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Abstract

In this paper, we discuss the statistical properties of the ℓq optimization methods
(0 < q ≤ 1), including the ℓq minimization method and the ℓq regularization method,
for estimating a sparse parameter from noisy observations in high-dimensional linear re-
gression with either a deterministic or random design. For this purpose, we introduce
a general q-restricted eigenvalue condition (REC) and provide its sufficient conditions in
terms of several widely-used regularity conditions such as sparse eigenvalue condition, re-
stricted isometry property, and mutual incoherence property. By virtue of the q-REC, we
exhibit the stable recovery property of the ℓq optimization methods for either deterministic
or random designs by showing that the ℓ2 recovery bound O(ϵ2) for the ℓq minimization

method and the oracle inequality and ℓ2 recovery bound O(λ
2

2−q s) for the ℓq regularization
method hold respectively with high probability. The results in this paper are nonasymptotic
and only assume the weak q-REC. The preliminary numerical results verify the established
statistical property and demonstrate the advantages of the ℓq regularization method over
some existing sparse optimization methods.

Keywords: sparse estimation, lower-order optimization method, restricted eigenvalue con-
dition, ℓ2 recovery bound, oracle property

1 Introduction

In various areas of applied sciences and engineering, a fundamental problem is to estimate an
unknown parameter β∗ ∈ Rn of a linear regression model

y = Xβ∗ + e, (1)

where X ∈ Rm×n is a design matrix, e ∈ Rm is a vector containing random measurement
noise, and thus y ∈ Rm is the corresponding vector of the noisy observations. According to the
context of practical applications, the design matrix could be either deterministic or random.
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The curse of dimensionality always occurs in the high-dimensional regime of many application
fields. For example, in magnetic resonance imaging [9], remote sensing [2], systems biology
[33], one is typically only able to collect far fewer samples than the number of variables due
to physical or economical constraints, i.e., m ≪ n. Under the high-dimensional scenario,
estimating the true underlying parameter of model (1) is a vital challenge in contemporary
statistics, whereas the classical ordinary least squares (OLS) does not work well in this scenario
because the corresponding linear system is seriously ill-conditioned.

1.1 ℓ1 Optimization Problems

Fortunately, in practical applications, a wide class of problems usually have certain special
structures, employing which could eliminate the nonidentifiability of model (1) and enhance
the predictability. One of the most popular structures is the sparsity structure, that is, the
underlying parameter β∗ in the high-dimensional space is sparse. One common way to measure
the degree of sparsity is the ℓq norm, which for 0 < q ≤ 1 is defined as

∥β∥q :=

(
n∑

i=1

|βi|q
)1/q

,

while ∥β∥0 is defined as the number of nonzero entries of β. We first review the literature
of sparse estimation for the case when the design matrix X is deterministic. In the presence
of a bounded noise (i.e., ∥e∥2 ≤ ϵ), in order to find the sparest solution, Donoho et al. [18]
proposed the following (constrained) ℓ0 minimization problem:

(CP0,ϵ) min ∥β∥0 s.t. ∥y −Xβ∥2 ≤ ϵ.

Unfortunately, it is NP-hard to compute its global solution due to the nonconvex and combi-
national natures [31].

To overcome this obstacle, a common technique is to use the (convex) ℓ1 norm to approach
the ℓ0 norm:

(CP1,ϵ) min ∥β∥1 s.t. ∥y −Xβ∥2 ≤ ϵ,

which can be efficiently solved by several standard methods; see [14, 21] and references therein.
The stable statistical properties of (CP1,ϵ) have been explored under the regularity conditions.
One of the most important stable statistical properties is the ℓ2 recovery bound property, which
is to estimate the upper bound of the error between the optimal solution of the optimization
problem and the true underlying parameter in terms of the noise level ϵ. More specifically,
let s ≪ n and β∗ be an s-sparse parameter (i.e., ∥β∗∥0 ≤ s) satisfying the linear regression
model (1). The ℓ2 recovery bound for (CP1,ϵ) was provided in [18] and [9] under the mutual
incoherence property (MIP) or the restricted isometry property (RIP)1, respectively:

∥β̄1,ϵ − β∗∥2 = O(ϵ),

where β̄1,ϵ stands for the optimal solution of (CP1,ϵ).
In some applications, the amplitude of noise is difficult to estimate. As such the study of

the constrained sparse optimization models is underdeveloped. In such situations, the regu-
larization technique has been widely used in statistics and machine learning, which helps to

1It was claimed in [7] that the RIP [10] is implied by the MIP [19], while the restricted isometry constant
(RIC) is more difficult to be calculated than the mutual incoherence constant (MIC).
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avoid the noise estimation by introducing a regularization parameter. Specifically, one solves
the (unconstrained) ℓ1 regularization problem:

(RP1,λ) min
1

2m
∥y −Xβ∥22 + λ∥β∥1,

where λ > 0 is the regularization parameter, providing a tradeoff between data fidelity and
sparsity. The ℓ1 regularization model, also named the Lasso estimator [40], has attracted a
great deal of attention in parameter estimation in the high-dimensional scenario, because its
convexity structure is beneficial in designing exclusive and efficient algorithms and gaining
wide applications; see [3, 15] and references therein. For the noise-free case, the ℓ2 recovery
bound for (RP1,λ) was provided in [42] under the RIP or the restricted eigenvalue condition
(REC)2:

∥β̂1,λ − β∗∥22 = O(λ2s),

where β̂1,λ denotes the optimal solution of (RP1,λ). Furthermore, assuming that the noise in
model (1) is normally distributed e ∼ N (0, σ2Im), it was established in [4, 6, 47] that the
following ℓ2 recovery bound holds with high probability

∥β̂1,λ − β∗∥22 = O

(
σ2s

log n

m

)
,

when the regularization parameter is chosen as λ = σ
√

logn
m and under the RIP, REC or other

regularity conditions, respectively. However, the ℓ1 minimization and regularization problems
suffer several dissatisfactions in both theoretical and practical applications. In particular,
it was reported by extensive theoretical and empirical studies that the ℓ1 minimization and
regularization problems suffer from significant estimation bias when parameters have large
absolute values; the induced solutions are much less sparse than the true parameter, they
cannot recover a sparse signal with the least samples when applied to compressed sensing,
and that they often result in sub-optimal sparsity in practice; see, e.g., [12, 20, 44, 43, 48].
Therefore, there is a great demand for developing the alternative sparse estimation technique
that enjoys nice statistical theory and successful applications.

To address the bias and the sub-optimal issues induced by the ℓ1 norm, several nonconvex
regularizers have been proposed such as the smoothly clipped absolute deviation (SCAD) [20],
minimax concave penalty (MCP) [44], ℓ0 norm [46], ℓq norm (0 < q < 1) [22], and capped ℓ1
norm [28]; specifically, the SCAD and MCP fall into the category of folded concave penalized
(FCP) methods. It was studied in [46] that the global solution of the FCP sparse linear
regression enjoys the oracle property under the sparse eigenvalue condition; see Remark 4(iii)
for details.

It is worth noting that the ℓq norm regularizer (0 < q < 1) has been recognized as an im-
portant technique for sparse optimization and gained successful applications in various applied
science fields; see, e.g., [12, 33, 43]. In the present paper, we focus on the statistical property of
the ℓq optimization method, which is beyond the category of the FCP. Throughout the whole
paper, we always assume that 0 < q ≤ 1 unless otherwise specified.

2It was reported in [4] that the REC is implied by the RIP, and in [35] that a broad class of correlated
Gaussian design matrices satisfy the REC but violate the RIP with high probability.
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1.2 ℓq Optimization Problems

Due to the fact that limq→0+ ∥β∥qq = ∥β∥0, the ℓq norm has also been adopted as anoth-
er alternative sparsity promoting penalty function of the ℓ0 and ℓ1 norms. The following
ℓq optimization problems have attracted a great amount of attention and gained successful
applications in a wide range of fields (see [12, 33, 43] and references therein):

(CPq,ϵ) min ∥β∥q s.t. ∥y −Xβ∥2 ≤ ϵ,

and

(RPq,λ) min
1

2m
∥y −Xβ∥22 + λ∥β∥qq.

In particular, the numerical results in [12] and [43] showed that the ℓq minimization and
the ℓ 1

2
regularization admit a significantly stronger sparsity promoting capability than the ℓ1

minimization and the ℓ1 regularization, respectively; that is, they allow to obtain a more sparse
solution from a smaller amount of samplings. [33] revealed that the ℓ 1

2
regularization achieved

a more reliable biological solution than the ℓ1 regularization in the field of systems biology.
The advantage of the lower-order optimization problem has also been shown in theory that

it requires a weaker regularity condition to guarantee the stable statistical property than the
classical ℓ1 optimization problem. In particular, let β̄q,ϵ and β̂q,λ denote the optimal solution
of (CPq,ϵ) and (RPq,λ), respectively. The ℓ2 recovery bound for (CPq,ϵ) was established in [16]
and [39] under MIP and RIP respectively:

∥β̄q,ϵ − β∗∥2 = O(ϵ), (2)

where the MIP or RIP is weaker than the one used in the study of (CP1,ϵ). [25] established an
ℓ2 recovery bound for (RPq,λ) in the noise-free case:

∥β̂q,λ − β∗∥22 = O(λ
2

2−q s) (3)

under the introduced q-REC, which is strictly weaker than the classical REC. However, the
theoretical study of the ℓq optimization problem is still limited; particularly, there is still no
paper devoted to establishing the statistical property of the ℓq minimization problem when
the noise is randomly distributed, and that of the ℓq regularization problem in the noise-aware
case.

1.3 Contributions of This Paper

The main contribution of the present paper is the establishment of the statistical properties for
the ℓq optimization problems, including (CPq,ϵ) and (RPq,λ), in the noise-aware case; specifical-
ly, in the case when the linear regression model (1) involves a Gaussian noise e ∼ N (0, σ2Im).
For this purpose, we extend the q-REC [25] to a more general one, which is one of the weakest
regularity conditions for estimating the ℓ2 recovery bounds of sparse estimation models, and
provide some sufficient conditions for guaranteeing the general q-REC in terms of REC, RIP,
and MIP (with a less restrictive constant); see Propositions 1 and 2. Under the general q-REC,
we show that the ℓ2 recovery bound (2) holds for (CPq,ϵ) with high probability, and that

∥β̂q,λ − β∗∥22 = O

((
σ2 log n

m

) 1
2−q

s

)
,
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as well as the estimation of prediction loss and the oracle property, hold for (RPq,λ) with high
probability; see Theorems 1 and 2, respectively. These results provide a unified framework
of the statistical properties of the ℓq optimization problems, and improve the ones of the ℓq
minimization problem [16, 39] and the ℓ1 regularization problem [4, 6, 47] under the q-REC;
see Remark 4. They are not only of independent interest in establishing statistical properties
for the lower-order optimization problems with randomly noisy data, but also provide a useful
tool for the study of the case when the design matrix X is random.

Another contribution of the present paper is to explore the ℓ2 recovery bounds for the ℓq
optimization problems with a random design matrix X and random noise e, which is more
realistic in the real-world applications; e.g., compressed sensing [8], signal processing [9], sta-
tistical learning [1]. As reported in [35], the key issue for studying the statistical properties of
a sparse estimation model with a random design matrix is to provide suitable conditions on
the population covariance matrix Σ of X, which can guarantee the regularity conditions with
high probability; see, e.g., [9, 35]. Motivated by the real-world applications, we consider the
standard case when X is a Gaussian random design with i.i.d. N (0,Σ) rows and the linear
regression model (1) involves a Gaussian noise, explore a sufficient condition for ensuring the
q-REC of X with high probability in terms of the q-REC of Σ, and apply the preceding results
to establish the ℓ2 recovery bounds (2) for (CPq,ϵ), and (3), as well as the predication loss and
the oracle inequality, for (RPq,λ), respectively; see Theorems 3 and 4. These results provide a
unified framework of the statistical properties of the ℓq optimization problems with a Gaussian
random design under the q-REC, which cover the ones of the ℓ1 optimization problems (see
[49, Theorem 3.1]) as special cases; see Corollaries 3 and 4. To the best of our knowledge, most
results presented in this paper are new, either for the deterministic or random design matrix.

We also carry out the numerical experiments on the standard simulated data. The pre-
liminary numerical results verify the established statistical properties and show that the ℓq
optimization methods possess better recovery performance than the ℓ1 optimization method,
SCAD and MCP, which coincides with existing numerical studies [25, 43] on the ℓq regulariza-
tion problem. More specifically, the ℓq regularization method outperforms the ℓ1, SCAD and
MCP regularization methods in the sense that its estimated error decreases faster when the
sample size increases and achieves a more accurate solution.

The remainder of this paper is organized as follows. In section 2, we introduce the lower-
order REC and discuss its sufficient conditions. In section 3, we establish the ℓ2 recovery
bounds for (CPq,ϵ) and (RPq,λ) with a deterministic design matrix. The extension to the
linear regression model with a Gaussian random design and preliminary numerical results are
presented in sections 4 and 5, respectively.

We end this section by presenting the notations adopted in this paper. We use Greek
lowercase letters α, β, δ to denote the vectors, capital letters J , T to denote the index sets, and
script captical letters A , B, C to denote the random events. For β ∈ Rn and J ⊆ {1, 2, . . . , n},
we use βJ to denote the vector in Rn that (βJ)i = βi for i ∈ J and zero elsewhere, |J | to denote
the cardinality of J , Jc := {1, 2, . . . , n} \ J to denote the complement of J , and supp(β) to
denote the support of β, i.e., the index set of nonzero entries of β. Particularly, Im stands
for the identity matrix in Rm, and P(A ) and P(A |B) denote the probability that event A
happens and the conditional probability that event A happens given that event B happens,
respectively.
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2 Restricted Eigenvalue Conditions

This section aims to discuss some regularity conditions imposed on the design matrix X that
are needed to guarantee the stable statistical properties of (CPq,ϵ) and (RPq,λ).

In statistics, the ordinary least squares (OLS) is a classical technique for estimating the
unknown parameters in a linear regression model and has favourable properties if some regu-
larity conditions are satisfied; see, e.g., [34]. For example, the OLS always requires the positive
definiteness of the Gram matrix Γ(X) := X⊤X, that is,

min
β∈Rn:β ̸=0

(β⊤Γ(X)β)1/2

∥β∥2
= min

β∈Rn:β ̸=0

∥Xβ∥2
∥β∥2

> 0. (4)

However, in the high-dimensional setting, the OLS does not work well; in fact, the matrix
Γ(X) is seriously degenerate, i.e.,

min
β∈Rn:β ̸=0

∥Xβ∥2
∥β∥2

= 0.

To deal with the challenges caused by the high-dimensional data, the Lasso (least absolute
shrinkage and selection operator) estimator was introduced by [40]. Since then the Lasso
estimator has gained a great success in the sparse representation and machine learning of high-
dimensional data; see, e.g., [4, 41, 47] and references therein. It was pointed out that Lasso
requires a weak condition, called the restricted eigenvalue condition (REC) [4], to ensure the
nice statistical properties; see, e.g., [42, 27, 32]. In the definition of REC, the minimum in (4)
is replaced by a minimum over a restricted set of vectors measured by an ℓ1 norm inequality,
and the norm ∥β∥2 in the denominator is replaced by the ℓ2 norm of only a part of β. The
notion of REC was extended to the group-wised lower-order REC in [25], which was used there
to explore the oracle property and ℓ2 recovery bound of the ℓp,q regularization problem in a
noise-free case.

Inspired by the ideas in [4, 25], we here introduce a lower-order REC for the ℓq optimization
problems, similar to but more general than the one in [25], where the minimum is taken over
a restricted set of vectors measured by an ℓq norm inequality. To proceed, we shall introduce
some useful notations. For the remainder of this paper, let a > 0 and (s, t) be a pair of integers
such that

1 ≤ s ≤ t ≤ n and s+ t ≤ n. (5)

For δ ∈ Rn and J ⊆ {1, 2, . . . , n}, we define by J(δ; t) the index set corresponding to the first
t largest coordinates in absolute value of δ in Jc. For X ∈ Rm×n, its q-restricted eigenvalue
modulus relative to (s, t, a) is defined by

ϕq(s, t, a,X) := min

{
∥Xδ∥2

∥δJ∪J(δ;t)∥2
: |J | ≤ s, ∥δJc∥qq ≤ a∥δJ∥qq

}
. (6)

The lower-order REC is defined as follows.

Definition 1. Let 0 ≤ q ≤ 1 and X ∈ Rm×n. X is said to satisfy the q-restricted eigenvalue
condition relative to (s, t, a) (q-REC(s, t, a) in short) if

ϕq(s, t, a,X) > 0.
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Remark 1. (i) Clearly, the q-REC(s, t, a) provides a unified framework of the REC-type con-
ditions, e.g., it includes the classical REC in [4] (when q = 1) and the q-REC(s, t) in [25]
(when a = 1) as special cases.

(ii) The restricted eigenvalue modulus (with q = 1) defined in (6) is slightly different from
the one of the classical REC in [4], in which the factor

√
m appears in the denominator there.

The reason is that we consider not only the linear regression with a deterministic design as in
[4], but also a random design case; for the later case, the q-REC is assumed to be satisfied for
the population covariance matrix of X, in which the sample size m does not appear. Hence, to
make it consistent for both two cases, we introduce a new definition of the restricted eigenvalue
modulus in (6) by removing the factor

√
m from the denominator. Hereby, this is the difference

between the restricted eigenvalue modulus (6) and that in [4]. For example, if the matrix X
has i.i.d. Gaussian entries, the restricted eigenvalue modulus in [4] scales as a constant,
equally, ϕq(s, t, a,X) given by (6) scales as

√
m, independent of s, m, and n, whenever s

m log n
is bounded. Consequently, the terms in the denominator of conclusions of Theorem 2 and
Corollary 2 scale as a constant in this situation.

It is natural to study the relationships between the q-RECs and other types of regularity
conditions. To this end, we first recall some basic properties of the ℓq norm in the following
lemmas; particularly, Lemma 1 is taken from [24, Section 8.12] and [25, Lemmas 1 and 2].

Lemma 1. Let α, β ∈ Rn. Then the following relations are true:

∥β∥q2 ≤ ∥β∥q1 ≤ n
1
q1

− 1
q2 ∥β∥q2 for any 0 < q1 ≤ q2 < +∞, (7)

∥α∥qq − ∥β∥qq ≤ ∥α+ β∥qq ≤ ∥α∥qq + ∥β∥qq for any 0 < q ≤ 1. (8)

Lemma 2. Let p ≥ 1, n1, n2 ∈ N, α ∈ Rn1
+ , β ∈ Rn2

+ and c > 0 be such that

max
1≤i≤n1

αi ≤ min
1≤j≤n2

βj and

n1∑
i=1

αi ≤ c

n2∑
j=1

βj . (9)

Then
n1∑
i=1

αp
i ≤ c

n2∑
j=1

βp
j . (10)

Proof. Let αmax := max
1≤i≤n1

αi and βmin := min
1≤j≤n2

βj . Then it holds that

αmax

n1∑
i=1

αp
i ≤ αp

max

n1∑
i=1

αi and βp
min

n2∑
j=1

βj ≤ βmin

n2∑
j=1

βp
j . (11)

Without loss of generality, we assume that αmax > 0; otherwise, (10) holds automatically.
Thus, by the first inequality of (9) and noting p ≥ 1, we have that

0 < αp
maxβmin ≤ αmaxβ

p
min. (12)
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Multiplying the inequalities in (11) by βmin

n2∑
j=1

βj and αmax

n1∑
i=1

αi respectively, we obtain that

αmaxβmin

n1∑
i=1

αp
i

n2∑
j=1

βj ≤ αp
maxβmin

n1∑
i=1

αi

n2∑
j=1

βj

≤ αmaxβ
p
min

n1∑
i=1

αi

n2∑
j=1

βj

≤ αmaxβmin

n1∑
i=1

αi

n2∑
j=1

βp
j ,

where the second inequality follows from (12). This, together with the second inequality of
(9), yields (10). The proof is complete.

Extending [25, Proposition 5] to the general q-REC, the following proposition validates the
relationship between the q-RECs: the lower the q, the weaker the q-REC. However, the inverse
of this implication is not true; see [25, Example 1] for a counter example. We provide the proof
so as to make this paper self-contained, although the idea is similar to that of [25, Proposition
5].

Proposition 1. Let X ∈ Rm×n, a > 0, and (s, t) be a pair of integers satisfying (5). Suppose
that 0 < q1 ≤ q2 ≤ 1 and that X satisfies the q2-REC(s, t, a). Then X satisfies the q1-
REC(s, t, a).

Proof. Associated with the q-REC(s, t, a), we define the feasible set

Cq(s, a) := {δ ∈ Rn : ∥δJc∥qq ≤ a∥δJ∥qq for some |J | ≤ s}. (13)

By Definition 1, it remains to show that Cq1(s, a) ⊆ Cq2(s, a). To this end, let δ ∈ Cq1(s, a),
and let J0 denote the index set of the first s largest coordinates in absolute value of δ. By
the assumption that δ ∈ Cq1(s, a) and by the construction of J0, one has ∥δJc

0
∥q1q1 ≤ a∥δJ0∥

q1
q1 .

Then we obtain by Lemma 2 (with q2/q1 in place of p) that ∥δJc
0
∥q2q2 ≤ a∥δJ0∥

q2
q2 ; consequently,

δ ∈ Cq2(s, a). Hence, it follows that Cq1(s, a) ⊆ Cq2(s, a), and the proof is complete.

It is revealed from Proposition 1 that the classical REC is a sufficient condition of the lower-
order REC. In the sequel, we will further discuss some other types of regularity conditions: the
sparse eigenvalues condition (SEC), the restricted isometry property (RIP), and the mutual
incoherence property (MIP), which have been widely used in the literature of statistics and
engineering, for ensuring the lower-order REC.

The SEC is a popular regularity condition required to guarantee the nice properties of sparse
representation; see [4, 17, 46] and references therein. For ∆ ∈ Rn×n and s ∈ N, the s-sparse
minimal eigenvalue and s-sparse maximal eigenvalue of ∆ are respectively defined by

σmin(s,∆) := min
β∈Rn:1≤∥β∥0≤s

β⊤∆β

β⊤β
, σmax(s,∆) := max

β∈Rn:1≤∥β∥0≤s

β⊤∆β

β⊤β
. (14)

The SEC was first introduced in [17] to show that the optimal solution of (CP1,ϵ) well approx-
imates that of (CP0,ϵ) whenever σmin(2s,Γ(X)) > 0.
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The RIP is another well-known regularity condition in the scenario of sparse learning, which
was introduced by [10] and has been widely used in the study of the oracle property and ℓ2
recovery bound for the high-dimensional regression model; see [4, 9, 37] and references therein.
Below, we recall the RIP-type notions from [10].

Definition 2. [10] Let X ∈ Rm×n and let s, t ∈ N be such that s+ t ≤ n.

(i) The s-restricted isometry constant of X, denoted by ηs(X), is defined to be the smallest
quantity such that, for any β ∈ Rn and J ⊆ {1, . . . , n} with |J | ≤ s,

(1− ηs(X))∥βJ∥22 ≤ ∥XβJ∥22 ≤ (1 + ηs(X))∥βJ∥22. (15)

(ii) The (s, t)-restricted orthogonality constant of X, denoted by θs,t(X), is defined to be the
smallest quantity such that, for any β ∈ Rn and J, T ⊆ {1, . . . , n} with |J | ≤ s, |T | ≤ t
and J ∩ T = ∅,

|⟨XβJ , XβT ⟩| ≤ θs,t(X)∥βJ∥2∥βT ∥2. (16)

The MIP is also a well-known regularity condition in the scenario of sparse learning, which
was introduced by [19] and has been used in [4, 7, 17, 18] and references therein. In the case
when each diagonal element of the Gram matrix Γ(X) is 1, θ1,1(X) coincides with the mutual
incoherence constant; see [19].

The following lemmas are useful for establishing the relationship between the q-REC and
other types of regularity conditions; in particular, Lemmas 3 and 4 are taken from [10, Lemma
1.1] and [42, Lemma 3.1], respectively.

Lemma 3. Let X ∈ Rm×n and s, t ∈ N be such that s+ t ≤ n. Then

θs,t(X) ≤ ηs+t(X) ≤ θs,t(X) + max{ηs(X), ηt(X)}.

Lemma 4. Let α, β ∈ Rn and 0 < τ < 1 be such that −⟨α, β⟩ ≤ τ∥α∥22. Then (1− τ)∥α∥2 ≤
∥α+ β∥2.

For the sake of simplicity, a partition structure and some notations are presented. For a
vector δ ∈ Rn and an index set J ⊆ {1, 2, . . . , n}, we use rank(δi; J

c) to denote the rank of the
absolute value of δi in Jc (in a decreasing order) and Jk(δ; t) to denote the index set of the
k-th batch of the first t largest coordinates in absolute value of δ in Jc. That is,

Jk(δ; t) := {i ∈ Jc : rank(δi; J
c) ∈ {kt+ 1, . . . , (k + 1)t}} for each k ∈ N. (17)

Lemma 5. Let X ∈ Rm×n, 0 < q ≤ 1, a > 0, and (s, t) be a pair of integers satisfying (5).
Then the following relations are true:

ϕq(s, t, a,X) ≥
√
σmin(s+ t,Γ(X))− a

1
q

(s
t

) 1
q
− 1

2
√

σmax(t,Γ(X)), (18)

ϕq(s, t, a,X) ≤
√

σmax(s+ t,Γ(X)) + a
1
q

(s
t

) 1
q
− 1

2
√
σmax(t,Γ(X)). (19)
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Proof. Fix δ ∈ Cq(s, a), as defined by (13). Then there exists J ⊆ {1, 2, . . . , n} such that

|J | ≤ s and ∥δJc∥qq ≤ a∥δJ∥qq. (20)

Write r := ⌈n−s
t ⌉ (where ⌈u⌉ denotes the largest integer not greater than u), Jk := Jk(δ; t)

(defined by (17)) for each k ∈ N and J∗ := J ∪ J0. Then it follows from [25, Lemma 7] and
(20) that

r∑
k=1

∥δJk∥2 ≤ t
1
2
− 1

q ∥δJc∥q ≤ a
1
q t

1
2
− 1

q ∥δJ∥q ≤ a
1
q

(s
t

) 1
q
− 1

2 ∥δJ∥2 (21)

(due to (7)). Noting by (17) and (20) that |J∗| ≤ s+ t and |Jk| ≤ t for each k ∈ N, one has by
(14) that √

σmin(s+ t,Γ(X))∥δJ∗∥2 ≤ ∥XδJ∗∥2 ≤
√

σmax(s+ t,Γ(X))∥δJ∗∥2,

∥XδJk∥2 ≤
√
σmax(t,Γ(X))∥δJk∥2 for each k ∈ N.

These, together with (21), imply that

∥Xδ∥2 ≥ ∥XδJ∗∥2 −
r∑

k=1

∥XδJk∥2

≥
(√

σmin(s+ t,Γ(X))− a
1
q

(s
t

) 1
q
− 1

2
√

σmax(t,Γ(X))

)
∥δJ∗∥2.

Since δ and J satisfying (20) are arbitrary, (18) is shown to hold by (6) and the fact that
J∗ = J ∪ J(δ; t). One can prove (19) in a similar way, and thus, the details are omitted.

The following proposition provides the sufficient conditions for the q-REC in terms of the
SEC, RIP and MIP; see (a), (b) and (c) below respectively.

Proposition 2. Let X ∈ Rm×n, 0 < q ≤ 1, a > 0, and (s, t) be a pair of integers satisfying
(5). Then X satisfies the q-REC(s, t, a) provided that one of the following conditions:

(a) σmin(s+ t,Γ(X)) > a
(
as
t

) 2
q
−1

σmax(t,Γ(X)).

(b) ηt(X) + θs,t(X) + a
1
2

(
as
t

) 1
q
− 1

2 θt,s+t(X) < 1.

(c) each diagonal element of Γ(X) is 1 and

θ1,1(X) <

((
1 + 2a

(as
t

) 1
q
−1
)
(s+ t)

)−1

.

Proof. It directly follows from Lemma 5 (cf. (18)) that X satisfies the q-REC(s, t, a) provided
that condition (a) holds. Fix δ ∈ Cq(s, a), and let J , r, Jk (for each k ∈ N) and J∗ be defined,
respectively, as in the beginning of the proof of Lemma 5. Then (21) follows directly and it
follows from [25, Lemma 7] and (17) that

∥δJc
∗∥1 =

r∑
k=1

∥δJk∥1 ≤ t
1− 1

q ∥δJc∥q ≤ a
1
q t

1− 1
q ∥δJ∥q ≤ a

1
q

(s
t

) 1
q
−1

∥δJ∥1. (22)
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Suppose that condition (b) is satisfied. By Definition 2 (cf. (16)), one has that

|⟨XδJ∗ , XδJc
∗⟩| ≤

r∑
k=1

|⟨XδJ∗ , XδJk⟩| ≤ θt,s+t(X)∥δJ∗∥2
r∑

k=1

∥δJk∥2.

Then it follows from (21) that

|⟨XδJ∗ , XδJc
∗⟩| ≤ a

1
q

(s
t

) 1
q
− 1

2
θt,s+t(X)∥δJ∗∥2∥δJ∥2

≤
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)
∥XδJ∗∥22 (23)

(by (15)). Since s ≤ t (by (5)), one has by Definition 2(i) that ηs(X) ≤ ηt(X), and then by
Lemma 3 that ηs+t(X) ≤ θs,t(X) + ηt(X). Then it follows from (b) that

0 <
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)
≤

a
1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− (ηt(X) + θs,t(X))
< 1. (24)

This, together with (23), shows that Lemma 4 is applicable (withXδJ∗ , XδJc
∗ ,

a
1
q ( s

t )
1
q− 1

2 θt,s+t(X)

1−ηs+t(X)

in place of α, β, τ) to concluding that

∥Xδ∥22 ≥

1−
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)

2

∥XδJ∗∥22

≥ (1− ηs+t(X))

1−
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)

2

∥δJ∗∥22

(due to (15)). Since δ and J satisfying (20) are arbitrary, we derive by (6) and (24) that

ϕq(s, t, a,X) ≥
√

1− ηs+t(X)

1−
a

1
q
(
s
t

) 1
q
− 1

2 θt,s+t(X)

1− ηs+t(X)

 > 0;

consequently, X satisfies the q-REC(s, t, a).
Suppose that (c) is satisfied. Then we have by (22) and Definition 2 (cf. (16)) that

∥Xδ∥22 = ∥XδJ∗∥22 + 2⟨XδJ∗ , XδJc
∗⟩+ ∥XδJc

∗∥
2
2

≥ ∥XδJ∗∥22 − 2|⟨XδJ∗ , XδJc
∗⟩|

≥ ∥XδJ∗∥22 − 2θ1,1(X)∥δJ∗∥1∥δJc
∗∥1

≥ ∥XδJ∗∥22 − 2a
1
q

(s
t

) 1
q
−1

θ1,1(X)∥δJ∗∥21.

(25)

Separating the diagonal and off-diagonal terms of the quadratic form δTJ∗X
TXδJ∗ , one has by
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(7) and (c) that

∥XδJ∗∥22 =
n∑

i=1

(XTX)i,i(δJ∗)i(δJ∗)i +

n∑
j ̸=k

(XTX)j,k(δJ∗)j(δJ∗)k

= ∥δJ∗∥22 +
n∑

j ̸=k

⟨X·j(δJ∗)j , X·k(δJ∗)k⟩

≥ ∥δJ∗∥22 − θ1,1(X)∥δJ∗∥21
≥ (1− (s+ t)θ1,1(X))∥δJ∗∥22.

Combining this inequality with (25), we get that

∥Xδ∥22 ≥
(
1−

(
1 + 2a

1
q

(s
t

) 1
q
−1
)
(s+ t)θ1,1(X)

)
∥δJ∗∥22.

Since δ and J satisfying (20) are arbitrary, we derive by (6) and (c) that

ϕq(s, t, a,X) ≥ 1−
(
1 + 2a

1
q

(s
t

) 1
q
−1
)
(s+ t)θ1,1(X) > 0;

consequently, X satisfies the q-REC(s, t, a). The proof is complete.

Remark 2. It was established in [4, Lemma 4.1(ii)], [42, Corollary 7.1 and 3.1] and [4,
Assumption 5] that X satisfies the classical REC under one of the following conditions:

(a’) σmin(s+ t,Γ(X)) > s
ta

2σmax(t,Γ(X)).

(b’) ηt(X) + θs,t(X) +
(
s
t

) 1
2 aθt,s+t(X) < 1.

(c’) each diagonal element of Γ(X) is 1 and θ1,1(X) < ((1 + 2a)(s+ t))−1.

Proposition 2 extends the existing results to the general case when 0 < q ≤ 1 and partially
improves them; in particular, each of conditions (a)-(c) in Proposition 2 required for the q-REC
is less restrictive than the corresponding one of conditions (a’)-(c’) required for the classical
REC in the situation when t > as, which usually occurs in the high-dimensional scenario (see,
e.g., [4, 9, 49]). Moreover, by Propositions 1 and 2, we achieve that the q-REC(s, t, a) is
satisfied provided that one of the following conditions:

(a◦) σmin(s+ t,Γ(X)) > min
{
1,
(
as
t

) 2
q
−2
}

s
ta

2σmax(t,Γ(X)).

(b◦) ηt(X) + θs,t(X) + min
{
1,
(
as
t

) 1
q
−1
}(

s
t

) 1
2 aθt,s+t(X) < 1.

(c◦) each diagonal element of Γ(X) is 1 and

θ1,1(X) <

((
1 + 2amin

{
1,
(as

t

) 1
q
−1
})

(s+ t)

)−1

.

12



3 Recovery Bounds for Deterministic Design

This section is devoted to establishing the ℓ2 recovery bounds for (CPq,ϵ) and (RPq,λ) in the
case that X is deterministic. Throughout this paper, we assume that the linear regression
model (1) involves a Gaussian noise, i.e., e ∼ N (0, σ2Im), and adopt the following notations:

let β∗ be a solution of (1), J := supp(β∗), s := |J |, and let t ∈ N satisfy (5).

The ℓ2 recovery bound of the ℓ1 regularization problem (i.e., Lasso estimator) was established
in [4] under the assumption of the classical REC. The deduction of the ℓ2 recovery bound is
based on an important property of the optimal solution. More precisely, let β̄1,ϵ and β̂1,λ be
the solutions of the ℓ1 minimization and the ℓ1 regularization problems, respectively. It was
reported in [9, Eq. (2.2)] and [4, Corollary B.2] that the corresponding residuals satisfy the
following dominant properties, with high probability,

∥(β̄1,ϵ − β∗)Jc∥1 ≤ ∥(β̄1,ϵ − β∗)J∥1

and
∥(β̂1,λ − β∗)Jc∥1 ≤ 3∥(β̂1,λ − β∗)J∥1

for the ℓ1 minimization and the ℓ1 regularization problems, respectively.
In the study of the ℓq minimization and the ℓq regularization problems, a natural question

arises whether the residuals of solutions of (CPq,ϵ) or (RPq,λ) satisfy such a dominant property
on the support of the true underlying parameter of linear regression (1) with high probability.
Below, we provide a positive answer for this question in Propositions 3 and 4. To this end, we
present some preliminary lemmas to measure the probabilities of random events related to the
linear regression model (1), in which Lemma 6 is taken from [49, Lemma C.1].

Lemma 6. Let 0 ≤ θ < 1 and b ≥ 0. Suppose that

max
1≤j≤n

∥X·j∥2 ≤ (1 + θ)
√
m. (26)

Then

P

(
∥X⊤e∥∞

m
≥ σ(1 + θ)

√
2(1 + b) log n

m

)
≤
(
nb
√

π log n
)−1

.

Lemma 7. Let d ≥ 5. Then

P
(
∥e∥22 ≥ dmσ2

)
≤ exp

(
−d− 1

4
m

)
.

Proof. Recall that e = (e1, . . . , em)⊤ ∼ N (0, σ2Im). Let ui := 1
σei for i = 1, . . . ,m. Then

one has that u1, . . . , um are i.i.d. Gaussian variables with ui ∼ N (0, 1) for i = 1, . . . ,m. Let
u := (u1, . . . , um)⊤. Clearly, ∥u∥22 = 1

σ2 ∥e∥22 is a chi-square random variable with m degrees of
freedom (see, e.g., [38, Section 5.6]). Then it follows from standard tail bounds of chi-square
random variable (see, e.g., [36, Appendix I]) that

P
(
∥u∥22 −m

m
≥ d− 1

)
≤ exp

(
−d− 1

4
m

)
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(as d ≥ 5). Consequently, we obtain that

P
(
∥e∥22 ≥ dmσ2

)
= P

(
∥u∥22 ≥ dm

)
≤ exp

(
−d− 1

4
m

)
.

The proof is complete.

Recall that β∗ satisfies the linear regression model (1).

Lemma 8. Let β̂q,λ be an optimal solution of (RPq,λ). Then

1

2m
∥Xβ∗ −Xβ̂q,λ∥22 ≤ λ∥β∗∥qq − λ∥β̂q,λ∥qq +

1

m
∥β̂q,λ − β∗∥1∥X⊤e∥∞.

Proof. Since β̂q,λ is an optimal solution of (RPq,λ), it follows that

1

2m
∥y −Xβ̂q,λ∥22 + λ∥β̂q,λ∥qq ≤

1

2m
∥y −Xβ∗∥22 + λ∥β∗∥qq.

This, together with (1), yields that

λ∥β̂q,λ∥qq − λ∥β∗∥qq ≤
1

2m
∥y −Xβ∗∥22 −

1

2m
∥y −Xβ̂q,λ∥22

=
1

m

⟨
X(β̂q,λ − β∗), e

⟩
− 1

2m
∥Xβ∗ −Xβ̂q,λ∥22

≤ 1

m
∥β̂q,λ − β∗∥1∥X⊤e∥∞ − 1

2m
∥Xβ∗ −Xβ̂q,λ∥22.

The proof is complete.

Below, we present some notations that are useful for the following discussion of the ℓ2
recovery bounds. Recall that β∗ is a solution of (1). Throughout the remainder of this paper,
let

a > 1, 0 ≤ θ < 1, b ≥ 0, (27)

unless otherwise specified, and let r > 0 be such that

r ≥ ∥β∗∥q. (28)

Let

ϵ := σ
√
5m and ρ :=

(
5σ2

2λ
+ rq

)1/q

, (29)

and select the regularization parameter in (RPq,λ) as

λ := max

{
a+ 1

a− 1
σ(1 + θ)21−q(1 + rq)

1−q
q

√
2(1 + b) log n

m
,
5

2
σ2

}
. (30)

Define the following two random events relative to linear regression model (1) by

A := {e : ∥e∥2 ≤ ϵ} (31)

and

B :=

{
e :

a+ 1

(a− 1)m
(2ρ)1−q∥X⊤e∥∞ ≤ λ

}
. (32)

The following lemma estimates the probabilities of events A and B.
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Lemma 9. The probability of event A satisfies

P(A ) ≥ 1− exp(−m). (33)

Moreover, suppose that (26) is satisfied. Then

P(B) ≥ 1−
(
nb
√

π log n
)−1

, (34)

P(A ∩ B) ≥ 1− exp(−m)−
(
nb
√

π log n
)−1

. (35)

Proof. By (29) and (31), Lemma 7 is applicable (with d = 5) to showing that P(A c) ≤
exp(−m), that is, (33) is proved. Then it remains to show (34) and (35). For this purpose, we
have by (30) that λ ≥ 5

2σ
2, and noting that 0 < q ≤ 1,

λ ≥ a+ 1

a− 1
σ(1 + θ)21−q

(
5σ2

2λ
+ rq

) 1−q
q

√
2(1 + b) log n

m

=
a+ 1

a− 1
σ(1 + θ)(2ρ)1−q

√
2(1 + b) log n

m

(due to (29)). Then one has by (32) that

P(Bc) ≤ P

(
a+ 1

(a− 1)m
(2ρ)1−q∥X⊤e∥∞ ≥ a+ 1

a− 1
σ(1 + θ)(2ρ)1−q

√
2(1 + b) log n

m

)

= P

(
∥X⊤e∥∞

m
≥ σ(1 + θ)

√
2(1 + b) log n

m

)
.

Hence, by assumption (26), Lemma 6 is applicable to ensuring (34). Moreover, it follows from
the elementary probability theory that

P(A ∩ B) ≥ P(A )− P(Bc) ≥ 1− exp(−m)−
(
nb
√

π log n
)−1

.

The proof is complete.

We show in the following two propositions that the optimal solution β̂ of the ℓq minimiza-
tion problem (CPq,ϵ) or the ℓq regularization problem (RPq,λ) satisfies the following dominant
property on the support of the true underlying parameter of (1) with high probability:

∥(β̂ − β∗)Jc∥qq ≤ c∥(β̂ − β∗)J∥qq (36)

with c = 1 or c = a, respectively.

Proposition 3. Let β̄q,ϵ be an optimal solution of (CPq,ϵ) with ϵ given by (29). Then it holds
under the event A that

∥(β̄q,ϵ − β∗)Jc∥q ≤ ∥(β̄q,ϵ − β∗)J∥q. (37)

15



Proof. Let e ∈ A . Recall that β∗ satisfies the linear regression model (1), one has that
∥y − Xβ∗∥2 = ∥e∥2 ≤ ϵ (under the event A ), and so, β∗ is a feasible vector of (CPq,ϵ).
Consequently, by the optimality of β̄q,ϵ for (CPq,ϵ), it follows that ∥β̄q,ϵ∥q ≤ ∥β∗∥q. Write
δ := β̄q,ϵ − β∗. Then we obtain that

∥β∗∥qq ≥ ∥β∗ + δ∥qq = ∥β∗ + δJ + δJc∥qq = ∥β∗ + δJ∥qq + ∥δJc∥qq, (38)

where the last equality holds because β∗
Jc = 0. On the other hand, one has by (8) that

∥β∗+ δJ∥qq ≥ ∥β∗∥qq −∥δJ∥qq. This, together with (38), implies (37). The proof is complete.

Proposition 4. Let β̂q,λ be an optimal solution of (RPq,λ) with λ given by (30). Suppose that
(26) is satisfied. Then

∥β̂q,λ − β∗∥1 ≤ (2ρ)1−q∥β̂q,λ − β∗∥qq (39)

under the event A , and
∥(β̂q,λ − β∗)Jc∥qq ≤ a∥(β̂q,λ − β∗)J∥qq (40)

under the event A ∩ B.

Proof. Let e ∈ A . Since β̂q,λ is an optimal solution of (RPq,λ), one has that

1

2m
∥y −Xβ̂q,λ∥22 + λ∥β̂q,λ∥qq ≤

1

2m
∥y −Xβ∗∥22 + λ∥β∗∥qq.

Then, by (1) and (28), it follows that

∥β̂q,λ∥qq ≤
1

2mλ
∥y −Xβ∗∥22 + ∥β∗∥qq ≤

1

2mλ
∥e∥22 + rq ≤ ρq

(due to (29) and (31)). Write δ := β̂q,λ − β∗. Then, we obtain by (7) and (28) that

∥δ∥1 ≤ ∥β̂q,λ∥1 + ∥β∗∥1 ≤ ∥β̂q,λ∥q + ∥β∗∥q ≤ ρ+ r < 2ρ.

Consequently, noting that 0 < q ≤ 1, one sees that ∥δ∥1
2ρ ≤

(
∥δ∥1
2ρ

)q
, and then, by (7) that

∥δ∥1 ≤ (2ρ)1−q∥δ∥q1 ≤ (2ρ)1−q∥δ∥qq. (41)

This shows that (39) is proved. Then it remains to claim (40). To this end, noting that β∗
Jc = 0,

we derive by Lemma 8 that

− 1

m
∥δ∥1∥X⊤e∥∞ ≤ λ∥β∗∥qq − λ∥β∗ + δ∥qq

= λ∥β∗
J∥qq − λ∥β∗

J + δJ∥qq − λ∥δJc∥qq
≤ λ

(
∥δJ∥qq − ∥δJc∥qq

)
(by (8)). This, together with (41), yields that

λ
(
∥δJ∥qq − ∥δJc∥qq

)
≥ − 1

m
(2ρ)1−q∥δ∥qq∥X⊤e∥∞.

Then, under the event A ∩ B, we obtain by (32) that

(a+ 1)
(
∥δJ∥qq − ∥δJc∥qq

)
≥ −(a− 1)∥δ∥qq = −(a− 1)(∥δJ∥qq + ∥δJc∥qq),

which yields (40). The proof is complete.
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Remark 3. By Lemma 9, Propositions 3 and 4 show that (37) holds with probability at least

1− exp(−m), and (40) holds with probability at least 1− exp(−m)−
(
nb
√
π log n

)−1
if (26) is

satisfied, respectively.

By virtue of Lemma 9 and Proposition 3, one of the main theorems of this section is as follows,
in which we establish the ℓ2 recovery bound for the ℓq minimization problem (CPq,ϵ) under the
q-REC. This theorem provides a unified framework to show that one can stably recover the
underlying parameter with high probability via solving the ℓq minimization problem when the
design matrix satisfies the weak q-REC.

Theorem 1. Let β̄q,ϵ be an optimal solution of (CPq,ϵ) with ϵ given by (29). Suppose that X
satisfies the q-REC(s, t, 1). Then, with probability at least 1− exp(−m), we have that

∥β̄q,ϵ − β∗∥22 ≤
1 +

(
s
t

) 2
q
−1

ϕ2
q(s, t, 1, X)

4ϵ2. (42)

Proof. Write δ := β̄q,ϵ − β∗, and let J∗ := J ∪ J0(δ; t) (defined by (17)). Fix e ∈ A . Then it
follows from [25, Lemma 7] and Proposition 3 that

∥δJc
∗∥

2
2 ≤ t

1− 2
q ∥δJc∥2q ≤ t

1− 2
q ∥δJ∥2q ≤

(s
t

) 2
q
−1

∥δJ∥22 ≤
(s
t

) 2
q
−1

∥δJ∗∥22

(by (7)), and so

∥δ∥22 = ∥δJ∗∥22 + ∥δJc
∗∥

2
2 ≤

(
1 +

(s
t

) 2
q
−1
)
∥δJ∗∥22. (43)

Recalling that β∗ satisfies the linear regression model (1), we have that ∥y−Xβ∗∥2 = ∥e∥2 ≤ ϵ
(by (31)), and then

∥Xδ∥2 = ∥Xβ̄q,ϵ −Xβ∗∥2 ≤ ∥Xβ̄q,ϵ − y∥2 + ∥Xβ∗ − y∥2 ≤ 2ϵ. (44)

On the other hand, Proposition 3 is applicable to concluding that (37) holds, which shows
δ ∈ Cq(s, 1) (cf. (13)). Consequently, we obtain by the assumption of the q-REC(s, t, 1) that

∥δJ∗∥2 ≤
∥Xδ∥2

ϕq(s, t, 1, X)
.

This, together with (43) and (44), implies that (42) holds under the event A . Noting from
Lemma 9 that P(A ) ≥ 1− exp(−m), we obtain the conclusion. The proof is complete.

In the special case when the underlying data is noise-free, Theorem 1 shows that (CPq,ϵ)
can exactly predict the parameter for the deterministic linear regression with high probability
under the lower-order REC. For the realistic scenario where the measurements are noisy-aware,
Theorem 1 illustrates the stable recovery capability of (CPq,ϵ) in the sense that its solution
approaches to the true sparse parameter within a tolerance proportional to the noise level
with high probability. Moreover, Theorem 1 establishes the ℓ2 recovery bound ∥β̄q,ϵ − β∗∥2 =
O(ϵ) under a weaker assumption than the RIP-type or MIP-type condition used in [16, 39],
respectively.

As a special case of Theorem 1 when q = 1, the following corollary presents the ℓ2 recovery
bound of the ℓ1 minimization problem (CP1,ϵ) as

∥β̄1,ϵ − β∗∥22 = O(ϵ2) (45)
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under the classical REC. This result improves the ones in [7, 9] under a weaker assumption, in
which the ℓ2 recovery bound (45) was obtained under the RIP-type conditions.

Corollary 1. Let β̄1,ϵ be an optimal solution of (CP1,ϵ) with ϵ given by (29). Suppose that X
satisfies the 1-REC(s, t, 1). Then, with probability at least 1− exp(−m), we have that

∥β̄1,ϵ − β∗∥22 ≤
1 + s

t

ϕ2
1(s, t, 1, X)

4ϵ2.

The other main theorem of this section is as follows, in which we exploit the statistical
properties of the ℓq regularization problem (RPq,λ) under the q-REC. The results include the
estimation of prediction loss and recovery bound of parameter approximation, and also the
oracle property, which provides an upper bound on the prediction loss plus the violation of
false parameter estimation.

Theorem 2. Let β̂q,λ be an optimal solution of (RPq,λ) with λ given by (30). Suppose that
X satisfies the q-REC(s, t, a) and that (26) is satisfied. Then, with probability at least 1 −
exp(−m)−

(
nb
√
π logn

)−1
, we have that

1

m
∥Xβ̂q,λ −Xβ∗∥22 ≤

(
2aλ

(ϕq(s, t, a,X)/
√
m)q

) 2
2−q

s, (46)

1

2m
∥Xβ̂q,λ −Xβ∗∥22 + λ∥(β̂q,λ)Jc∥qq ≤

(
2

q
2aλ

(ϕq(s, t, a,X)/
√
m)q

) 2
2−q

s, (47)

∥β̂q,λ − β∗∥22 ≤
(
1 + a

2
q

(s
t

) 2
q
−1
)(

2aλ

(ϕq(s, t, a,X)/
√
m)2

) 2
2−q

s. (48)

Proof. Write δ := β̂q,λ − β∗ and fix e ∈ A ∩ B. Note by (39) and (32) that

1

m
∥δ∥1∥X⊤e∥∞ ≤ a− 1

a+ 1
λ∥δ∥qq.

This, together with Lemma 8, implies that

1

2m
∥Xβ̂q,λ −Xβ∗∥22 ≤ λ∥β∗∥qq − λ∥β̂q,λ∥qq +

a− 1

a+ 1
λ∥δ∥qq

≤ λ∥δJ∥qq − λ∥(β̂q,λ)Jc∥qq +
a− 1

a+ 1
λ∥δ∥qq

(49)

(noting that β∗
Jc = 0 and by (8)). Let J∗ := J ∪ J0(δ; t). One has by (40) and (7) that

λ∥δJ∥qq +
a− 1

a+ 1
λ∥δ∥qq ≤ aλ∥δJ∥qq ≤ aλs1−

q
2 ∥δJ∥q2,

and by the assumption of the q-REC(s, t, a) that

∥δJ∥2 ≤ ∥δJ∗∥2 ≤
∥Xδ∥2

ϕq(s, t, a,X)
.

18



These two inequalities, together with (49), imply that

1

2m
∥Xβ̂q,λ −Xβ∗∥22 + λ∥(β̂q,λ)Jc∥qq ≤

aλs1−
q
2

ϕq
q(s, t, a,X)

∥Xβ̂q,λ −Xβ∗∥q2.

This yields that
(46) and (47) hold under the event A ∩ B. (50)

Furthermore, it follows from [25, Lemma 7] that

∥δJc
∗∥

2
2 ≤ t

1− 2
q ∥δJc∥2q ≤ a

2
q t

1− 2
q ∥δJ∥2q ≤ a

2
q

(s
t

) 2
q
−1

∥δJ∥22.

(by (40) and (7)). By the assumption of the q-REC(s, t, a), one has by (46) that

∥δJ∗∥22 ≤
∥Xδ∥22

ϕ2
q(s, t, a,X)

≤
(

2aλ

(ϕq(s, t, a,X)/
√
m)2

) 2
2−q

s.

Hence we obtain that

∥β̂q,λ − β∗∥22 = ∥δJ∗∥22 + ∥δJc
∗∥

2
2 ≤

(
1 + a

2
q

(s
t

) 2
q
−1
)
∥δJ∗∥22

≤
(
1 + a

2
q

(s
t

) 2
q
−1
)(

2aλ

(ϕq(s, t, a,X)/
√
m)2

) 2
2−q

s.

This shows that
(48) holds under the event A ∩ B. (51)

By assumption (26), Lemma 9 is applicable to concluding that

P(A ∩ B) ≥ 1− exp(−m)−
(
nb
√

π log n
)−1

.

This, together with (50) and (51), yields that (46)-(48) hold with probability at least 1 −
exp(−m)−

(
nb
√
π logn

)−1
. The proof is complete.

Remark 4. (i) It is worth noting that each of the estimations provided in Theorem 2 (cf.
(46)-(48)) involves the term ϕq(s, t, a,X)/

√
m in the denominator, which scales as a constant

if X has i.i.d. Gaussian entries; see Remark 1(ii).
(ii) Theorem 2 provides a unified framework of the statistical properties of the ℓq regular-

ization problem under the weak q-REC that is one of the weakest regularity conditions in the
literature, in which each of the obtained estimations depends on the noise amplitude and sample

size. In particular, for the regularization parameter scaling as λ ≍ max

(
σ
√

logn
m , σ2

)
(cf.

(30)), Theorem 2 indicates the prediction loss and the ℓ2 recovery bound for (RPq,λ) scale as

1

m
∥Xβ̂q,λ −Xβ∗∥22 = O

((
σ2 log n

m

) 1
2−q

s

)
,

and

∥β̂q,λ − β∗∥22 = O

((
σ2 log n

m

) 1
2−q

s

)
. (52)
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Though the rate (52) in the case q < 1 is not as good as that of Lasso, the required regu-
larity condition is substantially weaker. Specifically, for some applications that the q-REC is
satisfied but not the classical REC (e.g., Example 1 below), the recovery bound for Lasso may
violate and lead to a bad estimation while the ℓq regularization model still works and produces
a comprehensive estimation.

(iii) It was shown in [46] that the global solution of the FCP sparse linear regression, including
the SCAD and MCP as special cases, has an ℓ2 recovery bound O(λ2s) under the SEC. Though
the recovery bounds are slightly better than (52), the condition required is substantially stronger
than the q-REC. In [46], the authors also established the oracle property for the ℓ0 regularization
method under the SEC; while its ℓ2 recovery bound cannot be guaranteed in their work. We
shall see in section 5 that the ℓq regularization method performs better in parameter estimation
than either the SCAD/MCP or the ℓ0 regularization method via several numerical experiments.

(iv) Mazumder et al. [29, 30] considered the following ℓ0 optimization problems

min ∥β∥0, s.t.

∥∥∥∥ 1

m
X⊤(y −Xβ)

∥∥∥∥
∞

≤ ϵ, (53)

and

min
1

2m
∥y −Xβ∥22 + λ∥β∥p, s.t. ∥β∥0 ≤ s (p = 1 or 2), (54)

respectively. It was shown in [29] that the ℓ2 recovery bound for problem (53) scales as O(ϵ2)
with high probability, which is similar to (45), under the SEC-type condition. While its as-
sumed regularity condition is stronger than the q-REC; see Proposition 2. In [30], the au-
thors established the prediction loss for problem (54), i.e., O(σ

√
log n∥β∗∥1) when p = 1, and

O(σ
√
s log n∥β∗∥2) when p = 2. However, the ℓ2 recovery bound was not obtained yet therein.

Remark 5. Recently, some works concerned the statistical property for the local minimum of
some nonconvex regularization problems; see [26, 28].

(i) Loh and Wainwright [28] studied the ℓ2 recovery bound for the local minimum of a general
regularization problem:

min Lm(β;X) +
n∑

j=1

ρλ(βj), (55)

where Lm : Rn × Rm×n → R is the loss function, and ρλ : R → R is the (possibly non-
convex) penalty function. In [28], the penalty function ρλ is assumed to satisfy the following
assumptions:

(a) ρλ(0) = 0 and is symmetric around zero;
(b) ρλ is nondecreasing on R+;

(c) For t > 0, the function t 7→ ρλ(t)
t is nonincreasing in t;

(d) ρλ is differentiable for each t ̸= 0 and subdifferentiable at t = 0, with lim
t→0+

ρ
′
λ(t) = λL;

(e) There exists µ > 0 such that ρλ,µ(t) := ρλ(t) +
µ
2 t

2 is convex.
Loh and Wainwright established in [28, Theorem 1] the ℓ2 recovery bound for the critical point
satisfying the first-order necessary condition of (55) under the restricted strong convex condi-
tion, which is a variant of the classical REC.

The ℓq norm can be reformulated as the penalty function ρλ(βj) := λ|βj |q, however, it does
not satisfy assumptions (d) or (e); in particular, assumption (e) plays a key role in the es-
tablishment of oracle property and ℓ2 recovery bound for the local minimum. Therefore, the
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result in [28] cannot be directly applied to the ℓq regularization problem, and the oracle property
for the general local minimum of the ℓq regularization problem is still an open question at this
moment.

(ii) Liu et al. [26] studied the statistical property of the FCP sparse linear regression and
presented the oracle property and ℓ2 recovery bound for the certain local minimum, which satis-
fies a subspace second-order necessary condition and lies in the level set of the FCP regularized
function at the true solution, under the SEC. Although the ℓq regularizer is beyond the FCP,
our established Theorem 2 provides a theoretical result similar to [26] in the sense that the
oracle property and ℓ2 recovery bound are shown for the local minimum within the level set of
the ℓq regularized function at the true solution.

Example 1. Consider the linear regression problem (1), where

X :=

(
2 3 1
2 1 3

)
, β∗ := (1, 0, 0)⊤, e ∼ N (0, 0.01).

It was validated in [25, Example 1] that the matrix X satisfies 1/2-REC(1, 1, 1) but not the
classical REC(1, 1, 1); hence the recovery bound for the ℓ1/2 regularization problem is satisfied
but may not for Lasso. To show the performance of the ℓ1/2 regularization problem and Lasso
in this case, for each regularization parameter λ varying from 10−8 to 1, we randomly generate
the Gaussian noise 500 times and calculate the estimated errors ∥β̂q,λ − β∗∥22 for the ℓ1/2
regularization problem and Lasso, respectively. We employ FISTA [3] and the filled function
method [23] to find the global optimal solution of Lasso and the ℓ1/2 regularization problem,
respectively. The results are illustrated in Figure 1, in which the error bars represent the 95%
confidence intervals and the curves of recovery bounds stand for the terms in the right-hand
side of (48) (cf. [25, Example 2]) and (52), respectively. It is observed from Figure 1(a) that
the recovery bound (48) is satisfied with high probability for most of λ’s and tight when λ ≈ 1

2
for the ℓ1/2 regularization problem. Figure 1(b) shows that the estimated error (52) for Lasso
is not satisfied when λ is small because the classical REC violates. Moreover, the solutions of
Lasso are always equal-contributed among 3 components that leads to the failure approach to a
sparse solution.
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(a) The ℓ1/2 regularization problem.

0 0.2 0.4 0.6 0.8 1
10

−8

10
−6

10
−4

10
−2

10
0

10
2

 

 

‖β̂1,λ− β∗‖22

O(λ2)

Estimated Error

Recovery Bound (52)

(b) Lasso.

Figure 1: The illustration of recovery bounds and estimated errors.

As an application of Theorem 2 to the case when q = 1, the following corollary presents the
statistical properties of the ℓ1 regularization problem under the classical REC, which covers [4,
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Theorem 7.2] as a special case when a = 3, θ = 0 and b = 0. The same ℓ2 recovery bound rate
O(σ2s logn/m) was reported in [45] under the sparse Riesz condition, which is comparable
with the classical REC; while the same oracle inequality rate O(σ2s log n/m) was established
in [42] under the compatibility condition, which is slightly weaker than the classical REC but
cannot guarantee the ℓ2 recovery bound.

Corollary 2. Let β̂1,λ be an optimal solution of (RP1,λ) with

λ = 2σ(1 + θ)

√
2(1 + b) log n

m
.

Suppose that X satisfies the 1-REC(s, t, 3) and that (26) is satisfied. Then, with probability at

least 1−
(
nb
√
π log n

)−1
, we have that

1

m
∥Xβ̂1,λ −Xβ∗∥22 ≤

288(1 + b)(1 + θ)2

ϕ2
1(s, t, 3, X)/m

σ2s
log n

m
,

1

2m
∥Xβ̂1,λ −Xβ∗∥22 + λ∥(β̂1,λ)Jc∥1 ≤

144(1 + b)(1 + θ)2

ϕ2
1(s, t, 3, X)/m

σ2s
log n

m
,

∥β̂1,λ − β∗∥22 ≤
288(1 + b)(1 + θ)2

(
1 + 9 s

t

)
ϕ4
1(s, t, 3, X)/m2

σ2s
log n

m
.

4 Recovery Bounds for Random Design

In practical applications, it is a more realistic scenario that the design matrix X is random.
In this section, we consider this situation and present the ℓ2 recovery bounds for (CPq,ϵ) and
(RPq,λ) by virtue of the results obtained in the preceding section. In particular, throughout
this section, we shall assume that the linear regression model (1) involves a Gaussian noise,
i.e., e ∼ N (0, σ2Im), and

X ∈ Rm×n is a Gaussian random design with i.i.d. N (0,Σ) rows,

that is, X1·, . . . , Xm· are i.i.d. random vectors with each Xi· ∼ N (0,Σ). Recall that a, θ, and
b are given by (27), and let (s, t) be a pair of integers satisfying (5).

To study the statistical properties of (CPq,ϵ) and (RPq,λ) with a random design X, we first
provide some sufficient condition for the q-REC of X in terms of the population covariance ma-
trix Σ. For this purpose, we use Σ

1
2 to denote the square root of Σ and ζ(Σ) := max1≤j≤nΣj,j

to denote the maximal variance. Let a > 0, and two random events related to the linear
regression model (1) with X being a Gaussian random design are defined as follows

Ca :=

{
ϕq(s, t, a,X) >

√
m

2
ϕq(s, t, a,Σ

1
2 )

}
, (56)

and

D :=

{
max
1≤j≤n

∥X·j∥2 ≤ (1 + θ)
√
m

}
. (57)

The following lemma is taken from [1, Supplementary, Lemma 6], which is useful for providing
a sufficient condition for the q-REC of X.
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Lemma 10. There exist universal positive constants (c1, c2) (independent of m,n,Σ) such that
it holds with probability at least 1− exp(−c2m) that, for each δ ∈ Rn

∥Xδ∥22
m

≥ 1

2
∥Σ

1
2 δ∥22 − c1ζ(Σ)

log n

m
∥δ∥21. (58)

The following lemma calculates the probabilities of events Cc and D , which is crucial for
establishing the ℓ2 recovery bounds of (CPq,ϵ) and (RPq,λ) with a random design X. In
particular, part (i) of this lemma shows that the Gaussian random design X satisfies the q-
REC with high probability as long as the sample size m is sufficiently large and the square root
of its population covariance matrix Σ

1
2 satisfies the q-REC; part (ii) of this lemma presents

that each column of the Gaussian random design X has an Euclidean norm scaling as
√
m

with an overwhelming probability.

Lemma 11. (i) Let a > 0. Suppose that Σ
1
2 satisfies the q-REC(s, t, a). Then, there exist

universal positive constants (c1, c2) (independent of m,n, q, s, t, a,Σ) such that, if

m >
c1ζ(Σ)

ϕ2
q(s, t, a,Σ

1
2 )

(√
s+ t+ a

√
s
(as

t

) 1
q
−1
)2

log n, (59)

then
P(Ca) ≥ 1− exp(−c2m). (60)

(ii) Suppose that Σj,j = 1 for all j = 1, . . . , n. Then, there exist universal positive constants
(c3, c4) and τ ≥ 1 (independent of m,n, θ,Σ) such that, if

m >
c3τ

4

θ2
logn, (61)

then
P(D) ≥ 1− 2 exp(−c4θ

2m/τ4). (62)

Proof. (i) We first claim that

ϕq(s, t, a,X) >

√
m

2
ϕq(s, t, a,Σ

1
2 ), (63)

whenever (58) holds for each δ ∈ Rn. To this end, we suppose that (58) is satisfied for each
δ ∈ Rn. Fix δ ∈ Cq(s, a), and let J , r, Jk (for each k ∈ N) and J∗ be defined, respectively, as
in the beginning of the proof of Lemma 5. Then (22) follows directly, and one has that

∥δ∥1 = ∥δJ∗∥1 + ∥δJc
∗∥1

≤
√
s+ t∥δJ∗∥2 + a

√
s
(as

t

) 1
q
−1

∥δJ∥2

≤
(√

s+ t+ a
√
s
(as

t

) 1
q
−1
)
∥δJ∗∥2.

(64)

By the assumption that Σ
1
2 satisfies the q-REC(s, t, a), it follows that

∥Σ
1
2 δ∥22 ≥ ϕ2

q(s, t, a,Σ
1
2 )∥δJ∗∥22.

23



Substituting this inequality and (64) into (58) yields

∥Xδ∥22
m

≥

(
1

2
ϕ2
q(s, t, a,Σ

1
2 )− c1ζ(Σ)

(√
s+ t+ a

√
s
(as

t

) 1
q
−1
)2

log n

m

)
∥δJ∗∥22.

This, together with (59), shows that

∥Xδ∥22
m

≥ 1

4
ϕ2
q(s, t, a,Σ

1
2 )∥δJ∗∥22.

Since δ and J satisfying (20) are arbitrary, we derive by (6) that (63) holds, as desired. Then,
Lemma 10 is applicable to concluding (60).
(ii) Noting by the assumption that Σj,j = 1 for all j = 1, . . . , n, [49, Theorem 1.6] is applicable
to showing that there exist universal positive constants (c1, c2) and τ ≥ 1 such that

P
(
∩n
j=1

{
(1− θ)

√
m ≤ ∥X·j∥2 ≤ (1 + θ)

√
m
})

≥ 1− 2 exp(−c2θ
2m/τ4),

whenever m satisfies (61). Then it immediately follows from (57) that

P(D) = P(∩n
j=1{∥X·j∥2 ≤ (1 + θ)

√
m})

≥ 1− 2 exp(−c2θ
2m/τ4),

that is, (62) is proved.

Remark 6. (i) As a direct application of Lemma 11(i), the classical REC is satisfied by X

with high probability if Σ
1
2 satisfies the classical REC(s,t,a) and

m >
c1ζ(Σ)

ϕ2
1(s, t, a,Σ

1
2 )

(√
s+ t+ a

√
s
)2

log n,

which covers [35, Corollary 1] as a special case when t = 0.
(ii) Recall from Remark 1 that ϕq(s, t, a,X) given by (6) usually scales as

√
m independent

of s and n for the Gaussian random design X. Then Lemma 11(i) is applicable to indicating

that ϕq(s, t, a,Σ
1
2 ) usually scales as a constant independent of s, m and n.

Below, we consider the dominant property (36) in the situation whenX is a Gaussian random
design. For the ℓq minimization problem (CPq,ϵ), Proposition 3 is still applicable for the case
when X is a Gaussian random design since it does not rely on the assumption of X, and thus,
(37) holds with the same probability for the random design scenario; see Remark 3. In the
following proposition, we show the dominant property (40) for the ℓq regularization problem
(RPq,λ) with a random design by virtue of Proposition 4. Recall that ϵ, λ, ρ and the events
A and B are given in the preceding section; see (29)-(32) for details.

Proposition 5. Let β̂q,λ be an optimal solution of (RPq,λ) with λ given by (30). Suppose that
Σj,j = 1 for all j = 1, . . . , n. Then, there exist universal positive constants (c1, c2) and τ ≥ 1
(independent of m,n, q, a, θ, b, ϵ, r, λ,Σ) such that, if

m >
c1τ

4

θ2
logn, (65)

then (40) holds with probability at least (1−
(
nb
√
π log n

)−1
)(1−2 exp(−c2θ

2m/τ4))−exp(−m).
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Proof. By (57), one sees by Proposition 4 that (40) holds under the event A ∩B∩D . Then it
remains to estimate P(A ∩B ∩D). By Lemma 11(ii), there exist universal positive constants
(c1, c2) and τ ≥ 1 such that

P(D) ≥ 1− 2 exp(−c2θ
2m/τ4),

whenever m satisfies (65). From Lemma 9 (cf. (34)), we have also by (57) that

P(B|D) ≥ 1− (nb
√

π log n)−1.

Then, it follows that

P(B ∩ D) = P(B|D)P(D)

≥ (1− (nb
√

π log n)−1)(1− 2 exp(−c2θ
2m/τ4)),

and then by the elementary probability theory and (33) that,

P(A ∩ B ∩ D) = P(B ∩ D)− P(B ∩ D ∩ A c)

≥ P(B ∩ D) + P(A )− 1

≥
(
1−

(
nb
√

π log n
)−1

)
(1− 2 exp(−c2θ

2m/τ4))− exp(−m),

whenever m satisfies (65). The proof is complete.

Now we are ready to present the main theorems of this section, in which we establish
the ℓ2 recovery bounds for (CPq,ϵ) and (RPq,λ) when X is a Gaussian random design. The
first theorem illustrates the stable recovery capability of the ℓq minimization problem (CPq,ϵ)
(within a tolerance proportional to the noise) with high probability when the design matrix
is random as long as the vector β∗ is sufficiently sparse and the sample size m is sufficiently
large.

Theorem 3. Let β̄q,ϵ be an optimal solution of (CPq,ϵ) with ϵ given by (29). Suppose that Σ
1
2

satisfies the q-REC(s, t, 1). Then, there exist universal positive constants (c1, c2) (independent
of m,n, q, s, t, ϵ,Σ) such that, if (59) is satisfied, then it holds with probability at least (1 −
exp(−m))(1− exp(−c2m)) that

∥β̄q,ϵ − β∗∥22 ≤
16(1 +

(
s
t

) 2
q
−1

)

mϕ2
q(s, t, 1,Σ

1
2 )
ϵ2. (66)

Proof. To simplify the proof, corresponding to inequalities (42) and (66), we define the following
two events

E1 :=

∥β̄q,ϵ − β∗∥22 ≤
4(1 +

(
s
t

) 2
q
−1

)

ϕ2
q(s, t, 1, X)

ϵ2

 ,

E2 :=

∥β̄q,ϵ − β∗∥22 ≤
16(1 +

(
s
t

) 2
q
−1

)

mϕ2
q(s, t, 1,Σ

1
2 )
ϵ2

 .

Then, by the definition of C1 (56), we have that C1 ∩ E1 ⊆ E2 and thus

P(E2) ≥ P(E1 ∩ C1) = P(E1|C1)P(C1). (67)
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Note by Theorem 1 that
P(E1|C1) ≥ 1− exp(−m). (68)

By Lemma 11(i) (with a = 1), there exist universal positive constants (c1, c2) such that (59)
ensures (60). Then we obtain by (67) and (68) that

P(E2) ≥ (1− exp(−m))(1− exp(−c2m)),

whenever m satisfies (59). The proof is complete.

As a direct application of Theorem 3 to the special case when q = 1, the following corollary
presents the ℓ2 recovery bound of the ℓ1 minimization problem (CP1,ϵ) with a Gaussian random
design as

∥β̄1,ϵ − β∗∥2 = O(ϵ)

under the classical REC.

Corollary 3. Let β̄1,ϵ be an optimal solution of (CP1,ϵ) with ϵ given by (29). Suppose that Σ
1
2

satisfies the 1-REC(s, t, 1). Then, there exist universal positive constants (c1, c2) (independent
of m,n, q, s, t, ϵ,Σ) such that, if

m >
c1ζ(Σ)

ϕ2
1(s, t, 1,Σ

1
2 )
(
√
s+ t+

√
s)2 log n,

then it holds with probability at least (1− exp(−m))(1− exp(−c2m)) that

∥β̄1,ϵ − β∗∥22 ≤
16(1 + s

t )

mϕ2
1(s, t, 1,Σ

1
2 )
ϵ2.

The other main theorem of this section is as follows, in which we exploit the estimation of
prediction loss, the oracle property and the ℓ2 recovery bound of parameter approximation of
the ℓq regularization problem (RPq,λ) with a Gaussian random design under the q-REC of the
square root of its population covariance matrix.

Theorem 4. Let β̂q,λ be an optimal solution of (RPq,λ) with λ given by (30). Suppose that

Σj,j = 1 for all j = 1, . . . , n and Σ
1
2 satisfies the q-REC(s, t, a). Then, there exist universal

positive constants (c1, c2, c3, c4) and τ ≥ 1 (independent of m,n, q, s, t, a, θ, b, ϵ, r, λ,Σ) such
that, if

m > max

c1(
√
s+ t+ a

1
q
√
s
(
s
t

) 1
q
−1

)2

ϕ2
q(s, t, a,Σ

1
2 )

log n,
c3τ

4

θ2
log n

 , (69)

then it holds with probability at least(
1− exp(−m)−

(
nb
√

π log n
)−1

)
(1− exp(−c2m)− 2 exp(−c4θ

2m/τ4))

that

1

m
∥Xβ̂q,λ −Xβ∗∥22 ≤

(
2q+1aλ

ϕq
q(s, t, a,Σ

1
2 )

) 2
2−q

s, (70)
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1

2m
∥Xβ̂q,λ −Xβ∗∥22 + λ∥(β̂q,λ)Jc∥qq ≤

(
8

q
2aλ

ϕq
q(s, t, a,Σ

1
2 )

) 2
2−q

s, (71)

∥β̂q,λ − β∗∥22 ≤
(
1 + a

2
q

(s
t

) 2
q
−1
)(

8aλ

ϕ2
q(s, t, a,Σ

1
2 )

) 2
2−q

s. (72)

Proof. To simplify the proof, we define the following six events

F1 = {(46) happens} , F2 = {(47) happens} , F3 = {(48) happens} ,
G1 = {(70) happens} , G2 = {(71) happens} , G3 = {(72) happens} .

Fix i ∈ {1, 2, 3}. Then, we have by (56) that Ca ∩ Fi ⊆ Gi and thus

P(Gi) ≥ P(Ca ∩ Fi). (73)

By Lemma 11, there exist universal positive constants (c1, c2, c3, c4) and τ ≥ 1 such that, (69)
ensures (60) and (62). Then it follows from (60) and (62) that

P(Ca ∩ D) ≥ P(Ca) + P (D)− 1 ≥ 1− exp(−c2m)− 2 exp(−c4θ
2m/τ4), (74)

whenever m satisfies (69). Recall from Theorem 2 that

P(Fi|Ca ∩ D) ≥ 1− exp(−m)−
(
nb
√
π log n

)−1
.

This, together with (74), implies that

P(Ca ∩ Fi) ≥ P(Fi|Ca ∩ D)P(Ca ∩ D)

≥
(
1− exp(−m)−

(
nb
√

π log n
)−1

)
(1− exp(−c2m)− 2 exp(−c4θ

2m/τ4)).

Then, one has by (73) that

P(Gi) ≥
(
1− exp(−m)−

(
nb
√

π log n
)−1

)
(1− exp(−c2m)− 2 exp(−c4θ

2m/τ4)),

whenever m satisfies (69). The proof is complete.

As an application of Theorem 4 to the special case when q = 1 and a = 3, the following
corollary presents the statistical properties of the ℓ1 regularization problem with a Gaussian
random design under the classical REC. A similar ℓ2 recovery bound was shown in [49, Theorem
3.1] by using a different analytic technique.

Corollary 4. Let β̂1,λ be an optimal solution of (RP1,λ) with

λ = 2σ(1 + θ)

√
2(1 + b) log n

m
.

Suppose that Σj,j = 1 for all j = 1, . . . , n and Σ
1
2 satisfies the 1-REC(s, t, 3). Then, there exist

universal positive constants (c1, c2, c3, c4) and τ ≥ 1 (independent of m,n, s, t, θ, b,Σ) such that,
if

m > max

{
c1(

√
s+ t+ 3

√
s)2

ϕ2
1(s, t, 3,Σ

1
2 )

log n,
c3τ

4

θ2
logn

}
,
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then it holds with probability at least

(1− exp(−m)−
(
nb
√

π log n
)−1

)(1− exp(−c2m)− 2 exp(−c4θ
2m/τ4))

that
1

m
∥Xβ̂1,λ −Xβ∗∥22 ≤

1152(1 + b)(1 + θ)2

ϕ2
1(s, t, 3,Σ

1
2 )

s log n

m
σ2,

1

2m
∥Xβ̂1,λ −Xβ∗∥22 + λ∥(β̂1,λ)Jc∥1 ≤

576(1 + b)(1 + θ)2

ϕ2
1(s, t, 3,Σ

1
2 )

s log n

m
σ2,

∥β̂1,λ − β∗∥22 ≤
4608(1 + b)(1 + θ)2(1 + 9 s

t )

ϕ4
1(s, t, 3,Σ

1
2 )

s log n

m
σ2.

5 Numerical Experiments

The purpose of this section is to carry out the numerical experiments to illustrate the stability
of the ℓq optimization methods, verify the established theory of the ℓ2 recovery bounds in the
preceding sections and compare the numerical performance of the ℓq regularization methods
with another two widely used nonconvex regularization methods, namely the SCAD and MCP.
In particular, we are concerned with the cases when q = 0, 1/2, 2/3 and 1. To solve the ℓq
minimization problems, we will apply the iterative reweighted algorithm [11, 13]. To solve
the ℓq regularization problems, we will apply the iterative hard thresholding algorithm [5] for
q = 0, the proximal gradient algorithm [25] for q = 1/2 and 2/3, and FISTA [3] for q = 1,
respectively. The proximal gradient algorithm proposed in [28] will be used to solve the SCAD
and MCP. All numerical experiments are performed in MATLAB R2014b and executed on a
personal desktop (Intel Core i7-4790, 3.60 GHz, 8.00 GB of RAM).

The simulated data are generated via a standard process; see, e.g., [1, 25]. Specifically, we
randomly generate an i.i.d. Gaussian ensemble X ∈ Rm×n and a sparse vector β∗ ∈ Rn with
the sparsity being equal to s. The observation y is then generated by the MATLAB script

y = X ∗ β∗ + sigma ∗ randn(m, 1),

where sigma is the noise level, that is the standard deviation of Gaussian noise. In the
numerical experiments, the dimension of variables and the noise level are set as n = 1024 and
sigma = 0.01, respectively.

For each sparsity level, which is s/n, we randomly generate the data X, β∗, y for 100 times
and run the algorithms mentioned above to solve the ℓq optimization problems for q = 0, 1/2,
2/3 and 1 as well as the SCAD and MCP. The parameter ϵ in the ℓq minimization methods

(CP)q,ϵ is set as ϵ = sigma ∗
√

m+ 2
√
2m in order to guarantee that ∥e∥22 is no more than

ϵ2 with overwhelming probability [9, 11]. The parameter λ in the ℓq regularization methods
(RPq,λ) is chosen by 10-fold cross validation. To simplify the notations, the solution of different

problems will all be denoted as β̂. In order to reveal the dependence of ℓ2 recovery bounds on
sample size and inspired by the established theorems in the preceding sections (e.g., (69)), we
report the numerical results for a range of sample sizes of the form m = Ω(s log n).

The first experiment is conducted to show the performance on parameter estimation of the
ℓq minimization methods. Figure 2 plots the logarithmic estimated error log(∥β̂ − β∗∥2) along
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Figure 2: Boxplots of the estimated error versus the sample size for different ℓq minimization
methods.

with different sample size m. From Figure 2, we can see that the estimated error of each
minimization method decreases consistently as the sample size increases. In addition, we find
that the lower the q, the better the corresponding minimization method to achieve a more
accurate solution.

The second experiment is carried out to show the performance on parameter estimation
of the ℓq regularization methods and compare the performance with the SCAD and MCP.
The corresponding result is displayed in Figure 3, which plots the logarithmic estimated error
log(∥β̂−β∗∥2) along with the sample size m. As shown by Figure 3, the estimated error of each
regularization method decreases consistently as the sample size increases, and that the lower-
order regularization method (e.g., when q = 1/2, 2/3) outperforms the ℓ0/ℓ1 regularization
method in the sense that its estimated error decreases faster when the sample size increases
and achieves a more accurate solution than the ℓ0/ℓ1 regularization method. This is due to the
fact that the q-REC is satisfied when the sample size is larger than a certain level (see Lemma
11(i)) and the lower-order regularization method only requires a weaker q-REC to guarantee
its nice statistical property than that of the ℓ1 regularization method (see Theorems 2 and 4).
This result is consistent with the existing empirical studies on the ℓq regularization methods
as in [43, 25]. In addition, it is obvious that the lower-order regularization methods perform
much better than the SCAD and MCP to achieve an accurate solution no matter whether the
sparsity level is high or low.

The third experiment is to study the performance of different optimization methods, includ-
ing the minimization ones and the regularization ones, when the sparsity level is varied. In
this experiment, we set the problem size as m = 512, n = 1024 as a prototype. Figure 4
plots the logarithmic estimated error log(∥β̂ − β∗∥2) along with different sparsity level s/n.
We can see from Figure 4(a) that, for the ℓq minimization methods, the lower the q, the bet-
ter the performance. As demonstrated in Figure 4(b), when the sparsity level is high (e.g.,
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Figure 3: Boxplots of the estimated error versus the sample size for different regularization
methods.

s/n = 1%, 2%, 4%, 8%), the lower-order regularization method (e.g., when q = 1/2, 2/3) out-
performs the ℓ0/ℓ1 regularization method in obtaining a more accurate solution. In addition,
we find that the SCAD/MCP regularization method performs much worse than the lower-order
regularization methods.
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Figure 4: Boxplots of the estimated error versus the sparsity level for different optimization
methods.

The forth experiment is performed to show the signals estimated by these methods in a
random trial at the sparsity level of 10%. The problem size is set as m = 512, n = 1024. The
corresponding results are displayed in Figure 5. As illustrated in 5(a), all the ℓq minimization
methods performs successfully in the sense that they not only identify the correct sparsity
structure but also obtain the accurate weights. We also find that the lower the q, the smaller
estimated error the method achieves, which is consistent with the first experiment. For the
regularization methods, it is demonstrated in 5(b) that all the ℓq regularization methods suc-
cessfully identify the sparsity structure. And the lower-order regularization method (e.g., when
q = 1/2, 2/3) still outperforms the ℓ1 regularization method in the sense that the corresponding
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estimated error is relatively smaller. The SCAD/MCP regularization method, however, fails
to capture some sparsity structures, and for the obtained sparsity structures, the weights are
inaccurate leading to a relatively large estimated error.

The fifth experiment is implemented to study the performance on variable selection of the
ℓq regularization methods as well as the SCAD and MCP. We use following two criteria to
characterize the capability of variable selection:

sensitivity =
true positive

true positive+false negative
and specificity =

true negative

true negative+false positive
,

which respectively measures the proportion of positives and negatives that are correctly identi-
fied. The larger values of both sensitivity and specificity mean the higher capability of variable
selection. The results are illustrated by averaging over the 100 random trials. Tables 1 and
2 respectively chart the sensitivity and specificity of these methods at a sparsity level 10%
corresponding to Figure 3(b). It is illustrated that the sensitivity and specificity of all these
methods increase as the sample size grows, except for the specificity of Lasso, which is resulted
from the fact that there are many small nonzero coefficients estimated by Lasso. We also note
that the lower-order regularization method (e.g., when q = 1/2, 2/3) outperforms the other
regularization methods in the sense that it can almost completely select the true model when
the size of samples is getting large.

Table 1: Sensitivity of different regularization methods.

Method
Sample size

177 355 532 710 887 976

q=0 0.3029 0.8931 0.9824 0.9873 0.9902 0.9912

q=1/2 0.2902 0.5108 0.9412 0.9873 0.9892 0.9941

q=2/3 0.3108 0.9333 0.9922 0.9931 0.9941 0.9971

q=1 0.5088 0.9980 1.0000 1.0000 1.0000 1.0000

SCAD 0.2882 0.8471 0.9157 0.9363 0.9324 0.9422

MCP 0.1373 0.4539 0.8461 0.9088 0.9353 0.9382

Table 2: Specificity of different regularization methods.

Method
Sample size

177 355 532 710 887 976

q=0 0.9229 0.9882 0.9980 0.9986 0.9989 0.9990

q=1/2 0.8810 0.8119 1.0000 1.0000 1.0000 1.0000

q=2/3 0.8782 0.9999 1.0000 1.0000 1.0000 1.0000

q=1 0.8088 0.7454 0.7680 0.7473 0.7357 0.6120

SCAD 0.9653 0.9900 0.9906 0.9908 0.9919 0.9925

MCP 0.9466 0.9757 0.9909 0.9919 0.9925 0.9925

Finally, it is worth mentioning that the existing ℓq optimization algorithms (see, e.g., [11,
13, 25, 43]) are only proved to converge to a critical point, while their convergence to a global
optimum is still an open question. Nevertheless, it is demonstrated by the numerical results
above, as well as the ones in the literature, that the limiting point of these algorithms performs
well in estimating the underlying true parameter.
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Figure 5: Signals estimated by different optimization methods.
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