ◦ ci) = L(ci(x

0
i ) + ε0i ; ci)

for i ∈ G. Moreover, it holds that

Ĥ(x0, ε0) ⊂ L(J(x0; ε0); J0)∞. (11)

Furthermore, suppose f := infx∈X f(x) > −∞. Then

L(J(x0; ε0); J0)∞ ⊂ H̃(x0, ε0). (12)

Proof. The convexity of L(x0
i ; ri(ci( · ) + ε0i )) is by the fact

that
xi ∈ L(ri(ci(x

0
i ) + ε0i ); ri ◦ ci)

⇐⇒ ri(ci(xi)) ≤ ri(ci(x0
i ) + ε0i )

⇐⇒ ci(xi) ≤ ci(x0
i ) + ε0i

⇐⇒ xi ∈ L(ci(x
0
i ) + ε0i ; ci),

where the second equivalence is from the monotonic increas-
ing property of ri. Notice that L(ci(x

0
i ) + ε0i ; ci) is convex.

Now we prove (11). Let x ∈ L(J(x0; ε0); J0) and x̄ be an
element of Ĥ(x0, ε0).

x + λx̄ ∈ X, x + λx̄ ∈ L(f(x0); f)∞,

and
xi + λx̄i ∈ L(ci(x

0
i ) + ε0i ; ci)

∞.

Therefore, it holds that

J0(x + λx̄) =f(x + λx̄) +
∑
i∈G

ri(ci(xi + λx̄i))

≤f(x0) +
∑
i∈G

ri(ci(x
0
i ) + ε0i )

=J(x0; ε0).

Consequently, x̄ ∈ L(J(x0; ε0); J0), proving (11).
For (12), let x̄ ∈ L(J(x0; ε0); J0)∞. We need to show that

x̄ is an element of H̃(x0, ε0). For this, we may as well assume
that x̄ 6= 0. By the fact that L(J(x0; ε0); J0)∞, there exists
tk ↓ 0 and {xk} ⊂ X such that J0(xk) ≤ J(x0; ε0) and
tkxk → x̄. Consequently, x̄ ∈ X∞. Hence

L(J(x0; ε0); J0)∞ ⊂ X∞. (13)

On the other hand, let x̃ ∈ L(J(x0; ε0); J0). It then follows
that

f(x̃) = J0(x̃)−
∑
i∈G

ri(ci(x̃i)) ≤ J0(x̃) ≤ J(x0; ε0),

where the first inequality is by the fact that ri ≥ 0. Con-
sequently, x̃ ∈ L(J(x0; ε0); f), implying L(J(x0; ε0); J0) ⊂
L(J(x0; ε0); f). Hence

L(J(x0; ε0); J0)∞ ⊂ L(J(x0; ε0); f)∞. (14)

Now consider ci. We have for i ∈ G

ri ◦ ci(x̃i) = J0(x̃)−f(x̃)−
∑

j∈G,j 6=i

ri(ci(x̃i)) ≤ J(x0; ε0)−f,

implying x̃i ∈ L(J(x0; ε0); ri ◦ ci), i ∈ G. Therefore,

L(J(x0; ε0); J0) ⊂
∏
i∈G

L(J(x0; ε0)− f ; ri ◦ ci),

This implies that

L(J(x0; ε0); J0)∞ ⊂ (
∏
i∈G

L(J(x0; ε0)− f ; ri ◦ ci))
∞

=
∏
i∈G

L(J(x0; ε0)− f ; ri ◦ ci)
∞,

which, combined with (13) and (14), yields (12).

The following results follow directly from Theorem 5.
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Corollary 6. If there exists x̄ 6= 0 such that

x̄ ∈ X∞, x̄ ∈ L(f(x0); f)∞, x̄i ∈ L(ci(x
0
i )+ε0i ; ci)

∞, i ∈ G,

then L(J(x0; ε0); J0) is unbounded. Conversely, if one of the
sets

X∞, L(J(x0; ε0); f)∞, and (
∏
i∈G

L(J(x0; ε0)−f ; ri ◦ ci)
∞)

is empty, then L(J(x0; ε0); J0) is bounded.

Based on Corollary 6, we provide specific cases in the
following proposition that can guarantee the boundedness of
L(J(x0; ε0); J0).

Proposition 3. Suppose x0 ∈ X and relaxation vector ε0 ∈
Rm

++. Then the level set L(J(x0, ε0), J0) is bounded, if one
of the following conditions holds true

(i) X is compact.
(ii) f is coercive.

(iii) f is bounded below on X and ri ◦ ci, i ∈ G are all
coercive.

(iv) Assume f := infx∈X f(x) > −∞ and

γi := sup
‖xi‖→∞

ri(ci(xi)) < +∞, i ∈ G.

Suppose (x0, ε0) is selected to satisfy
∑
i∈G

ri(ci(x
0
i ) +

ε0i ) ≤ f + min
i
γi.

Proof. Part (i)-(iii) are trivial true by Corollary 6. We only
prove part (iv).

Assume by contradiction that L(J(x0; ε0); J0) is un-
bounded, then there exists x̄ ∈ L(J(x0; ε0); J0)∞ with x̄ 6= 0.
By the definition of horizon cone, there exists {tk} ⊂ R and
{xk} ⊂ X such that

tk ↓ 0, J0(xk) ≤ J(x0; ε0), and tkxk → x̄.

Therefore, there must be an ī ∈ G, such that ‖xk
ī
‖2 → ∞,

implying ri ◦ ci(xk
ī
)→ γī. This means,

J(x0; ε0) ≥ lim
k→∞

J0(xk) ≥ f + lim
k→∞

ri ◦ ci(x
k
ī )

= f + γī ≥ f + min
i∈G

γi,

a contradiction. Therefore, L(J(x0, ε0), J0) is bounded.

Proposition 3(iv) indicates that the initial iterate x0 and
ε0 may need to be chosen sufficiently close to 0 to enforce
convergence if φi is not coercive such as (FRA).

V. NUMERICAL EXPERIMENTS

In this section, we test our proposed AIR algorithm as
a sparsity-promoting tool in two numerical experiments and
exhibit its performance. In both experiment, the test problems
have f(x) ≡ 0. The algorithm is mplemented in Matlab with
the subproblems solved by the CVX solver [33]. We consider
two ways of choosing r and c, ci(xi) = |xi| and ci = x2

i , as
described in Table I, so that they can be referred as `1-AIR
and `2-AIR, respectively. In the subproblem, we use the same
value ε for each relaxation parameter εi = ε.

A. Nonnegative Sparse Optimization

In this experiment, we use AIR to solve the nonnegative
sparse optimization (NSO) problem introduced in [34] for a
nonnegative sparse signal and compare its performance on
sparsity-promoting with the contemporary algorithm proposed
in [34]. In particular, by relaxing `0 norm with `p norm
(0 < p < 1), the NSO problem can be formulated as

min
x∈Rn

‖x‖pp
s.t. Ax = b

xi ≥ 0, i = 1, . . . , n,

where A ∈ Rm×n is the sensing matrix, b ∈ Rm is the
measurement vector, and x ∈ Rn is the nonnegative sparse
signal to be recovered. This `p norm problem can be solved
by our proposed AIR algorithm.

In the numerical experiments, the simulation data are
generated by the standard process of compressive sensing.
Specifically, we randomly generate an i.i.d. Gaussian ensemble
A ∈ Rm×n satisfying ATA = I and a nonnegative sparse
signal x̄ ∈ R via randomly setting nz components drawn from
the standard uniform distribution on [0, 1] for a given number
of nonzeros nz , while the remaining components are all zeros.
Then we generate the observation data b by

b = Ax̄ + σε,

where ε ∈ Rm is the standard Gaussian noise and σ = 10−6

is the corresponding deviation. The problem size is set as n =
1024 and m = 256.

We choose p = 0.1 and initial point x0 = 0 with maximum
number of iterations T = 500. The relaxation parameter is
chosen as ε0i and updated by εk+1 = 0.7εk for each iteration
with minimum threshold 10−5. The algorithm is terminated
and deemed to find an optimal solution when

‖xk+1 − xk‖2 ≤ 10−4.

Our results are the average of 10 experiments where A, x̄ and
ε are regenerated according to the same rules.

The performance of AIR is demonstrated in two aspects
including the quality of recovered signal and the computational
efficiency. Figure 1 depicts the rate of success achieved by AIR
and IPTA proposed in [35] for signals with different number
of nonzero components nz . Here the signal is considered as
“successfully recovered” if the relative error between the final
solution returned by the algorithm and the original signal is
smaller than 0.5%, i.e.,

‖xk − x̄‖2/‖x̄‖2 ≤ 0.5%.

Since the results for `1-AIR and `2-AIR are the same for each
experiment, we use the same curve for the two versions of
AIR.
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Fig. 1: Rate of success v.s. number of nonzeros for AIR and
IPTA.

From Figure 1, it is witnessed that AIR maintains 100%
rate of success for all test examples. As for IPTA, it can
successfully solve all the examples for signals with less than
15 nonzero components. However, its rate of success quickly
reduces to 0 as the number of nonzeros exceeds 20, and
remains 0 for signals with more than 55 nonzeros. Overall,
we can see that AIR overperforms IPTA in recovering accurate
sparse signals. It should be noticed that AIR does not require
the (estimated) number of nonzeros as a prior, as compared to
IPTA.
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Fig. 2: CPU times v.s. number of nonzeros for AIR and IPTA.

It would be interesting to compare the performance ef-
ficiency of `1-AIR and `2-AIR, since the `1-reweighted
subproblems are nonsmooth compared with the smooth `2-
reweighted subproblems. Figure 2 depicts the logarithm of
the CPU time required by `1-AIR and `2-AIR for signals
with different number of nonzeros. One can see from Figure 2
that `1-AIR is computationally much faster than `2-AIR. This
indicates that `2-AIR needs more iterations than `1-AIR, since
`2-AIR has simpler subproblems to solve. This indication is
supported by the numerical results shown in Table II, which
summarizes the number of iterations needed by `1-AIR and
`2-AIR in Table II on average. We can see that for cases with
fewer nonzeros, `1-AIR only needs 1-2 iterations, and as for
`2-AIR, 10-15 iterations are needed. This implies that the `p

regularization can be easily approximated by the weighted `1
regularization, yet by a sequence of weighted `2 regularization.

TABLE II: The average number of nonzeros

Number of Nonzeros
4-20 24-40 44-60 64-80

`1-AIR 1.02 1.44 1.98 2.20
`2-AIR 12.50 13.54 14.06 14.44

B. Group Sparse Optimization

In the second experiment, we consider an optimization
model for cloud radio access network (Cloud-RAN) power
consumption problem with group sparse structure [36], which
can be formulated as a mixed-integer nonlinear programming
(MINLP) problem. In order to solve this MINLP problem,
a three-stage group sparse beamforming (GSBF) method is
proposed in [36], which solves a group sparse problem in the
first stage to induce the group sparsity for the beamformers.

We consider the Cloud-RAN architecture with L remote
radio heads (RRHs) and K single-antenna mobile users, where
the l-th RRH is equipped with Nl antennas. To promote
sparsity in the transmit vector, the group sparse problem aims
to minimize the `0 norm of each transmit vector. By relaxing
`0 norm with `p norm (0 < p < 1), the group sparse problem
can be formulated as

min
v

L∑
l=1

ρl‖ṽl‖pp

s.t.

√∑
i 6=k

‖hHkvi‖22 + σ2
k ≤

1

γk
<(hHkvk)

‖ṽl‖2 ≤
√
Pl, l ∈ L, k ∈ 1, . . . ,K,

where vlk ∈ CNl is the transmit beamforming vector from
the l-th RRH to the k-th user, and ṽl = [vT

l1, ...,v
T
lK ]T ∈

CKNl×1 is the group structure of transmit vectors. ρl is the
weight for the beamforming coefficients group ṽl at RRH l.
The channel propagation between user k and RRH l is denoted
as hlk ∈ CNl . Pl is the maximum transmit power of the l-th
RRH. γ = (γ1, ..., γK)T is the target signal-to-interference-
plus-noise ratio (SINR). The SINR constraint for user k is
formulated as a second-order cone constraint [21]. This Cloud-
RAN `p norm problem can be solved by our AIR algorithm.

In our experiment, we consider a network with L = 10,
K = 6, 2-antenna RRHs and single-antenna MUs uni-
formly and independently distributed in the square region
[−1000, 1000] × [−1000, 1000] meters. Each point of the
simulation results is averaged over 50 randomly generated
network realizations.

We set the maximum number of iterations as T = 500,
ε0 = 100 for AIR and update by εk+1 = 0.7εk at each iteration
with minimum threshold 10−6. The algorithm is terminated
whenever

‖xk+1 − xk‖2 ≤ 10−5

is satisfied.
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In Figure 3, we depicts the number of nonzero components
of the final solution returned by `1-AIR and `2-AIR for
problems with different SINR. It is witnessed again that the `1-
AIR outperforms `2-AIR in the ability of accurately recovering
sparse solutions.
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Fig. 3: Average sparsity versus target SINR.

To further investigate the behaviors of two variants of AIR,
we depicts the final solution found by `1-AIR and `2-AIR in
Figure 4. Here, the x-axis is the element index l = 1, . . . , 10
and the each point in Figure 4 is the corresponding log(‖ṽl‖2).
We can see that for `1-AIR, elements l = 3, . . . , 7 have already
been driven to 0 (as small as 10−20), whereas these elements
are still relatively large for `2-AIR, between 10−5 and 10−2.
This may be largely due to the derivative of the squared `2
norm diminishes as the variable tends to 0, resulting in tiny
step and hence slow progress.
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Fig. 4: Final solution returned by `1-AIR and `2-AIR.

VI. CONCLUSIONS

In this paper, we have proposed a general formulation for
nonconvex regularization problem, which can take into ac-
count different regularization terms. An iteratively reweighted
algorithm is proposed by solving a sequence of weighted
convex regularization subproblems. We have also derived the
optimality condition for the nonconvex regularization problem

and provided the global convergence analysis for the proposed
iteratively reweighted methods.

Two variants of our proposed algorithm, the reweighted
`1 method and the reweighted `2 method, are implemented
and tested. Numerical results exhibits their ability of recov-
ering sparse signals. It is also witnessed that the iteratively
reweighted `1 method is generally faster than the reweighted
`2 method because much fewer iterations are needed for
reweighted `1. Overall, our investigation leads to a variety of
interesting research directions:
• For `2-AIR with ε driven to zero, existing global con-

vergence results is provided only for the `p norm reg-
ularization without constraints. For general constrained
regularized problem, the global convergence of `1-AIR
is still an open question.

• A thorough comparison, through either theoretical analy-
sis or numerical experiments, of the existing nonconvex
regularizations using AIR would be interesting to see.
This should be helpful in providing the guidance for the
users to select regularizers.

• Our implementation reduces the relaxation parameter ε
by a fraction each time. It would be useful if a dynamic
updating strategy can be derived to reduce the efforts
of parameter tuning as well as the sensitivity of the
algorithm to ε.

• It would be meaningful to have a (local) complexity
analysis for the reweighted algorithms.

REFERENCES

[1] P. S. Bradley, O. L. Mangasarian, and W. N. Street, “Feature selection via
mathematical programming,” INFORMS Journal on Computing, vol. 10,
no. 2, pp. 209–217, 1998.

[2] J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, “Use of the
zero-norm with linear models and kernel methods,” Journal of machine
learning research, vol. 3, no. Mar, pp. 1439–1461, 2003.

[3] Y. Shi, J. Cheng, J. Zhang, B. Bai, W. Chen, and K. B. Letaief,
“Smoothed `p-minimization for green cloud-ran with user admission
control,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 4, pp. 1022–1036, 2016.

[4] A. Lanza, S. Morigi, and F. Sgallari, “Convex image denoising via non-
convex regularization,” in International Conference on Scale Space and
Variational Methods in Computer Vision, pp. 666–677, Springer, 2015.

[5] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted 1 minimization,” Journal of Fourier analysis and applica-
tions, vol. 14, no. 5-6, pp. 877–905, 2008.

[6] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for com-
pressive sensing,” in Acoustics, speech and signal processing, 2008.
ICASSP 2008. IEEE international conference on, pp. 3869–3872, IEEE,
2008.

[7] J. V. Burke, F. E. Curtis, H. Wang, and J. Wang, “Iterative reweighted
linear least squares for exact penalty subproblems on product sets,” SIAM
Journal on Optimization, vol. 25, no. 1, pp. 261–294, 2015.

[8] Z. Lu, “Iterative reweighted minimization methods for `p regularized
unconstrained nonlinear programming,” Mathematical Programming,
vol. 147, no. 1-2, pp. 277–307, 2014.

[9] Z. Lu, Y. Zhang, and J. Lu, “`p regularized low-rank approximation
via iterative reweighted singular value minimization,” Computational
Optimization and Applications, vol. 68, no. 3, pp. 619–642, 2017.

[10] M. S. Bazaraa, J. Goode, and M. Z. Nashed, “On the cones of
tangents with applications to mathematical programming,” Journal of
Optimization Theory and Applications, vol. 13, no. 4, pp. 389–426, 1974.

[11] A. Y. Kruger, “Subdifferentials of nonconvex functions and general-
ized directional derivatives,” Mimeographied notes, VINITI Moscow,
pp. 2661–77, 1977.

[12] A. Y. Kruger, “ε-semidifferentials and ε-normal elements,” Depon.
VINITI, vol. 1331, 1981.



13
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